Disabled by default for now behind `TORCH_CUDNN_SDPA_NESTED_TENSOR_ENABLED=1`
Just wanted to get this out before starting a series of SDPA cleanup PRs---the biggest thing is we don't need the boilerplate around all of the `build_graph_and_tensors*` functions anymore as we can now use the `UID`-style referencing of tensor nodes as was done for the Conv-V8 API backend.
CC @drisspg
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141178
Approved by: https://github.com/jbschlosser
Disabled by default for now behind `TORCH_CUDNN_SDPA_NESTED_TENSOR_ENABLED=1`
Just wanted to get this out before starting a series of SDPA cleanup PRs---the biggest thing is we don't need the boilerplate around all of the `build_graph_and_tensors*` functions anymore as we can now use the `UID`-style referencing of tensor nodes as was done for the Conv-V8 API backend.
CC @drisspg
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141178
Approved by: https://github.com/jbschlosser
Fixes 3 issues:
1. The test wasn't actually testing SDPA: both were checking cuda, and the inputs to SDPA were not transposed.
2. FlopCounterMode has been renamed _FlopCounterMode (and a wrapper named FlopCounterMode has been added)
3. offsets_to_list also needs to ignore the actual offset values if offsets is a meta tensor.
Differential Revision: [D69558785](https://our.internmc.facebook.com/intern/diff/D69558785)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147032
Approved by: https://github.com/jbschlosser
This PR contains several fixes related to non-contiguous NJTs:
1. Propagates `lengths` through op calls appropriately (see desc of #138098)
* SDPA now calls `nested_view_from_values_offsets_lengths()` instead of `nested_view_from_values_offsets()`
2. Allows non-contig NJTs in unsqueeze / transpose / select
3. Expands padded dense -> NJT conversion to support non-contig NJTs
4. (unrelated sorry) Updates `split` / `split_with_sizes` to allow for optional `dim`, matching the ATen signature
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140160
Approved by: https://github.com/cpuhrsch
There's an annoying pattern emerging for pulling out the NJT min / max seqlen ints if they exist without computing / caching if they don't. This PR introduces private convenience functions to simplify handling this and avoiding redundant checks.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138130
Approved by: https://github.com/soulitzer
A user wants to use the flop counter with meta devices. This previously caused problems for SDPA+NJT:
1. autocast check: `torch.is_autocast_enabled("meta")` fails because `meta` is not valid for autocasting. If we skip this, we run into the next error
2. math backend: conversion to NST requires getting concrete offsets in a list of python integers, which doesn't work on a meta tensor b2eb0e8c6a/torch/nested/_internal/sdpa.py (L809-L815)
3. (fixed in the previous PR, #134288) - if we force using flash attention backend for flop counting, `_flash_attention_forward` previously didn't support meta tensors.
In this PR, we check specifically for FlopCounterMode, and, if it's enabled and combined with meta tensors, (a) skip autocasting and (b) force it down the flash attention path. This isn't generally safe for tracing (e.g. if you actually care which kernels you are running), but in the absence of actual device information, we have to make some assumptions. By specifically checking for FlopCounterMode, this should reduce the chance of unintended side effects for other meta tensor users.
Note: fake tensor would solve a bunch of these issues, but it's not a viable solution right now for the user.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134289
Approved by: https://github.com/soulitzer
ghstack dependencies: #134288
When autocasting is turned on, right now SDPA w/ NJT won't be autocasted. This PR adds manual "autocasting" logic in sdpa.py - at the beginning, it just checks if autocasting is enabled, and if so, it casts the inputs in the way you would expect if autocasting was actually running.
Why normal autocasting won't work:
* NJT intercepts the `__torch_function__` call for scaled_dot_product_attention, which, AFAIK, happens before we get to any dispatcher logic, and then calls efficient attention or flash attention. So autocasting the scaled_dot_product_attention op won't work; we never call the aten op for scaled_dot_product_attention, so we won't ever run autocasting for it.
* If we try to add autocasting handling for `_flash_attention_forward` or `_efficient_attention_forward`, then autocasting will _run_, but it will have the wrong semantics: sdpa.py's handling will run first, and it will do backend selection based on the uncasted inputs to SDPA. This also means that if the inputs to the SDPA call don't have uniform types, the sdpa.py implementation will fail checks (this is the specific issue we're targeting).
Alternative: "just change the backend selection logic for NJT to be autocast aware, but don't actually do the autocast; then, add `_(flash|efficient)_attention_forward` to autocasting rules". I think this would work too. But it's arguably better to make the backend-selection logic and actual-autocast-behavior use the same implementation, in case the implementations are different.
Differential Revision: [D60879916](https://our.internmc.facebook.com/intern/diff/D60879916)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132835
Approved by: https://github.com/soulitzer
Idea: close over min / max sequence length in the main NJT view func (`_nested_view_from_jagged`) so that view replay during fake-ification propagates these correctly in torch.compile.
For dynamic shapes support for min / max sequence length, this PR uses a hack that stores the values in `(val, 0)` shaped tensors.
**NB: This PR changes SDPA to operate on real views instead of using `buffer_from_jagged()` / `ViewNestedFromBuffer`, which may impact the internal FIRST model. That is, it undoes the partial revert from #123215 alongside a fix to the problem that required the partial revert. We need to verify that there are no regressions there before landing.**
Differential Revision: [D55448636](https://our.internmc.facebook.com/intern/diff/D55448636)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122836
Approved by: https://github.com/soulitzer
Idea: close over min / max sequence length in the main NJT view func (`_nested_view_from_jagged`) so that view replay during fake-ification propagates these correctly in torch.compile.
For dynamic shapes support for min / max sequence length, this PR uses a hack that stores the values in `(val, 0)` shaped tensors.
**NB: This PR changes SDPA to operate on real views instead of using `buffer_from_jagged()` / `ViewNestedFromBuffer`, which may impact the internal FIRST model. That is, it undoes the partial revert from #123215 alongside a fix to the problem that required the partial revert. We need to verify that there are no regressions there before landing.**
Differential Revision: [D55448636](https://our.internmc.facebook.com/intern/diff/D55448636)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122836
Approved by: https://github.com/soulitzer
ghstack dependencies: #127007, #128057
For internal purposes, this PR reverts the use of real views in SDPA -> autograd.Function "views" (i.e. `ViewBufferFromNested` and `ViewNestedFromBuffer`). This is a temporary fix to get the FIRST model launched and working.
**Note: this breaks some other Dynamo tests related to SDPA that rely on real views, but the breakage there isn't expected to be likely in a real-world scenario.**
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123215
Approved by: https://github.com/YuqingJ
For internal purposes, this PR reverts the use of real views in SDPA -> autograd.Function "views" (i.e. `ViewBufferFromNested` and `ViewNestedFromBuffer`). This is a temporary fix to get the FIRST model launched and working.
**Note: this breaks some other Dynamo tests related to SDPA that rely on real views, but the breakage there isn't expected to be likely in a real-world scenario.**
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123215
Approved by: https://github.com/YuqingJ
This PR:
* Introduces an ATen op for creating true jagged views from a dense values buffer
* `_nested_view_from_jagged(values, offsets, lengths, ragged_idx, dummy)`
* This ops is implemented on the Python side using torch.library so we can return a subclass instance
* `jagged_from_list()` now uses this instead of the old autograd.Function `NestedViewFromBuffer`
* The latter op is used for non-contiguous JTs returned via `torch.nested.narrow()`
* `dummy` is an awful hack to ensure that `NestedTensor.__torch_dispatch__()` is invoked for our view
* Introduces an ATen op for accessing the `values` component of an NT via a view
* `_nested_get_values(nt)`
* **Removes** the autograd.Functions `ViewNestedFromBuffer` and `ViewBufferFromNested` in favor of `nested_from_values_offsets()` / `nested_from_values_offsets_lengths()` and `nt.values()`, respectively.
* Changes test code to prefer `as_nested_tensor()` over `jagged_from_list()` directly
* Similarly, avoid `buffer_from_jagged()`, preferring `values()`
* Depends on general subclass view fake-ification on the PT2 side (handled solely in previous PRs in the stack)
With these changes, the semantics of jagged layout NTs are such that they are considered a true view of the underlying `values` buffer. This means views of jagged NTs are views of the underlying buffer as well, simplifying some handling.
Differential Revision: [D54269922](https://our.internmc.facebook.com/intern/diff/D54269922)
Co-authored-by: voznesenskym <voznesenskym@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113279
Approved by: https://github.com/ezyang
This PR:
* Introduces an ATen op for creating true jagged views from a dense values buffer
* `_nested_view_from_jagged(values, offsets, lengths, ragged_idx, dummy)`
* This ops is implemented on the Python side using torch.library so we can return a subclass instance
* `jagged_from_list()` now uses this instead of the old autograd.Function `NestedViewFromBuffer`
* The latter op is used for non-contiguous JTs returned via `torch.nested.narrow()`
* `dummy` is an awful hack to ensure that `NestedTensor.__torch_dispatch__()` is invoked for our view
* Introduces an ATen op for accessing the `values` component of an NT via a view
* `_nested_get_values(nt)`
* **Removes** the autograd.Functions `ViewNestedFromBuffer` and `ViewBufferFromNested` in favor of `nested_from_values_offsets()` / `nested_from_values_offsets_lengths()` and `nt.values()`, respectively.
* Changes test code to prefer `as_nested_tensor()` over `jagged_from_list()` directly
* Similarly, avoid `buffer_from_jagged()`, preferring `values()`
* Depends on general subclass view fake-ification on the PT2 side (handled solely in previous PRs in the stack)
With these changes, the semantics of jagged layout NTs are such that they are considered a true view of the underlying `values` buffer. This means views of jagged NTs are views of the underlying buffer as well, simplifying some handling.
Differential Revision: [D54269922](https://our.internmc.facebook.com/intern/diff/D54269922)
Co-authored-by: voznesenskym <voznesenskym@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113279
Approved by: https://github.com/ezyang
Meta registration wrongly assumes 4D inputs, while the underlying op allows 3D inputs for the `mha_varlen_fwd()` case.
Testing: I added `detach()`es so the NJT test `test_sdpa_compile()` won't fail for a view-related reason. It should pass now with this fix.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119812
Approved by: https://github.com/drisspg
# Summary
Simplification of Backend Selection
This PR deprecates the `torch.backends/cuda/sdp_kernel` context manager and replaces it with a new context manager `torch.nn.attention.sdpa_kernel`. This context manager also changes the api for this context manager.
For `sdp_kernel` one would specify the backend choice by taking the negation of what kernel they would like to run. The purpose of this backend manager was to only to be a debugging tool, "turn off the math backend" and see if you can run one of the fused implementations.
Problems:
- This pattern makes sense if majority of users don't care to know anything about the backends that can be run. However, if users are seeking to use this context manager then they are explicitly trying to run a specific backend.
- This is not scalable. We are working on adding the cudnn backend and this API makes it so so that more implementations will need to be turned off if user wants to explicitly run a given backend.
- Discoverability of the current context manager. It is somewhat un-intutive that this backend manager is in backends/cuda/init when this now also controls the CPU fused kernel behavior. I think centralizing to attention namespace will be helpful.
Other concerns:
- Typically backends (kernels) for operators are entirely hidden from users and implementation details of the framework. We have exposed this to users already, albeit not by default and with beta warnings. Does making backends choices even more explicit lead to problems when we potentially want to remove existing backends, (perhaps inputs shapes will get covered by newer backends).
A nice side effect is now that we aren't using the `BACKEND_MAP` in test_transformers many, many dynamo failures are passing for CPU tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114689
Approved by: https://github.com/cpuhrsch
Support this fallback by converting the jagged layout NT to strided layout NT, and the convert the result back to jagged layout NT.
This fallback might not be efficient since it uses unbind, contiguous and split.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116445
Approved by: https://github.com/soulitzer
Support this fallback by converting the jagged layout NT to strided layout NT, and the convert the result back to jagged layout NT.
This fallback might not be efficient since it uses unbind, contiguous and split.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116445
Approved by: https://github.com/soulitzer