These two APIs are being used internally for some projects and need to be exposed as the build for this is done using OSS toolchain.
af8789c056 - this change hid most apis in torch python barring the ones explicitly specified breaking the build.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143380
Approved by: https://github.com/suo
This is useful for splitting grad to run in two parts while preserving intermediates:
<details>
<summary>
Click to see code
</summary>
```python
import collections
import weakref
from torch.autograd.graph import GradientEdge
def _get_grad_fn_or_grad_acc(t):
if t.requires_grad and t.grad_fn is None:
return t.view_as(t).grad_fn.next_functions[0][0]
else:
return t.grad_fn
def reverse_closure(roots, target_nodes):
# Recurse until we reach a target node
closure = set()
actual_target_nodes = set()
q: Deque = collections.deque()
for node in roots:
if node is not None and node not in closure:
closure.add(node)
q.append(node)
while q:
node = q.popleft()
reverse_edges = node.metadata.get("reverse_edges", [])
for holder_ref, idx in reverse_edges:
ref = holder_ref()
if ref is not None:
raise RuntimeError("Reverse graph is no longer alive")
fn = ref.node
if fn in closure or fn is None:
continue
if fn in target_nodes:
actual_target_nodes.add(fn)
continue
closure.add(fn)
q.append(fn)
return closure, actual_target_nodes
# Enable weak pointer
class Holder():
def __init__(self, node):
self.node = node
# TODO: use weak references to avoid reference cycle
def construct_reverse_graph(roots):
q: Deque = collections.deque()
root_seen = set()
reverse_graph_refs = []
for node in roots:
if node is not None and node not in root_seen:
q.append(node)
root_seen.add(node)
while q:
node = q.popleft()
for fn, idx in node.next_functions:
if fn is not None:
# Don't necessarily need to store on the graph
reverse_edges = fn.metadata.get("reverse_edges", [])
if len(reverse_edges) == 0:
q.append(fn)
holder = Holder(node)
holder_ref = weakref.ref(holder)
reverse_graph_refs.append(holder)
reverse_edges.append((holder_ref, idx))
fn.metadata["reverse_edges"] = reverse_edges
return reverse_graph_refs
def get_param_groups(inputs, params):
inputs_closure, _ = reverse_closure(inputs, set())
param_groups = dict() # keyed on intermediates
for i, param in enumerate(params):
closure, intersected = reverse_closure([param], inputs_closure)
param_group = {
"params": set([param]),
"intermediates": set(intersected),
}
for input_node in intersected:
existing = param_groups.get(input_node, None)
if existing is not None:
existing["params"] = existing["params"].union(param_group["params"])
existing["intermediates"] = existing["intermediates"].union(param_group["intermediates"])
param_group = existing
else:
param_groups[input_node] = param_group
# Sanity check: union of all param_groups params should be equal to all params
union_params = set()
seen_ids = set()
unique_param_groups = []
for param_group in param_groups.values():
if id(param_group) not in seen_ids:
seen_ids.add(id(param_group))
unique_param_groups.append(param_group)
union_params = union_params.union(param_group["params"])
assert union_params == set(params)
return unique_param_groups
def compute_grads_only_inputs2(roots, inps, weights):
root_grad_fns = list(map(_get_grad_fn_or_grad_acc, roots))
inp_grad_fns = list(map(_get_grad_fn_or_grad_acc, inps))
weight_grad_fns = list(map(_get_grad_fn_or_grad_acc, weights))
reverse_graph_refs = construct_reverse_graph(root_grad_fns)
param_groups = get_param_groups(inp_grad_fns, weight_grad_fns)
del reverse_graph_refs
for param_group in param_groups:
for i, intermediate in enumerate(param_group["intermediates"]):
def get_hook(param_group, i):
def hook(grad_inputs):
if param_group.get("grads", None) is None:
param_group["grads"] = [None] * len(param_group["intermediates"])
param_group["grads"][i] = grad_inputs
return hook
# These are always "split" nodes that we need to recompute, so
# save their inputs.
intermediate.register_prehook(get_hook(param_group, i))
dinputs = torch.autograd.grad((out,), inputs=tuple(inps), grad_outputs=(torch.ones_like(out),), retain_graph=True)
return dinputs, param_groups
def compute_grads_only_weights2(user_weights, param_groups):
all_dweights = dict()
for param_group in param_groups:
# TODO: Handle case where intermediate can have multiple outputs
intermediate_edges = tuple(GradientEdge(i, 0) for i in param_group["intermediates"])
weights_edges = tuple(GradientEdge(w, 0) for w in param_group["params"])
assert all(len(g) == 1 for g in param_group["grads"])
# [NEW!] Able to pass a GradientEdge to autograd.grad as output
# We do not need to retain_graph because... guarantee no overlap?
print("trying to execute: ", intermediate_edges, weights_edges)
dweights = torch.autograd.grad(intermediate_edges, weights_edges, grad_outputs=sum(param_group["grads"], tuple()))
for w, dw in zip(param_group["params"], dweights):
all_dweights[w] = dw
# return grads in the original order weights were provided in
out = []
for w in user_weights:
grad_acc = _get_grad_fn_or_grad_acc(w)
out.append(all_dweights[grad_acc])
return tuple(out)
```
</details>
```python
import torch.nn as nn
# Setup
mod1 = nn.Linear(10, 10)
mod2 = nn.Linear(10, 10)
a = torch.rand(10, requires_grad=True)
weights = tuple(mod1.parameters()) + tuple(mod2.parameters())
inps = (a,)
out = mod2(mod1(a))
class LoggingTensorMode(torch.utils._python_dispatch.TorchDispatchMode):
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
rs = func(*args, **kwargs)
print(f"{func.__module__}.{func.__name__}")
return rs
print(" -- SPLIT -- ")
# Compute gradients in two parts
with LoggingTensorMode():
print("PART 1")
dinputs, state = compute_grads_only_inputs2((out,), inps, weights)
print("PART 2")
dweights = compute_grads_only_weights2(weights, state)
out = mod2(mod1(a))
print(" -- REF -- ")
# Compare with reference
with LoggingTensorMode():
ref_all_gradients = torch.autograd.grad(out, inputs=tuple(inps) + weights, grad_outputs=(torch.ones_like(out),))
for actual, ref in zip(dinputs + dweights, ref_all_gradients):
print(torch.allclose(actual, ref))
```
<img width="598" alt="image" src="https://github.com/pytorch/pytorch/assets/13428986/3681b8a7-3ab4-4d1d-a836-abef6913e671">
```
PART 1
torch._ops.aten.view.default
torch._ops.aten.view.default
torch._ops.aten.view.default
torch._ops.aten.view.default
torch._ops.aten.view.default
torch._ops.aten.ones_like.default
V0603 10:17:21.590878 8300067520 torch/autograd/graph.py:751] Executing: <ViewBackward0 object at 0x12a1ee160> with grad_outputs: [f32[10]]
torch._ops.aten.view.default
V0603 10:17:21.591204 8300067520 torch/autograd/graph.py:751] Executing: <AddmmBackward0 object at 0x12a1ee0d0> with grad_outputs: [f32[1, 10]]
torch._ops.aten.t.default
torch._ops.aten.mm.default
V0603 10:17:21.591578 8300067520 torch/autograd/graph.py:751] Executing: <ViewBackward0 object at 0x100d7ae50> with grad_outputs: [f32[1, 10]]
torch._ops.aten.view.default
V0603 10:17:21.591747 8300067520 torch/autograd/graph.py:751] Executing: <ViewBackward0 object at 0x12a1e4a60> with grad_outputs: [f32[10]]
torch._ops.aten.view.default
V0603 10:17:21.591834 8300067520 torch/autograd/graph.py:751] Executing: <AddmmBackward0 object at 0x12a1e4bb0> with grad_outputs: [f32[1, 10]]
torch._ops.aten.t.default
torch._ops.aten.mm.default
V0603 10:17:21.591922 8300067520 torch/autograd/graph.py:751] Executing: <ViewBackward0 object at 0x12a1e4a90> with grad_outputs: [f32[1, 10]]
torch._ops.aten.view.default
PART 2
trying to execute: (GradientEdge(node=<AddmmBackward0 object at 0x12a1e4bb0>, output_nr=0),) (GradientEdge(node=<AccumulateGrad object at 0x12a21b130>, output_nr=0), GradientEdge(node=<AccumulateGrad object at 0x12a21b7c0>, output_nr=0))
V0603 10:17:21.592223 8300067520 torch/autograd/graph.py:751] Executing: <AddmmBackward0 object at 0x12a1e4bb0> with grad_outputs: [f32[1, 10]]
torch._ops.aten.t.default
torch._ops.aten.mm.default
torch._ops.aten.t.default
torch._ops.aten.sum.dim_IntList
torch._ops.aten.view.default
V0603 10:17:21.592421 8300067520 torch/autograd/graph.py:751] Executing: <TBackward0 object at 0x12a1cad60> with grad_outputs: [f32[10, 10]]
torch._ops.aten.t.default
trying to execute: (GradientEdge(node=<AddmmBackward0 object at 0x12a1ee0d0>, output_nr=0),) (GradientEdge(node=<AccumulateGrad object at 0x12a1e41c0>, output_nr=0), GradientEdge(node=<AccumulateGrad object at 0x12a21b670>, output_nr=0))
V0603 10:17:21.593481 8300067520 torch/autograd/graph.py:751] Executing: <AddmmBackward0 object at 0x12a1ee0d0> with grad_outputs: [f32[1, 10]]
torch._ops.aten.t.default
torch._ops.aten.mm.default
torch._ops.aten.t.default
torch._ops.aten.sum.dim_IntList
torch._ops.aten.view.default
V0603 10:17:21.593750 8300067520 torch/autograd/graph.py:751] Executing: <TBackward0 object at 0x12a21b2b0> with grad_outputs: [f32[10, 10]]
torch._ops.aten.t.default
torch._ops.aten.view.default
torch._ops.aten.view.default
torch._ops.aten.view.default
torch._ops.aten.view.default
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127766
Approved by: https://github.com/albanD
Summary:
In some cases (especially those involving collective calls) - we would want to always kick off a collective call first before running going down another path.
For example:
```
tbe lookup -> a2a ->
overarch
dense ------------->
```
if the forward code is written as
a2a_out = a2a
dense = dense_net
out = overarch(a2a_out, dense)
out.backward()
The current default is running backwards in the opposite order the forward is called. However, there is no data dependency between a2a and dense, so in reality either of them could be run first. We would like the a2a to run first because it provides optimal (on average) overlap.
Changing the seq_nr of a2a_out to something large enough would allow autograd engine to kick it off first.
Test Plan: Tests incoming
Differential Revision: D51445261
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114120
Approved by: https://github.com/ezyang, https://github.com/albanD
Fixes#102375
Sequence_nr increments in the forward pass and decrements in the backward pass. Backward ops with the same sequence_nr as a forward op represent the backward implementation for the op. The long term goal is to make this information available to the profiler so users can observe which ops are fused by the inductor openai triton kernels.
Added a test for this feature **test/dynamo/test_aot_autograd.py::AotAutogradFallbackTests::test_aot_sequence_nr**. The test case uses **aot_export_module()** to create a joint fwd/bwd fx graph. Then it walks all the nodes in fx graph using fx_graph.graph.nodes. The seq_nr of each node is recorded in node.meta. During the fwd pass the seq_nr increments and it decrements during the bwd pass. This allows the user to map forward ops to their corresponding bwd ops which is useful for performance analysis.
Expected output from the test case.
SeqNr|OrigAten|SrcFn
0|aten.convolution.default|l__self___conv1
0|aten.add.Tensor|l__self___bn1
1|aten._native_batch_norm_legit_functional.default|l__self___bn1
2|aten.relu.default|l__self___relu1
3|aten.add.Tensor|add
4|aten.view.default|flatten
5|aten.t.default|l__self___fc1
6|aten.unsqueeze.default|l__self___fc1
7|aten.mm.default|l__self___fc1
8|aten.squeeze.dim|l__self___fc1
9|aten.add.Tensor|l__self___fc1
10|aten.sub.Tensor|l__self___loss_fn
11|aten.abs.default|l__self___loss_fn
12|aten.mean.default|l__self___loss_fn
12|aten.ones_like.default|
12|aten.expand.default|
12|aten.div.Scalar|
11|aten.sgn.default|
11|aten.mul.Tensor|
8|aten.unsqueeze.default|
7|aten.t.default|
7|aten.mm.default|
7|aten.t.default|
7|aten.t.default|
7|aten.mm.default|
6|aten.squeeze.dim|
5|aten.t.default|
4|aten.view.default|
2|aten.threshold_backward.default|
1|aten.native_batch_norm_backward.default|
0|aten.convolution_backward.default|
0|aten.add.Tensor|
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103129
Approved by: https://github.com/soulitzer
remove casts to `getter` in python_cpp_function.h
Summary:
These were triggering the warning `-Wcast-function-type-strict` and
breaking the build on my machine.
Test Plan: Rely on CI.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100065
Approved by: https://github.com/ezyang
Addresses: https://github.com/pytorch/pytorch/issues/83617
This PR a way to query the TLS graph task's exec_info which is a map mapping the Node to a bool indicating whether it will be executed in the current backward pass (as determined by the inputs= argument for .grad of .backward).
- this works with both custom Function nodes and normal codegened nodes
- to be able to verify whether the pyobject passed is an actual node, we now store pointers to PyTypeObjects into a set on registration.
- error out when .backward without inputs= to avoid silently returning True
Alternatives:
- not sure if it is possible to bind to Python from a raw pointer to Node. At least we wouldn't be able to use existing logic, and the Python object should only hold a weak reference to the Node.
- other solutions to the motivating issue seem to require more extensive modification to the engine
See the issue linked for an example of usage
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84773
Approved by: https://github.com/albanD
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46227
Follow up from https://github.com/pytorch/pytorch/issues/45419, in
this PR I've removed as many PyCFunction casts as I could from the codebase.
The only ones I didn't remove were the ones with `METH_VARARGS | METH_KEYWORDS`
which have 3 parameters instead of 2 and had to be casted. Example: `
{"copy_", (PyCFunction)(void(*)(void))THPStorage_(copy_), METH_VARARGS |
METH_KEYWORDS, nullptr},`
ghstack-source-id: 114632704
Test Plan: waitforbuildbot
Reviewed By: albanD
Differential Revision: D24269435
fbshipit-source-id: 025cfd43a9a2a3e59f6b2951c1a78749193d77cf
Summary:
Follow-up to gh-25483, more of the same fixes for warnings like:
```
../torch/csrc/autograd/python_variable.cpp:503:31: warning: cast between incompatible function types from ‘PyObject* (*)(THPVariable*)’ {aka ‘_object* (*)(THPVariable*)’} to ‘getter’ {aka ‘_object* (*)(_object*, void*)’} [-Wcast-function-type]
503 | {"_backward_hooks", (getter)THPVariable_get_backwards_hooks, (setter)THPVariable_set_backwards_hooks, nullptr, nullptr},
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
```
This takes the build log output for a full rebuild with GCC 9.1 from ~10,000 to ~7,000 lines.
`clang-tidy` is going to complain, no way around that - see discussion at the end of gh-25483.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26104
Differential Revision: D17396831
Pulled By: ezyang
fbshipit-source-id: d71696bfe4dbe25519e4bcb7753151c118bd39f7
Summary:
This PR fixes around 250 places in the codebase where we were making unnecessary copies of objects (some large, some small).
ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15026
Differential Revision: D13458784
Pulled By: goldsborough
fbshipit-source-id: be5148b2ce09493588d70952e6f6d6ff5ec5199b
Summary:
Anywhere we used #include "foo.h", we now say #include <foo.h>
Paths are adjusted to be rooted out of aten/src, torch/lib, or
the root level directory.
I modified CMakeLists.txt by hand to remove TH and THC from
the include paths.
I used the following script to do the canonicalization:
```
import subprocess
import re
import os.path
files = subprocess.check_output(['git', 'ls-files']).decode('utf-8').rstrip().split('\n')
for fn in files:
if not any(fn.endswith(suff) for suff in ['.cu', '.cpp', '.in', '.h', '.hpp', '.cu', '.cuh', '.cc']):
continue
if not any(fn.startswith(pref) for pref in ["aten/", "torch/"]):
continue
with open(fn, 'r') as f:
c = f.read()
def fmt(p):
return "#include <{}>".format(p)
def repl(m):
p = m.group(1)
if p in ["dlfcn.h", "unistd.h", "nvrtc.h", "cuda.h", "cuda_runtime.h", "cstdint", "cudnn.h", "Python.h", "cusparse.h", "cuda_runtime_api.h", "cuda_fp16.h", "cublas_v2.h", "stdint.h", "curand_kernel.h"]:
return fmt(p)
if any(p.startswith(pref) for pref in ["torch/csrc", "c10/", "ATen/", "caffe2/", "TH/", "THC/", "Eigen/", "gtest/", "zdl/", "gloo/", "onnx/", "miopen/"]):
return fmt(p)
for root in ["aten/src", "torch/lib", ""]:
for bad_root in [os.path.dirname(fn), "aten/src/TH", "aten/src/THC", "torch/csrc"]:
new_p = os.path.relpath(os.path.join(bad_root, p), root)
if not new_p.startswith("../") and (os.path.exists(os.path.join(root, new_p)) or os.path.exists(os.path.join(root, new_p + ".in"))):
return fmt(new_p)
print("ERROR: ", fn, p)
return m.group(0)
new_c = re.sub(r'#include "([^"]+)"', repl, c)
if new_c != c:
print(fn)
with open(fn, 'w') as f:
f.write(new_c)
```
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14849
Reviewed By: dzhulgakov
Differential Revision: D13363445
Pulled By: ezyang
fbshipit-source-id: 52361f878a672785f9306c9e9ab2513128092b68
Summary:
This is needed because the JIT declares some custom autograd functions.
colesbury
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11082
Differential Revision: D9580456
Pulled By: apaszke
fbshipit-source-id: 6bf00c1188a20b2ee6ecf60e5a0099f8263ad55a
The core autograd Variable, Function, and Engine no longer depend on the
Python API. This let's us implement functions in C++. In the future, we
can also multithread engine and release the GIL for most of the
non-Python backwards.