Purely a refactor, improve typing and get rid of some type errors. Make certain fields as nonnull, since in general it's not empty.
The goal of this stack of PRs is to move the save/load logic of guard serialization into separate, flat phases, instead of being embedded in guard creation. This way, we can put a try/catch around it and fail safely if certain guards are not serializable.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160530
Approved by: https://github.com/Lucaskabela, https://github.com/Skylion007
We add a logging around when an ID_MATCH guard is added at a place where inbuilt_inline_nn_modules would inline it. This is done with the aim of tagging recompiles that could be avoided by setting inbuilt_inline_nn_modules flag.
It will help us log and track the flag's adoption and potentially quantify saving in the the number of recompiles.
Differential Revision: D80075975
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160592
Approved by: https://github.com/anijain2305
Summary:
The following type of objects don't need to be serialized for precompile:
1. PyCapsule because we don't guard on C binding objects in meaningful ways.
2. Code object because we only id matching on these but id matches will always be dropped for precompile.
3. Nested function objects since we also ban CLOSURE_MATCH.
Test Plan:
buck run mode/opt test/dynamo:test_dynamo -- -k test_skipped_objects
Rollback Plan:
Differential Revision: D78816888
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158926
Approved by: https://github.com/jamesjwu
# Note - On Lambda guarding of object aliasing
# We previously installed object‑aliasing guards as relational guards,
# but that undermined the recursive‑dict guard optimization: placing the
# aliasing guard at a leaf prevented the parent dict node from
# qualifying as a recursive‑dict guard root. Because aliasing guards are
# rare, we now emit them as epilogue guards via a small Python lambda.
# This repeats the access in Python—adding a bit of work—but the
# overhead is outweighed by the gains from enabling recursive‑dict guard
# optimization.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/159288
Approved by: https://github.com/StrongerXi
Previously precompile was implemented under the assumption that dynamo always inlines the user code and generate resume functions when a graph break is hit. In cases like nanogpt training, there exists nontrivial amount of code causing dynamo to fail the speculation and stop inlining certain type of user function. This results in more code objects to be tracked by CompilePackage.
Since these new code objects are user defined, we need to also serialize the location of these code so that we can load the precompile entries to the these code objects in another process.
With this fix, we are able to run nanogpt inference+training with precompile under torchbench.
Differential Revision: [D78691422](https://our.internmc.facebook.com/intern/diff/D78691422/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158947
Approved by: https://github.com/jamesjwu
As part of better engineering week, we would like to improve out type support to improve dev experience in dynamo
This PR adds strict typing support to a critical set of files for dynamo, `source.py` and the base `_guards.py`
Running
```
mypy torch/_dynamo/source.py torch/_guards.py --linecount-report /tmp/coverage_log
```
| -------- | Lines Unannotated | Lines Total | % lines covered | Funcs Unannotated | Funcs Total | % funcs covered |
| -------- | ------- | -------- | ------- | ------- | ------- | ------- |
| Main | 1227 | 2208 | 55.57% | 207 | 362 | 57.18% |
| This PR | 2217 | 2217 | 100.00% | 362 | 362 | 100.00% |
| Delta | +990 | +9 | +44.43% | +155 | 0 | +42.82% |
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158397
Approved by: https://github.com/anijain2305
This PR addresses a few small bugfixes needed to make NanoGPT inference work, and also adds a new `--caching-precompile` argument to torchbench. With `--caching-precompile`, after every benchmark we save precompile artifacts to DynamoCache, allowing us to test caching precompile on all existing benchmarks.
The following bugfixes are in this PR to make all of this work:
- Fix global variables being pruned with DUPLICATE_INPUT guards. DUPLICATE_INPUT guards have additional vars from the second input, which we track with additional_local_vars, but we never tracked additional global variables. This fixes the issue. (See torch/_dynamo/guards.py changes)
- Return None from PRecompileContext.serialize() if no new dynamo compiles occurred. There's no reason to save artifacts (i.e. autotuning artifacts, etc) if no dynamo_compile occurred, so we return None early. We may later want to support editing existing dynamo artifacts as a TODO, but that's upcoming.
- log `dynamo_start` on CompilePackage.load: This is only needed so that tlparse doesn't ignore TORCH_TRACE logs generated when caching precompile hits. If there are no actual compiles, we never log a "dynamo_start" entry, which makes internal tlparse ignore the TORCH_TRACE file.
## Test Plan
After this PR, the following now works:
```
TORCH_LOGS=dynamo tlp python benchmarks/dynamo/torchbench.py --only nanogpt --performance --inference --backend inductor --caching-precompile --warm-start-latency
```
tlparse result (internal):
Cold Start (6 seconds):
https://manifold.edge.x2p.facebook.net/v0/read/tree/logs/.tmpAWe0zD/dedicated_log_torch_trace_vk9nkp4m.log/index.html?bucketName=tlparse_reports&apiKey=tlparse_reports-key&withPayload=1&timeoutMsec=10000
Warm Start (~1 s):
https://manifold.edge.x2p.facebook.net/v0/read/tree/logs/.tmpAWe0zD/dedicated_log_torch_trace_5l4iwrpm.log/index.html?bucketName=tlparse_reports&apiKey=tlparse_reports-key&withPayload=1&timeoutMsec=10000
The 1 second of warm start here can be improved: the costs here are mostly in starting up workers and triton and initializing CUDA, a lot of which should not be included in the compile time cost in real world scenarios where these are already loaded before training begins.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158847
Approved by: https://github.com/zhxchen17
This PR addresses a few small bugfixes needed to make NanoGPT inference work, and also adds a new `--caching-precompile` argument to torchbench. With `--caching-precompile`, after every benchmark we save precompile artifacts to DynamoCache, allowing us to test caching precompile on all existing benchmarks.
The following bugfixes are in this PR to make all of this work:
- Fix global variables being pruned with DUPLICATE_INPUT guards. DUPLICATE_INPUT guards have additional vars from the second input, which we track with additional_local_vars, but we never tracked additional global variables. This fixes the issue. (See torch/_dynamo/guards.py changes)
- Return None from PRecompileContext.serialize() if no new dynamo compiles occurred. There's no reason to save artifacts (i.e. autotuning artifacts, etc) if no dynamo_compile occurred, so we return None early. We may later want to support editing existing dynamo artifacts as a TODO, but that's upcoming.
- log `dynamo_start` on CompilePackage.load: This is only needed so that tlparse doesn't ignore TORCH_TRACE logs generated when caching precompile hits. If there are no actual compiles, we never log a "dynamo_start" entry, which makes internal tlparse ignore the TORCH_TRACE file.
## Test Plan
After this PR, the following now works:
```
TORCH_LOGS=dynamo tlp python benchmarks/dynamo/torchbench.py --only nanogpt --performance --inference --backend inductor --caching-precompile --warm-start-latency
```
tlparse result (internal):
Cold Start (6 seconds):
https://manifold.edge.x2p.facebook.net/v0/read/tree/logs/.tmpAWe0zD/dedicated_log_torch_trace_vk9nkp4m.log/index.html?bucketName=tlparse_reports&apiKey=tlparse_reports-key&withPayload=1&timeoutMsec=10000
Warm Start (~1 s):
https://manifold.edge.x2p.facebook.net/v0/read/tree/logs/.tmpAWe0zD/dedicated_log_torch_trace_5l4iwrpm.log/index.html?bucketName=tlparse_reports&apiKey=tlparse_reports-key&withPayload=1&timeoutMsec=10000
The 1 second of warm start here can be improved: the costs here are mostly in starting up workers and triton and initializing CUDA, a lot of which should not be included in the compile time cost in real world scenarios where these are already loaded before training begins.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158847
Approved by: https://github.com/zhxchen17
Summary: For case like caching_precompile, we almost always want to drop ID_MATCH-type guards since they will block serialization. This diff add this behavior when this global flag is toggled on so that ID_MATCH guards are excluded from compilation and serialization.
Test Plan:
test_dynamo -- -k test_id_match_with_config
Rollback Plan:
Differential Revision: D78363609
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158368
Approved by: https://github.com/jamesjwu
Serialize BUILTIN_MATCH since they are all stored in __builtin__ dict.
Also fixed an issue that the wrong global scope is passed to CheckFunctionManager while loading guards. Previously we can always reuse the compile-time global scope for evaluating guards because the compile-time and runtime global scope are always the same.
For precompile, we need to serialize the compile-time global scope for loading only. We need to point the CheckFunctionManager to the new global scope after loading is finished for evaluating guards.
Differential Revision: [D77159313](https://our.internmc.facebook.com/intern/diff/D77159313/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157016
Approved by: https://github.com/jansel, https://github.com/jamesjwu
Currently, every time we construct a GLOBAL_STATE guard, we always create a fresh guard based on the current global state. For precompile, we want to create a GLOBAL_STATE guard always based on some external sources, e.g. serialized global states. This can also be applied with the normal case where we just pass in the global state guard from Python.
Differential Revision: [D77400988](https://our.internmc.facebook.com/intern/diff/D77400988/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157285
Approved by: https://github.com/jansel
Adding a per torch.compile() object CompilePackage which tracks dynamo artifact. CompilePackage is considered a low level component and should not be directly exposed to end users. It has the following interface:
1. `CompilePackage.__init__()` which optionally takes previously serialized dynamo states.
a. when `dynamo` argument is None, it will contruct a brand new CompilePackage object.
b. when `dynamo` argument is not None, it will load a pre-compiled dynamo state.
2. `package.save()` which dumps the dynamo states into _DynamoCacheEntry.
3. `package.install(backends)` which will handle all the side-effectful global scope updates with compiled functions and resume functions.
This diff focus on making the low level mechanism for precompile. It will be left to upper level interface to use these API to build more user-facing frontend.
Differential Revision: [D75956538](https://our.internmc.facebook.com/intern/diff/D75956538/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155118
Approved by: https://github.com/jamesjwu
Co-authored-by: James Wu <jjwu@meta.com>
vLLM profiler sets with_stack=True that shows the dict_getitem on the profiler, both inflating the numbers and confusing compile users. This PR keeps BINARY_SUBSCR for regular dicts, while using `dict.__getitem__` only for dict subclasses.
Using binary_subscr is little bit faster, but not enough to make any major latency improvements.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155727
Approved by: https://github.com/zou3519, https://github.com/StrongerXi, https://github.com/jansel
We observed that guard overhead at runtime using profiler traces was
higher than reported in this profiling function at the compile time.
After investigation, we found that f_locals are already in cache and
that was causing the guard overhead to be way smaller while profiling
during the compilation. To be more realistic, we flush the cache here.
Profiling the guard overhead during compilation (in addition to at
runtime) allows faster iteration time, and logging in tlparse and
internal databases.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154764
Approved by: https://github.com/zou3519, https://github.com/jansel, https://github.com/StrongerXi
We observed that guard overhead at runtime using profiler traces was
higher than reported in this profiling function at the compile time.
After investigation, we found that f_locals are already in cache and
that was causing the guard overhead to be way smaller while profiling
during the compilation. To be more realistic, we flush the cache here.
Profiling the guard overhead during compilation (in addition to at
runtime) allows faster iteration time, and logging in tlparse and
internal databases.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154764
Approved by: https://github.com/zou3519, https://github.com/jansel, https://github.com/StrongerXi
ghstack dependencies: #154769
Summary:
Today when guard serialization fails, dynamo will raise an internal error like:
```
torch._dynamo.exc.InternalTorchDynamoError: RuntimeError: CLOSURE_MATCH guard cannot be serialized.
```
Adding a dedicated PackageError type to surface the error more clearly.
Test Plan: CI
Differential Revision: D75452124
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154430
Approved by: https://github.com/jamesjwu, https://github.com/jansel
Summary: Prune unused local objects from serialized local scope if they are not used in guard reconstruction. This is helpful when a user program takes things like local callable functions or the function call is recursive.
Test Plan:
test/dynamo/test_guard_serialization.py -k test_function_locals
Before pruning locals:
```
state = GuardsState(output_graph=OutputGraphGuardsState(local_scope={'x': tensor([ 0.0461, 0.4024, -1.0115]), 'g': <function ...aints=None, _guards=<torch._guards.GuardsSet object at 0x7fbccc7e9fc0>, _aotautograd_guards=[]), shape_code_parts=None)
def pickle_guards_state(state: GuardsState) -> bytes:
buf = io.BytesIO()
pickler = GuardsStatePickler(buf)
try:
pickler.dump(state)
except AttributeError as e:
> raise torch._dynamo.exc.PackageError(str(e)) from e
E torch._dynamo.exc.PackageError: Can't pickle local object 'TestGuardSerialization.test_function_locals.<locals>.foo'
```
After the diff
```
Tests finished: Pass 1. Fail 0. Fatal 0. Skip 0. Build failure 0
```
Differential Revision: D75452123
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154431
Approved by: https://github.com/jansel
This PR adds support for SimpleFSDP's composability with Tensor Parallel + torch.compile.
`_StridedShard` is used in SimpleFSDP/FSDP2 to support correct distributed checkpointing when FSDP+TP is applied. Previously, `_StridedShard` is not guarded by torch.compile. This PR adds `_StridedShard` as an additional placement type to be guarded by torch.compile.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/152286
Approved by: https://github.com/bdhirsh
Fixes#153777
CSE is an optimization and shouldn't block a compile if it hits recursion depth limits. Unfortunately we can't write this iteratively due to a dependency on `ast.unparse` which necessarily needs to do recursion. This PR catches opts out of CSE when we hit recursion depth errors.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154039
Approved by: https://github.com/Microve
https://github.com/pytorch/pytorch/issues/148222
Goal:
At the moment autograd saved tensors hooks are run in eager after compiled forward.
They are executed at the same time for all saved tensors.
Hooks can be used to reduce amout of memory used for saved tensors, doing quantization or offloading to cpu.
This is suboptimal for optimization of peak memory.
Better solution will be to put the hooks in the graph, as close as possible to the last usage of the tensor.
To get user specified autograd saved tensors hooks in the graph.
Logic:
UX:
If user specifies with torch.autograd.graph.saved_tensors_hooks(pack_gm, unpack_gm).
Where pack_gm and unpack_gm are torch.fx.GraphModule.
Then AotAutograd will retrace those graph modules, doing decompositions and functionalization in aot_autograd, inlining the result graphs in forward epilogue and backward prologue.
User may want to use control logic in the hooks, for example applying quantization only for specific dtypes and sizes.
This is also possible, user can put it into torch.fx.wrap function and use symbolic trace to make a GraphModule.
In that case AotAutograd cahing will work only in case when user explicitly set to the torch.fx.wrap call_function node "user_cache_hash" metadata.
If this metadata set - then aot_autograd cache can use saved cache artifact.
If metadata is not set - then cache is bypassed.
Dynamo:
Dynamo traces pack and unpack hooks and installs them as subgraph and explicitly adds to the output_graph. (As those subgraphs are not used and will not be copied in the result by default).
The complexity here is that at this moment we do not have example of inputs for the hooks.
We trace pack_hook with some Tensor from the inputs.
The result subgraphs are added to the hashing of AotAutograd Cache.
In AotAutograd we retrace the graph with the true saved tensors coming from partitioner.
Backwards Compatibility:
As current hooks are executed in eager mode and not all of them will be traceable - we only try to put in the graph hooks, explicitly marked by user with annotation (@_inlineable_saved_tensors_hooks).
For other hooks or if compiled autograd is enabled - keep the same logic.
Recompilations:
Hooks are guarded with lambda guard matching function id to cause recompilation if user reruns compiled function.
Aot_autograd:
After partitioner prepared forward and backward module - we trace prepared at Dynamo graphs for pack and unpack hooks and inline them in epilogue of forward and prologue of backward. Forward outputs and backward inputs are changed, transparently for user.
We do not try to put it close the last usage etc., relying on inductor to do this optimization.
```
INFO: TRACED GRAPH
===== Forward graph pre saved_tensors_hooks inlining 3 =====
/data/users/ivankobzarev/a/pytorch/torch/fx/_lazy_graph_module.py class GraphModule(torch.nn.Module):
def forward(self, primals_1: "Sym(s0)", primals_2: "Sym(s1)", primals_3: "f32[s0, s1][s1, 1]cuda:0"):
# File: /data/users/ivankobzarev/a/pytorch/test/functorch/test_aotdispatch.py:6660 in simple_fn, code: x = x + 1
add: "f32[s0, s1][s1, 1]cuda:0" = torch.ops.aten.add.Tensor(primals_3, 1); primals_3 = None
# File: /data/users/ivankobzarev/a/pytorch/test/functorch/test_aotdispatch.py:6661 in simple_fn, code: x = SAF.apply(x)
view: "f32[s0, s1][s1, 1]cuda:0" = torch.ops.aten.view.default(add, [primals_1, primals_2])
return (view, add, primals_1, primals_2)
INFO: TRACED GRAPH
===== Backward graph pre saved_tensors_hooks inlining 3 =====
/data/users/ivankobzarev/a/pytorch/torch/fx/_lazy_graph_module.py class GraphModule(torch.nn.Module):
def forward(self, primals_1: "Sym(s0)", primals_2: "Sym(s1)", primals_3: "f32[s0, s1][s1, 1]cuda:0"):
# File: /data/users/ivankobzarev/a/pytorch/test/functorch/test_aotdispatch.py:6660 in simple_fn, code: x = x + 1
add: "f32[s0, s1][s1, 1]cuda:0" = torch.ops.aten.add.Tensor(primals_3, 1); primals_3 = None
# File: /data/users/ivankobzarev/a/pytorch/test/functorch/test_aotdispatch.py:6661 in simple_fn, code: x = SAF.apply(x)
view: "f32[s0, s1][s1, 1]cuda:0" = torch.ops.aten.view.default(add, [primals_1, primals_2])
return (view, add, primals_1, primals_2)
INFO: TRACED GRAPH
===== saved_tensors_pack_hook add 3 =====
/data/users/ivankobzarev/a/pytorch/torch/fx/_lazy_graph_module.py class pack_float8(torch.nn.Module):
def forward(self, x_1: "f32[s0, s1][s1, 1]cuda:0"):
# No stacktrace found for following nodes
_to_copy: "f8e4m3fn[s0, s1][s1, 1]cuda:0" = torch.ops.aten._to_copy.default(x_1, dtype = torch.float8_e4m3fn); x_1 = None
return (torch.float32, _to_copy)
INFO: TRACED GRAPH
===== saved_tensors_unpack_hook add 3 =====
<eval_with_key>.22 from /data/users/ivankobzarev/a/pytorch/torch/fx/experimental/proxy_tensor.py:1225 in wrapped class pack_float8(torch.nn.Module):
def forward(self, x_1: "f32[s0, s1][s1, 1]cuda:0"):
# No stacktrace found for following nodes
_to_copy: "f8e4m3fn[s0, s1][s1, 1]cuda:0" = torch.ops.aten._to_copy.default(x_1, dtype = torch.float8_e4m3fn); x_1 = None
return (torch.float32, _to_copy)
INFO: TRACED GRAPH
===== Forward graph 3 =====
/data/users/ivankobzarev/a/pytorch/torch/fx/_lazy_graph_module.py class GraphModule(torch.nn.Module):
def forward(self, primals_1: "Sym(s0)", primals_2: "Sym(s1)", primals_3: "f32[s0, s1][s1, 1]cuda:0"):
# File: /data/users/ivankobzarev/a/pytorch/test/functorch/test_aotdispatch.py:6660 in simple_fn, code: x = x + 1
add: "f32[s0, s1][s1, 1]cuda:0" = torch.ops.aten.add.Tensor(primals_3, 1); primals_3 = None
# No stacktrace found for following nodes
_to_copy: "f8e4m3fn[s0, s1][s1, 1]cuda:0" = torch.ops.aten._to_copy.default(add, dtype = torch.float8_e4m3fn)
# File: /data/users/ivankobzarev/a/pytorch/test/functorch/test_aotdispatch.py:6661 in simple_fn, code: x = SAF.apply(x)
view: "f32[s0, s1][s1, 1]cuda:0" = torch.ops.aten.view.default(add, [primals_1, primals_2]); add = None
return (view, _to_copy, primals_1, primals_2)
INFO: TRACED GRAPH
===== Backward graph 3 =====
<eval_with_key>.21 class GraphModule(torch.nn.Module):
def forward(self, primals_1: "Sym(s0)", primals_2: "Sym(s1)", add_packed_2: "f8e4m3fn[s0, s1][s1, 1]cuda:0", tangents_1: "f32[s0, s1][s1, 1]cuda:0"):
# No stacktrace found for following nodes
_to_copy: "f32[s0, s1][s1, 1]cuda:0" = torch.ops.aten._to_copy.default(add_packed_2, dtype = torch.float32); add_packed_2 = None
# File: /data/users/ivankobzarev/a/pytorch/test/functorch/test_aotdispatch.py:6661 in simple_fn, code: x = SAF.apply(x)
add_7: "f32[s0, s1][s1, 1]cuda:0" = torch.ops.aten.add.Tensor(tangents_1, _to_copy); tangents_1 = _to_copy = None
return (None, None, add_7)
```
Differential Revision: [D72187044](https://our.internmc.facebook.com/intern/diff/D72187044)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150032
Approved by: https://github.com/bdhirsh
Basically adds native _IntWrapper support to dynamo. Here's my process of trying to make symint input support work on dynamo, and how I ended up with this approach [(doc)](https://docs.google.com/document/d/1GvNRQd8BnxlMay_hrEVgEta6VUeUW_hcFeRuB7q1nDY/edit?tab=t.0).
What I did was, before passing inputs to dynamo.export, I first wrap them with a class, `_IntWrapper`. When processing dynamic shapes, I will then add the corresponding dynamic shape specification to the `dynamism` field stored on the `_IntWrapper`. If there is no dynamism specified, then this will get unwrapped back to an integer. When dynamo tracing, when we encounter an `_IntWrapper`, we will convert this to a symint if the dynamism was specified as `Dim.DYNAMIC/AUTO`. Dynamo will then trace a graph that contains symint inputs, which will get passed to AOTAutograd and so on.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/152677
Approved by: https://github.com/pianpwk
This PR updates `GuardsStatePickler.reducer_override()` in `torch/_dynamo/guards.py` to handle reconstruction of traceable wrapper subclasses. It's intended to work recursively and handle any level of subclass instance nesting (e.g. subclass instances that contain subclass instances, etc.)
This PR tests the guard on several traceable wrapper tensor subclasses:
* `LocalSubclass`: used to ensure the correct error message is thrown when the subclass is not defined globally
* `torch.testing._internal.two_tensor.TwoTensor`: defines None for its extra metadata
* `SubclassWithMeta`: stores non-trivial extra metadata
* `SubclassWithCustomMetadataGuard`: stores non-trivial extra metadata and defines a custom `__metadata_guard__` classmethod
* `SubclassWithSubclassInnerTensors`: used to test recursiveness; this subclass contains subclass inner tensor components
Pull Request resolved: https://github.com/pytorch/pytorch/pull/152626
Approved by: https://github.com/jansel
Make Functorch interpreters serializable most of the time, so that we can save the guards on functorch states.
## Test Cases:
0. torch.compile() without functorch layers present. Guard should fail with any layer being pushed.
1. torch.compile() nested in vmap.
2. torch.compile() nested in grad.
3. torch.compile() nested in jvp + vmap
4. torch.compile() nested functionalize
5. torch.compile() nested in vmap + grad
Differential Revision: [D74008787](https://our.internmc.facebook.com/intern/diff/D74008787/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/152616
Approved by: https://github.com/zou3519
ghstack dependencies: #152615
This is a proof-of-concept of how we could serialize a guard and deserialize it back from the bytes.
The main behavioral change introduced in this diff is on CheckFunctionManager:
```
check_fn_manager = CheckFunctionManager(code, output_graph, guards_serialization_mode="save")
guards_state: bytes = check_fn_manager.guards_state
```
Once `guards_serialization_mode` is set to `save`, CheckFunctionManager will return an addtional `bytes` object called `guards_state` which should contain all the information needed for deserializing guards later.
When we load back guards state, we will set `guards_serialization_mode` is set to `load`:
```
output_graph_state = pickle.loads(guards_state)
check_fn_manager = CheckFunctionManager(code, output_graph_state, guards_serialization_mode="load")
```
# TENSOR_MATCH
Since we have many types of guards to support, we will break the work into small diffs instead of a single diff to support every guards.
We kick off the work from TENSOR_MATCH from this diff.
# Testing
For each type of guard we will test it like the following:
1. Use guard_filter_fn to select 1 type of guard each time.
2. Call InstructionTranslator directly on an example function to get OutputGraph and CheckFunctionManager (reference guard manager)
3. Serialize->deserialize the output graph state and re-build the guards with a new CheckFunctionManager (loaded guard manager)
4. Throw a set of example inputs to both reference and loaded guard manager to see if their behavior match.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151318
Approved by: https://github.com/jansel, https://github.com/anijain2305
This is a proof-of-concept of how we could serialize a guard and deserialize it back from the bytes.
The main behavioral change introduced in this diff is on CheckFunctionManager:
```
check_fn_manager = CheckFunctionManager(code, output_graph, guards_serialization_mode="save")
guards_state: bytes = check_fn_manager.guards_state
```
Once `guards_serialization_mode` is set to `save`, CheckFunctionManager will return an addtional `bytes` object called `guards_state` which should contain all the information needed for deserializing guards later.
When we load back guards state, we will set `guards_serialization_mode` is set to `load`:
```
output_graph_state = pickle.loads(guards_state)
check_fn_manager = CheckFunctionManager(code, output_graph_state, guards_serialization_mode="load")
```
# TENSOR_MATCH
Since we have many types of guards to support, we will break the work into small diffs instead of a single diff to support every guards.
We kick off the work from TENSOR_MATCH from this diff.
# Testing
For each type of guard we will test it like the following:
1. Use guard_filter_fn to select 1 type of guard each time.
2. Call InstructionTranslator directly on an example function to get OutputGraph and CheckFunctionManager (reference guard manager)
3. Serialize->deserialize the output graph state and re-build the guards with a new CheckFunctionManager (loaded guard manager)
4. Throw a set of example inputs to both reference and loaded guard manager to see if their behavior match.
Differential Revision: [D72987485](https://our.internmc.facebook.com/intern/diff/D72987485/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151318
Approved by: https://github.com/jansel, https://github.com/anijain2305
[dynamo] Deprecate enable_cpp_framelocals_guard_eval config variable - default: True
Reading the feature enabling param `enable_cpp_framelocals_guard_eval `at the CPP level is time consuming and slows down the operation of the dynamo as it is done every time the function using this param is called. Reading the value only once at init isn’t an option as it would disable the modification of this param at the runtime. Since this feature is enabled by default for some time and it doesn’t cause known issues, the `enable_cpp_framelocals_guard_eval `configuration param will be deprecated by this commit and its value is hardcoded to true.
Local microbenchmark dynamo_guard_eval.py:
- 931.9 us -> 538.9 us (3.10)
@williamwen42 @jansel @anijain2305
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151008
Approved by: https://github.com/williamwen42
Doing this removes the need of collecting `id` and therefore facilitates serialization. It also improves readability with recompilations. Earlier, recompile message will just show the `id`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149228
Approved by: https://github.com/jansel
Doing this removes the need of collecting `id` and therefore facilitates serialization. It also improves readability with recompilations. Earlier, recompile message will just show the `id`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149228
Approved by: https://github.com/jansel
As title, this enables `nonstrict_trace`-ed function to take in object
whose type has been `pytree.register_constant`-ed, as long as the object
existed outside the `torch.compile` region. This also forces Dynamo to
emit a `EQUALS_MATCH` guard on the object.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148007
Approved by: https://github.com/zou3519
ghstack dependencies: #148385
This is for "for some large number Z, make sure the error messages are readable English." - beginning to audit all `unimplemented` sites and making sure that all messages are at least English-readable. Hints may not necessarily be provided.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147385
Approved by: https://github.com/jansel
This PR adds support for list subclasses. Among other things are
1) Tracking the mutations on internal vts like `_dict_vt` and `_list_vt` using sources. This helps identify if there was a mutation in the underlying data structures, and we need to reconstruct it.
2) `UserDefinedObjectVariable` now has a new method - `is_modified` which `side_effect` infra relies upon to check mutations in the underlying vts (like `_dict_vt`).
3) `reconstruction` logic ensures that we use `dict.__getitem__` and `list.__getitem__` methods. This is super important because we don't want to call the overridden `__getitem__` methods.
If this PR is hard to review, please let me know. I can break it into several small PRs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146819
Approved by: https://github.com/StrongerXi, https://github.com/jansel