Commit Graph

147 Commits

Author SHA1 Message Date
PyTorch MergeBot
b3603f8129 Revert "Deduplicate c10 error and PyTorchError hierarchy (#87855)"
This reverts commit 34f2d3e6ae.

Reverted https://github.com/pytorch/pytorch/pull/87855 on behalf of https://github.com/osalpekar due to perf regression in quantization tests
2023-01-06 19:56:35 +00:00
William Phetsinorath
34f2d3e6ae Deduplicate c10 error and PyTorchError hierarchy (#87855)
Fixes #53370

Pull Request resolved: https://github.com/pytorch/pytorch/pull/87855
Approved by: https://github.com/albanD
2023-01-02 15:53:36 +00:00
Aaron Gokaslan
3916d7a575 Apply modernize-use-emplace to aten, c10, torch (#91077)
Apply clang-tidy check modernize-use-emplace. This is slightly more efficient by using an inplace constructor and is the recommended style in parts of the codebase covered by clang-tidy. This just manually applies the check to rest of the codebase. Pinging @ezyang as this is related to my other PRs he reviewed like #89000

Pull Request resolved: https://github.com/pytorch/pytorch/pull/91077
Approved by: https://github.com/ezyang
2022-12-19 07:49:56 +00:00
Kazuaki Ishizaki
e0c194f10b Fix typos in messages under torch (#88961)
This PR fixes typos of messages and parms in c++ source and head files under `torch` directory.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/88961
Approved by: https://github.com/albanD
2022-11-14 19:06:41 +00:00
Aaron Gokaslan
59fe272c1e Fix: prefer .is_none() over .is(py::none()) for pybind11 (#88051)
Fixes minor perf regression I saw in #85688 and replaced throughout the code base. `obj == Py_None` is directly equivalent to is_none(). Constructing a temporary py::none() object needlessly incref/decref the refcount of py::none, this method avoids that and therefore is more efficient.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88051
Approved by: https://github.com/albanD
2022-10-31 16:41:27 +00:00
tangleintel
7980ed95bd Support unpacking python dictionary in torch.jit.trace() (#81623)
# Support unpacking python dictionary in **torch.jit.trace()**

## Problem statement & Motivation
### Problem 1(usability):
Say, if you have a model and its forward method defined as follows:
**`def forward(self, key1=value1, key2=value2, key3=value3)`**
And you have a dataset and each data point in the dataset is a python dict as follows:
**`data = {key1:value1, key3:value3, key2:value2}`**

The problem is that if you want to trace the model using the dict data by the giving dataset, you need unpack the dictionary and reorder its value manually and make up a tuple as **`data_tuple = (value1, value2, value3)`** as the **`example_inputs`** parameter of **`torch.jit.trace()`**. This marshalling process is not user friendly.

### Problem 2 (feasibility):
Say, if you have a model and its forward method defined as follows:
**`def forward(self, key1=None, key2=None, key3=None)`** -> The default value is **None**
And you have a dataset and each data point in the dataset is a python dict as follows:
**`data = {key1:value1, key3:value3}`** -> Only **part of** the required value by forward was given, the rest use the default value.

The problem is that if you want to trace the model using the dict data by the giving dataset, it's not feasible at all. Cause neither you can pass a tuple like **`T1 = (value1, value3)`**  nor **`T2 = (value1, None, value3)`**. T1 will mismatch value3 with key2 and T2 include **None** type which will be blocked by tracer's type checking. (Of course you can pass **`T3 = (value1,)`**  to make the trace function finish without exception, but the traced model you get probably is not what you expect cause the different input may result in different traced result.).

These problems come from the HuggingFace's PT model, especially in text-classification tasks with datasets such as [MRPC,](https://paperswithcode.com/dataset/mrpc)  [MNLI](https://paperswithcode.com/dataset/multinli) etc.

## Solution
To address these two issues, we propose to support a new type, that is, python dict as example_inputs parameter for torch.jit.trace(). We can base on the runtime type information of the example_inputs object to determine if we fall back to the original tuple path or go into the new dictionary path. Both problem 1 and  problem 2 can be solved by utilizing the "**`**`**"
operator.

## Limitation & Mitigation

1. If we use dict as example_inputs to trace the model, then we have to pass a dictionary to the traced model too. (Cause probably we will change the order of debug name of the input parameter in torchscript IR, thus we can't assume the traced model's input parameters order are the same with the original model.). We need highlight this too in the document to mitigate this problem.

    For example:
```
# fetch a data from dataloader, and the data is a dictionary
# and the example_inputs_dict is like: {key1:value1, key3:value3, key2:value2}
# the forward() is like: def forward(self, key1=value1, key2=value2, key3=value3)
example_inputs_dict = next(iter(dataloader))
jit_model = model.eval()
# use the dictionary to trace the model
jit_model = torch.jit.trace(jit_model, example_inputs_dict, strict=False)  # Now the IR will be graph(%self : __torch__.module.___torch_mangle_n.Mymodule, %key1 : type1, %key3 : type3, %key2 : type2)
jit_model = torch.jit.freeze(jit_model)

# It's OK to use dict as the parameter for traced model
jit_model(**example_inputs_dict)

example_inputs_tuple = (value1, value3, value2)
# It's wrong to rely on the original args order.
jit_model(*example_inputs_tuple)

```
## Note
1. This PR will make some UT introduced in [39601](https://github.com/pytorch/pytorch/pull/39601) fail, which I think should be classified as unpacking a tuple containing a single dictionary element in our solution.
4. I think there is ambiguity since currently we only specify passing a tuple or a single Tensor as our example_inputs parameter in **torch.jit.trace()**'s documentation, but it seems we can still passing a dictionary.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/81623
Approved by: https://github.com/davidberard98
2022-10-15 05:33:09 +00:00
Kimish Patel
cfd18e105f [Pytorch][Ondevice quantization] Add device side API to convert model (#83807)
Summary:
This diff adds device side API which will convert the model to its
quantized equivalent. THe input model must have been prepared AOT for
quantization.

API is implemented by:
- Running reset obervers
- Running observe method
- Running quantize method
- And replacing method, e.g. forward, with its quantized equivalent.

Test Plan:
test/quantization/jit/test_ondevice_quantization.py

Reviewers:

Subscribers:

Tasks:

Tags:

Differential Revision: [D38889818](https://our.internmc.facebook.com/intern/diff/D38889818)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83807
Approved by: https://github.com/iseeyuan
2022-08-29 17:57:38 +00:00
Tugsbayasgalan Manlaibaatar
b4b60c2a2e Get rid of ENABLE_UPGRADERS macro (#77574)
Since it's been a while after we merged the upgrader design and we haven't encountered any issues, let's get rid of the macro for safe rollout
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77574
Approved by: https://github.com/gmagogsfm
2022-08-09 05:33:14 +00:00
Edward Z. Yang
df69660832 Revert "Revert "Add a lint rule for torch/csrc/util/pybind.h include (#82552)"" (#82599)
This reverts commit 532b8a9e00.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82599
Approved by: https://github.com/albanD
2022-08-02 19:37:02 +00:00
PyTorch MergeBot
532b8a9e00 Revert "Add a lint rule for torch/csrc/util/pybind.h include (#82552)"
This reverts commit 9465c0e0b5.

Reverted https://github.com/pytorch/pytorch/pull/82552 on behalf of https://github.com/zengk95 due to This seems to be breaking windows binary wheels
2022-08-01 20:25:35 +00:00
Edward Z. Yang
9465c0e0b5 Add a lint rule for torch/csrc/util/pybind.h include (#82552)
We define specializations for pybind11 defined templates
(in particular, PYBIND11_DECLARE_HOLDER_TYPE) and consequently
it is important that these specializations *always* be #include'd
when making use of pybind11 templates whose behavior depends on
these specializations, otherwise we can cause an ODR violation.

The easiest way to ensure that all the specializations are always
loaded is to designate a header (in this case, torch/csrc/util/pybind.h)
that ensures the specializations are defined, and then add a lint
to ensure this header is included whenever pybind11 headers are
included.

The existing grep linter didn't have enough knobs to do this
conveniently, so I added some features.  I'm open to suggestions
for how to structure the features better.  The main changes:

- Added an --allowlist-pattern flag, which turns off the grep lint
  if some other line exists.  This is used to stop the grep
  lint from complaining about pybind11 includes if the util
  include already exists.

- Added --match-first-only flag, which lets grep only match against
  the first matching line.  This is because, even if there are multiple
  includes that are problematic, I only need to fix one of them.
  We don't /really/ need this, but when I was running lintrunner -a
  to fixup the preexisting codebase it was annoying without this,
  as the lintrunner overall driver fails if there are multiple edits
  on the same file.

I excluded any files that didn't otherwise have a dependency on
torch/ATen, this was mostly caffe2 and the valgrind wrapper compat
bindings.

Note the grep replacement is kind of crappy, but clang-tidy lint
cleaned it up in most cases.

See also https://github.com/pybind/pybind11/issues/4099

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82552
Approved by: https://github.com/albanD
2022-08-01 17:16:58 +00:00
William Tambellini
6e56629efa [JIT] JIT script init verbose assert (#80495)
Log the sizes of inputs in the assert of setInputTensorTypes(...)
in jit/python/script_init.cpp for easy debugging.
Helps/close:
https://github.com/pytorch/pytorch/issues/72763
Fixes #72763

Pull Request resolved: https://github.com/pytorch/pytorch/pull/80495
Approved by: https://github.com/davidberard98
2022-07-29 00:50:18 +00:00
Luka Mushkudiani
c0a7c1d02e Expose _export_data from C++ to Python (#79207)
Summary:
https://www.internalfb.com/code/fbsource/[477a5768452957f87e56044169de47f051197567]/fbcode/caffe2/torch/csrc/jit/mobile/train/export_data.cpp
export_data is used to serialize data.

I binded this method to Python with PyBind11

Test Plan:
Wrote a file pybind_check.py which checks if the binding works.

Then, tried to read the produced data file from C++ with "torch::jit::_load_parameters" and checked that content matched.

Differential Revision: D37029253

Pull Request resolved: https://github.com/pytorch/pytorch/pull/79207
Approved by: https://github.com/qihqi
2022-06-10 00:41:33 +00:00
Pavithran Ramachandran
9b81e81771 [PyTorchEdge] Extend Flatbuffer to get mobile_info for NMLML workflows
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78306

Extending the feature available from pickle that helps NMLML system get info of mobile models from `extra_files` dir

Differential Revision: [D36609548](https://our.internmc.facebook.com/intern/diff/D36609548/)

**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D36609548/)!

Approved by: https://github.com/iseeyuan
2022-06-01 20:09:09 +00:00
Elias Ellison
05ce0f9be6 Add option to disable autocast pass
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77566

Approved by: https://github.com/anijain2305, https://github.com/davidberard98
2022-05-18 14:57:25 +00:00
Tugsbayasgalan Manlaibaatar
31d9f7c303 Move other div variants to upgraders map
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73586

Approved by: https://github.com/gmagogsfm
2022-05-16 22:32:15 +00:00
David Berard
0925597707 [JIT] Support for ParameterDict getattr
Adds support for scripting ParameterDicts and getattr() on them. It does
not support iterating on ParameterDicts because torch/nn/container.py
implementation of ParameterDict.items() uses a generator, which is not
supported by torchscript. torch/nn/container.py would need to be updated
so that iter gets correctly registered in python_sugared_value.cpp

Added a test in test_module_containers.py

Pull Request resolved: https://github.com/pytorch/pytorch/pull/77143

Approved by: https://github.com/eellison
2022-05-13 01:03:25 +00:00
Han Qi
41ff6f8c49 make has_bundled_input work for flatbuffer (#76854)
Summary: title

Test Plan: unit test

Differential Revision: D36120947

Pull Request resolved: https://github.com/pytorch/pytorch/pull/76854
Approved by: https://github.com/Jack-Khuu
2022-05-09 23:04:08 +00:00
BowenBao
679fc90cdb [ONNX] Support optional type (#68793) (#73284)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73284

Some important ops won't support optional type until opset 16,
so we can't fully test things end-to-end, but I believe this should
be all that's needed. Once ONNX Runtime supports opset 16,
we can do more testing and fix any remaining bugs.

Test Plan: Imported from OSS

Reviewed By: albanD

Differential Revision: D34625646

Pulled By: malfet

fbshipit-source-id: 537fcbc1e9d87686cc61f5bd66a997e99cec287b

Co-authored-by: BowenBao <bowbao@microsoft.com>
Co-authored-by: neginraoof <neginmr@utexas.edu>
Co-authored-by: Nikita Shulga <nshulga@fb.com>
(cherry picked from commit 822e79f31ae54d73407f34f166b654f4ba115ea5)
2022-05-04 20:24:30 +00:00
jishaomin
91e9fcf5b0 sup torch script parameterlist
Fixes #61176

Pull Request resolved: https://github.com/pytorch/pytorch/pull/75479
Approved by: https://github.com/davidberard98
2022-04-20 20:53:07 +00:00
Han Qi
b34b192d6b Reland "Make debug_pkl smaller by only emitting unique traces." (#73368)
Summary:
## Original commit message:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73368

debug_pkl file inside of pytorch's .pt file consists of a list of SourceRanges. Each SourceRange points to a Source which is a stack track, filename, and start, end numbers. Those are emitted in debug_pkl file as strings.
Since many SourceRange shares the same source, the string for trace can be deduped.
The newer format saves a set of unique traces in a tuple, then each SourceRange will save the offset of it's trace w.r.t. position in that tuple. (i.e. manually applying dictionary compression).
The above helps with smaller file size. On loading, if we copy each trace to Source as string the runtime memory would still blowup.
To mitigate this, we use SourceView directly instead of source which will take the reference of string inside of Deserializer and make that into string_view. This is safe because Deserializer is hold by Unpickler by shared_ptr, and Unpickler is also hold by shared_ptr by another Source object. That Source object will be alive during the model construction.

Test Plan:
## Original Test plan
unit test

Took original file (312271638_930.predictor.disagg.local); loaded with `torch.jit.load` save again with `torch.jit.save`. Unzip both, look at contents:
```
[qihan@devvm5585.vll0 ~]$ du archive -h
4.0K    archive/xl_model_weights
3.7M    archive/extra
8.0K    archive/code/__torch__/caffe2/torch/fb/model_transform/splitting
8.0K    archive/code/__torch__/caffe2/torch/fb/model_transform
8.0K    archive/code/__torch__/caffe2/torch/fb
8.0K    archive/code/__torch__/caffe2/torch
8.0K    archive/code/__torch__/caffe2
20M     archive/code/__torch__/torch/fx/graph_module
20M     archive/code/__torch__/torch/fx
8.0K    archive/code/__torch__/torch/classes
20M     archive/code/__torch__/torch
20M     archive/code/__torch__
20M     archive/code
2.7M    archive/constants
35M     archive
[qihan@devvm5585.vll0 ~]$ du resaved -h
4.0K    resaved/extra
8.0K    resaved/code/__torch__/caffe2/torch/fb/model_transform/splitting
8.0K    resaved/code/__torch__/caffe2/torch/fb/model_transform
8.0K    resaved/code/__torch__/caffe2/torch/fb
8.0K    resaved/code/__torch__/caffe2/torch
8.0K    resaved/code/__torch__/caffe2
1.3M    resaved/code/__torch__/torch/fx/graph_module
1.3M    resaved/code/__torch__/torch/fx
8.0K    resaved/code/__torch__/torch/classes
1.4M    resaved/code/__torch__/torch
1.4M    resaved/code/__torch__
1.4M    resaved/code
2.7M    resaved/constants
13M     resaved
[qihan@devvm5585.vll0 ~]$
```
## Additional test:
`buck test mode/dev-tsan //caffe2/benchmarks/static_runtime:static_runtime_cpptest -- --exact 'caffe2/benchmarks/static_runtime:static_runtime_cpptest - StaticRuntime.to'` passes

 test jest.fbios.startup_cold_start.local.simulator f333356873 -

Differential Revision: D35196883

Pull Request resolved: https://github.com/pytorch/pytorch/pull/74869
Approved by: https://github.com/gmagogsfm
2022-04-18 22:34:21 +00:00
Elias Ellison
6694fdaccd Clean up profiling mode and profiling executor strategy (#73875)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73875

Previously we had a few settings:
- getExecutor - which toggled between Profiling Executor and Legacy
- getGraphOptimize - if true, overrides PE/Legacy to run with simple executor (no optimizations)
and then...
- getProfilingMode - which would set PE to 0 specializtions.

The last mode is redundant with getGraphOptimize, we should just remove it and use getGraphOptimize in these cases. It would lead to potentially invalid combinations of logic - what does mean if getProfilingMode is true but getExecutor is set to false ? This would lead to a bug in specialize_autograd_zero in this case, see: https://github.com/pytorch/pytorch/blob/master/torch%2Fcsrc%2Fjit%2Fpasses%2Fspecialize_autogradzero.cpp#L93.

The tests here are failing but get fixed with the PR above it, so i'll squash for landing.

Test Plan: Imported from OSS

Reviewed By: cpuhrsch

Differential Revision: D34938130

Pulled By: eellison

fbshipit-source-id: 1a9c0ae7f6d1cfddc2ed3499a5af611053ae5e1b
(cherry picked from commit cf69ce3d155ba7d334022c42fb2cee54bb088c23)
2022-03-29 18:38:51 +00:00
Han Qi
75d6cbe605 [4/5]Testing jit module in flatbuffer in Python. (#74387)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74387

Make temporary python bindings for flatbuffer to test ScriptModule save / load.

(Note: this ignores all push blocking failures!)

Test Plan: unittest

Reviewed By: iseeyuan

Differential Revision: D34968080

fbshipit-source-id: d23b16abda6e4b7ecf6b1198ed6e00908a3db903
(cherry picked from commit 5cbbc390c5f54146a1c469106ab4a6286c754325)
2022-03-24 23:29:47 +00:00
Pavithran Ramachandran
fc2cf3d26f Back out "Revert D34805092: Extend _save_for_mobile and _load_for_mobile to support flatbuffer format; Default format is pickle + Change buck targets to support only pickle and pickle + flatbuffer for migration" (#74594)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74594

Extending `_save_for_mobile` and `_load_for_mobile` to support faltbuffer format with additional optional argument which is set to pick pickle by default.

Adding new binary target with suffix `_pickle_and_flatbuffer` to help migration.

Size test in D34909502 shows the size has regressed by ~40K but after removing pickle and comparing lite_predictors we have ~120K size measure that we will achieve when deprecating pickle and moving to flatbuffer

**BEFORE:**

```lang=mermaid
graph TD;
    torch_core-->torch_mobile_deserialize;

    torch_mobile_core-->torch_mobile_deserialize;

    jit_module_saving-->torch_core;
    jit_module_saving-->torch_mobile_core;

    torch_mobile_deserialize-->caffe2_serialize;
    torch_mobile_deserialize-->torch_mobile_module;

    caffe2_serialize-->miniz;

    flatbuffer_loader-->mobile_bytecode;
    flatbuffer_serializer-->mobile_bytecode;

    mobile_bytecode-->flatbuffer_2.0;

    flatbuffer_loader-->torch_mobile_module;
    flatbuffer_serializer-->torch_mobile_module;
```

**AFTER:**
```lang=mermaid
graph TD;
    torch_core-->torch_mobile_deserialize;

    torch_mobile_core-->torch_mobile_deserialize;

    jit_module_saving-->torch_core;
    jit_module_saving-->torch_mobile_core;

    torch_mobile_deserialize-->caffe2_serialize;
    torch_mobile_deserialize-->torch_mobile_module;

    caffe2_serialize-->miniz;

    flatbuffer_loader-->mobile_bytecode;
    flatbuffer_serializer-->mobile_bytecode;

    mobile_bytecode-->flatbuffer_2.0;

    torch_mobile_deserialize_pickle_and_flatbuffer-->|new| flatbuffer_loader;
    torch_mobile_deserialize_pickle_and_flatbuffer-->|new| torch_mobile_deserialize;
    torch_mobile_core_pickle_and_flatbuffer-->|new| torch_mobile_deserialize_pickle_and_flatbuffer;
    torch_core_pickle_and_flatbuffer-->|new| torch_mobile_deserialize_pickle_and_flatbuffer;

    jit_module_saving_pickle_and_flatbuffer-->|new| torch_core_pickle_and_flatbuffer;
    jit_module_saving_pickle_and_flatbuffer-->|new| torch_mobile_core_pickle_and_flatbuffer;

    flatbuffer_serializer-->torch_mobile_module;

    jit_module_saving_pickle_and_flatbuffer-->|new|jit_module_saving;
    jit_module_saving_pickle_and_flatbuffer-->|new|flatbuffer_serializer;

    flatbuffer_loader-->torch_mobile_module;
```

Original commit changeset: 780dfb6fd6ba

Original Phabricator Diff: D34805092 (284b2b7135)
ghstack-source-id: 152044801

(Note: this ignores all push blocking failures!)

Test Plan:
CI

```
~/fbsource/fbcode] cd ~/fbsource/fbcode/ && buck test -c fbcode.caffe2_enable_flatbuffer=1 //caffe2/test/cpp/jit:jit  -- FlatbufferTest.ExtraFiles
Parsing buck files: finished in 0.9 sec
Building: finished in 5.3 sec (100%) 12992/54304 jobs, 0/54304 updated
  Total time: 6.2 sec
More details at https://www.internalfb.com/intern/buck/build/2b387fff-f813-4cfa-b53f-eb2378630d4e
BUILD SUCCEEDED
Tpx test run coordinator for Facebook. See https://fburl.com/tpx for details.
Running with tpx session id: f93a84d6-e7ce-41a0-a97f-0ef3fa6d199d
Trace available for this run at /tmp/tpx-20220323-134108.766518-f93a84d6-e7ce-41a0-a97f-0ef3fa6d199d/trace.log
RemoteExecution session id: reSessionID-f93a84d6-e7ce-41a0-a97f-0ef3fa6d199d-tpx
Started reporting to test run: https://www.internalfb.com/intern/testinfra/testrun/4503599723101693
    ✓ ListingSuccess: caffe2/test/cpp/jit:jit : 486 tests discovered (19.122)
    ✓ Pass: caffe2/test/cpp/jit:jit - FlatbufferTest.ExtraFiles (0.187)
Summary
  Pass: 1
  ListingSuccess: 1
If you need help understanding your runs, please follow the wiki: https://fburl.com/posting_in_tpx_users
Finished test run: https://www.internalfb.com/intern/testinfra/testrun/4503599723101693
```

Similar Build Deps Dags

```
[pavithran@devvm5216.vll0 /data/users/pavithran/fbsource] buck query 'allpaths(//xplat/caffe2:torch_mobile_all_ops_pickle_and_flatbuffer, //xplat/caffe2:torch_mobile_deserialize_pickle_and_flatbuffer)' --output-format dot-compact  | pastry
P486770901: https://www.internalfb.com/intern/paste/P486770901/

[pavithran@devvm5216.vll0 /data/users/pavithran/fbsource] buck query 'allpaths(//xplat/caffe2:torch_mobile_all_ops, //xplat/caffe2:torch_mobile_deserialize)' --output-format dot-compact  | pastry
P486771278: https://www.internalfb.com/intern/paste/P486771278/
```

pickle_and_flatbuffer: https://www.internalfb.com/intern/dgw/graph/?build_id=P486770901
pickle: https://www.internalfb.com/intern/dgw/graph/?build_id=P486771278

Reviewed By: iseeyuan

Differential Revision: D35067157

fbshipit-source-id: 9044259c17a2e0da79bd6aedb28efbdfd57e23e0
(cherry picked from commit f738069ec3a72e79da56172741d027de514e9e5f)
2022-03-24 21:51:05 +00:00
Nikita Shulga
c53b3ed20f Revert D34805092: Extend _save_for_mobile and _load_for_mobile to support flatbuffer format; Default format is pickle + Change buck targets to support only pickle and pickle + flatbuffer for migration
Test Plan: revert-hammer

Differential Revision:
D34805092 (284b2b7135)

Original commit changeset: 57f3fc81d68f

Original Phabricator Diff: D34805092 (284b2b7135)

fbshipit-source-id: 780dfb6fd6ba5f9348f24a2fb3c57971b7155541
(cherry picked from commit bebeb8b84e11c34cbde4857d0e1c291731a7c781)
2022-03-22 22:45:50 +00:00
Pavithran Ramachandran
284b2b7135 Extend _save_for_mobile and _load_for_mobile to support flatbuffer format; Default format is pickle + Change buck targets to support only pickle and pickle + flatbuffer for migration (#74209)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74209

Extending `_save_for_mobile` and `_load_for_mobile` to support faltbuffer format with additional optional argument which is set to pick pickle by default.

Adding new binary target with suffix `_pickle_and_flatbuffer` to help migration.

Size test in D34909502 shows the size has regressed by ~40K but after removing pickle and comparing lite_predictors we have ~120K size measure that we will achieve when deprecating pickle and moving to flatbuffer

**BEFORE:**

```lang=mermaid
graph TD;
    torch_core-->torch_mobile_deserialize;

    torch_mobile_core-->torch_mobile_deserialize;

    jit_module_saving-->torch_core;
    jit_module_saving-->torch_mobile_core;

    torch_mobile_deserialize-->caffe2_serialize;
    torch_mobile_deserialize-->torch_mobile_module;

    caffe2_serialize-->miniz;

    flatbuffer_loader-->mobile_bytecode;
    flatbuffer_serializer-->mobile_bytecode;

    mobile_bytecode-->flatbuffer_2.0;

    flatbuffer_loader-->torch_mobile_module;
    flatbuffer_serializer-->torch_mobile_module;
```

**AFTER:**
```lang=mermaid
graph TD;
    torch_core-->torch_mobile_deserialize;

    torch_mobile_core-->torch_mobile_deserialize;

    jit_module_saving-->torch_core;
    jit_module_saving-->torch_mobile_core;

    torch_mobile_deserialize-->caffe2_serialize;
    torch_mobile_deserialize-->torch_mobile_module;

    caffe2_serialize-->miniz;

    flatbuffer_loader-->mobile_bytecode;
    flatbuffer_serializer-->mobile_bytecode;

    mobile_bytecode-->flatbuffer_2.0;

    torch_mobile_deserialize_pickle_and_flatbuffer-->|new| flatbuffer_loader;
    torch_mobile_deserialize_pickle_and_flatbuffer-->|new| torch_mobile_deserialize;
    torch_mobile_core_pickle_and_flatbuffer-->|new| torch_mobile_deserialize_pickle_and_flatbuffer;
    torch_core_pickle_and_flatbuffer-->|new| torch_mobile_deserialize_pickle_and_flatbuffer;

    jit_module_saving_pickle_and_flatbuffer-->|new| torch_core_pickle_and_flatbuffer;
    jit_module_saving_pickle_and_flatbuffer-->|new| torch_mobile_core_pickle_and_flatbuffer;

    flatbuffer_serializer-->torch_mobile_module;

    jit_module_saving_pickle_and_flatbuffer-->|new|jit_module_saving;
    jit_module_saving_pickle_and_flatbuffer-->|new|flatbuffer_serializer;

    flatbuffer_loader-->torch_mobile_module;
```
ghstack-source-id: 151744258

Test Plan:
Similar Build Deps Dags

```
[pavithran@devvm5216.vll0 /data/users/pavithran/fbsource] buck query 'allpaths(//xplat/caffe2:torch_mobile_all_ops_pickle_and_flatbuffer, //xplat/caffe2:torch_mobile_deserialize_pickle_and_flatbuffer)' --output-format dot-compact  | pastry
P486770901: https://www.internalfb.com/intern/paste/P486770901/

[pavithran@devvm5216.vll0 /data/users/pavithran/fbsource] buck query 'allpaths(//xplat/caffe2:torch_mobile_all_ops, //xplat/caffe2:torch_mobile_deserialize)' --output-format dot-compact  | pastry
P486771278: https://www.internalfb.com/intern/paste/P486771278/
```

pickle_and_flatbuffer: https://www.internalfb.com/intern/dgw/graph/?build_id=P486770901
pickle: https://www.internalfb.com/intern/dgw/graph/?build_id=P486771278

Reviewed By: iseeyuan

Differential Revision: D34805092

fbshipit-source-id: 57f3fc81d68fce941a050c35bd8e6f05951183b3
(cherry picked from commit 671ae4ed29e65b86ffe507a503548d3e86ab0ea4)
2022-03-22 20:00:53 +00:00
Han Qi
0723639b60 Revert D34455360: Multisect successfully blamed D34455360 for test failures
Summary:
This diff is reverting D34455360 (61d6c43864)
D34455360 (61d6c43864) is making the following tests to fail and this revert diff is either the revert of the blame diff or the revert of the stack of diffs that need to be reverted to revert the blame diff

Tests affected:
- https://www.internalfb.com/intern/test/562950004334605/

Multisect link:
https://www.internalfb.com/intern/testinfra/multisect/756170

Test Plan: NA

Reviewed By: zhxchen17

Differential Revision: D34596156

fbshipit-source-id: a465bca0094db3caf6130c80f1ed49eea981359b
(cherry picked from commit ef5e5578c64ce9827570757fb016aafa9c782c6a)
2022-03-08 23:18:54 +00:00
Han Qi
61d6c43864 Make debug_pkl smaller by only emitting unique traces. (#73368)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73368

debug_pkl file inside of pytorch's .pt file consists of a list of SourceRanges. Each SourceRange points to a Source which is a stack track, filename, and start, end numbers. Those are emitted in debug_pkl file as strings.
Since many SourceRange shares the same source, the string for trace can be deduped.
The newer format saves a set of unique traces in a tuple, then each SourceRange will save the offset of it's trace w.r.t. position in that tuple. (i.e. manually applying dictionary compression).
The above helps with smaller file size. On loading, if we copy each trace to Source as string the runtime memory would still blowup.
To mitigate this, we use SourceView directly instead of source which will take the reference of string inside of Deserializer and make that into string_view. This is safe because Deserializer is hold by Unpickler by shared_ptr, and Unpickler is also hold by shared_ptr by another Source object. That Source object will be alive during the model construction.

Test Plan:
unit test

Took original file (312271638_930.predictor.disagg.local); loaded with `torch.jit.load` save again with `torch.jit.save`. Unzip both, look at contents:
```
[qihan@devvm5585.vll0 ~]$ du archive -h
4.0K    archive/xl_model_weights
3.7M    archive/extra
8.0K    archive/code/__torch__/caffe2/torch/fb/model_transform/splitting
8.0K    archive/code/__torch__/caffe2/torch/fb/model_transform
8.0K    archive/code/__torch__/caffe2/torch/fb
8.0K    archive/code/__torch__/caffe2/torch
8.0K    archive/code/__torch__/caffe2
20M     archive/code/__torch__/torch/fx/graph_module
20M     archive/code/__torch__/torch/fx
8.0K    archive/code/__torch__/torch/classes
20M     archive/code/__torch__/torch
20M     archive/code/__torch__
20M     archive/code
2.7M    archive/constants
35M     archive
[qihan@devvm5585.vll0 ~]$ du resaved -h
4.0K    resaved/extra
8.0K    resaved/code/__torch__/caffe2/torch/fb/model_transform/splitting
8.0K    resaved/code/__torch__/caffe2/torch/fb/model_transform
8.0K    resaved/code/__torch__/caffe2/torch/fb
8.0K    resaved/code/__torch__/caffe2/torch
8.0K    resaved/code/__torch__/caffe2
1.3M    resaved/code/__torch__/torch/fx/graph_module
1.3M    resaved/code/__torch__/torch/fx
8.0K    resaved/code/__torch__/torch/classes
1.4M    resaved/code/__torch__/torch
1.4M    resaved/code/__torch__
1.4M    resaved/code
2.7M    resaved/constants
13M     resaved
[qihan@devvm5585.vll0 ~]$
```

Reviewed By: gmagogsfm

Differential Revision: D34455360

fbshipit-source-id: 8cc716f9bba7183746b1b4ecc33a2de34ac503b9
(cherry picked from commit f1a04730fc9ac8fdab6c8e4c44cb5529e42090e4)
2022-03-02 08:37:08 +00:00
BowenBao
bbac8c9c48 [ONNX] List of files to consider for mergebot onnx rule (#72297)
Summary:
Based on past PRs, here is an non-exhaustive list of files to consider for extension. The PR is not meant to be final. Based on feedback and discussion, files could be dropped from the list, or PR could be updated to move code around such that extension is no longer needed.

List of files below and description:

* These files are for converting from IR to ONNX proto. These should be used only for ONNX.
```
"torch/csrc/jit/serialization/export.*",
"torch/csrc/jit/serialization/onnx.*",
```

* This file is touched whenever pass signature is updated.
```
"torch/_C/__init__.pyi.in",
```

* These files are touched whenever pass signature is updated. Somehow it's been convention that onnx passes are also added here, but it could be possible to move them. Let me know what you think.
~~"torch/csrc/jit/python/init.cpp",~~
~~"torch/csrc/jit/python/script_init.cpp",~~
Update: Bowen will move onnx passes to files under onnx folder.

* ~~Touched when need new attr::xxx, or onnx::xxx.~~
~~"aten/src/ATen/core/interned_strings.h"~~
Update: Nikita will help separate this file.

malfet

Pull Request resolved: https://github.com/pytorch/pytorch/pull/72297

Reviewed By: H-Huang

Differential Revision: D34254666

Pulled By: malfet

fbshipit-source-id: 032cfa590cbedf4648b7335fe8f09a2380ab14cb
(cherry picked from commit 88653eadbf)
2022-02-16 23:01:13 +00:00
David Berard
bbd42c605a [JIT] Opinfo tests for nnc fusion - retry (#72486)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72486

Retry #70465.

Test Plan: Imported from OSS

Reviewed By: mikaylagawarecki

Differential Revision: D34061628

Pulled By: davidberard98

fbshipit-source-id: e27ed315bc4ad57cdbfbc9cedffcbb7886004524
(cherry picked from commit 7937808d2e)
2022-02-09 19:01:22 +00:00
Nikita Shulga
bb101ec78d Revert D33595240: [JIT] Opinfo tests for nnc fusion
Test Plan: revert-hammer

Differential Revision:
D33595240 (0b57bd4c66)

Original commit changeset: e2e17a921bc3

Original Phabricator Diff: D33595240 (0b57bd4c66)

fbshipit-source-id: 172a3ffd19d180b1b3617956b1f881be62f37bc9
(cherry picked from commit 324cfaea86)
2022-02-08 01:28:42 +00:00
David Berard
0b57bd4c66 [JIT] Opinfo tests for nnc fusion (#70465)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/70465

These tests check to ensure that
(a) the result after nnc fusion (of a single op) is the same as the
unfused op
(b) for certain ops where fusion is expected to occur, ensure that
fusion does actually occur

Test Plan: Imported from OSS

Reviewed By: wenleix

Differential Revision: D33595240

Pulled By: davidberard98

fbshipit-source-id: e2e17a921bc30c313e92e8e5bbc6c1b5fcd14bc1
(cherry picked from commit b1ba221acc)
2022-02-07 20:56:21 +00:00
Tugsbayasgalan (Tugsuu) Manlaibaatar
c5df294940 Fix bug in upgrader generation in mobile (#71578)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/71578

Use more robust way of extracting upgrader min and max versions

Test Plan: omgitsgreen

Reviewed By: cccclai

Differential Revision: D33690113

fbshipit-source-id: 79a964acb26d7ca1354e104710a285b8da3f46d1
(cherry picked from commit 9e316ee5c1)
2022-01-28 18:20:59 +00:00
Tugsbayasgalan (Tugsuu) Manlaibaatar
e849c8b0f2 Move bytecode generation to python (#71681)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/71681

Test Plan: Imported from OSS

Reviewed By: gmagogsfm, cccclai

Differential Revision: D33730791

Pulled By: tugsbayasgalan

fbshipit-source-id: e752e9ae20c01a57a3bea270f604215fdcc9182e
(cherry picked from commit 69c9dc0548)
2022-01-28 02:33:00 +00:00
Chen Lai
e755a4f124 Update the operator version check logic when generating models for testing upgraders (#71894)
Summary:
The model generation script will check the model version, to ensure the developer run the script before they change operator

Previously, the version use the old model version. However, it's hard for developer to know the old version number. In this change, it use the current max operator version to check. It's less strict, but more developer friendly

Pull Request resolved: https://github.com/pytorch/pytorch/pull/71894

ghstack-source-id: 147769215

Test Plan:
first time run:
```
chenlai@devvm5615:~/fbsource/fbcode(b82243650)$ buck run mode/opt //caffe2/torch/fb/mobile/upgrader_codegen:upgrader_test_models_gen
Parsing buck files: finished in 0.7 sec
Downloaded 0/2 artifacts, 0.00 bytes, 100.0% cache miss (for updated rules)
Building: finished in 21.6 sec (100%) 11547/11547 jobs, 2/11547 updated
  Total time: 22.4 sec
BUILD SUCCEEDED
TestVersionedDivTensorExampleV7() aten::div.Tensor
INFO:test.jit.fixtures_srcs.generate_models:Processing TestVersionedDivTensorExampleV7
INFO:test.jit.fixtures_srcs.generate_models:Generating model test_versioned_div_tensor_example_v7 and it's save to /data/users/chenlai/fbsource/fbcode/caffe2/test/jit/fixtures/test_versioned_div_tensor_example_v7.ptl
chenlai@devvm5615:~/fbsource/fbcode(b82243650)$
```

second time run:
```
chenlai@devvm5615:~/fbsource/fbcode(b82243650)$ rm caffe2/test/jit/fixtures/test_versioned_div_tensor_example_v4.ptl
chenlai@devvm5615:~/fbsource/fbcode(b82243650)$ buck run mode/opt //caffe2/torch/fb/mobile/upgrader_codegen:upgrader_test_models_gen
Action graph will be rebuilt because files have been added or removed.
Parsing buck files: finished in 2.0 sec
Building... 17.4 sec (99%) 9289/9290 jobs, 0/9290 updated
TestVersionedDivTensorExampleV7() aten::div.Tensor
INFO:test.jit.fixtures_srcs.generate_models:Processing TestVersionedDivTensorExampleV7
INFO:test.jit.fixtures_srcs.generate_models:Model test_versioned_div_tensor_example_v7 already exists, skipping
chenlai@devvm5615:~/fbsource/fbcode(b82243650)$ jf s
```

Reviewed By: tugsbayasgalan

Differential Revision: D33804737

fbshipit-source-id: 7424b81a700703bdf896ec606c2dac8df6dbf8a6
(cherry picked from commit 44b4e37d30)
2022-01-27 21:15:32 +00:00
Tugsbayasgalan (Tugsuu) Manlaibaatar
c9bd1c60ed Move upgraders from python to cpp (#70593)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/70593

Test Plan: Imported from OSS

Reviewed By: gmagogsfm

Differential Revision: D33402543

Pulled By: tugsbayasgalan

fbshipit-source-id: 713c54fbbb2bc4c96d5e3b6084f3090a8923a12d
(cherry picked from commit e72b375264)
2022-01-22 00:24:24 +00:00
Jacob Szwejbka
e926360cb8 [Pytorch Edge] Refactor Compatibility Stuff into own directory (#71432)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/71432

Organizing jit/mobile a little more

ghstack-source-id: 147184536

Test Plan: ci.

Reviewed By: iseeyuan

Differential Revision: D33640527

fbshipit-source-id: f3a7884fe0d06d80bb8d9cf141ecaee34b6f88ff
(cherry picked from commit 4c3d1e5435)
2022-01-20 19:38:41 +00:00
Tugsbayasgalan (Tugsuu) Manlaibaatar
b0fdca8855 Bump version number to 7 and compile old operators with old schema (#68358)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/68358

Test Plan: Imported from OSS

Reviewed By: albanD

Differential Revision: D33433730

Pulled By: tugsbayasgalan

fbshipit-source-id: 202c58365bae13195d3545cefcb0da9162b02151
2022-01-05 23:57:22 -08:00
Michael Suo
0ece9a49d7 Revert D33198155: Bump version number to 7 and compile old operators with old schema
Test Plan: revert-hammer

Differential Revision:
D33198155 (d35fc409ad)

Original commit changeset: 38a1185f9ecb

Original Phabricator Diff: D33198155 (d35fc409ad)

fbshipit-source-id: 411aaeb4e047aad9202db50d4d0f2ff35bc51f9d
2022-01-04 13:44:59 -08:00
Tugsbayasgalan (Tugsuu) Manlaibaatar
d35fc409ad Bump version number to 7 and compile old operators with old schema (#68358)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/68358

Test Plan: Imported from OSS

Reviewed By: samdow

Differential Revision: D33198155

Pulled By: tugsbayasgalan

fbshipit-source-id: 38a1185f9ecb34a33f737ad0b060b3490956300c
2022-01-04 01:31:25 -08:00
Peter Bell
fa09099ba3 Codegen: TraceType only includes operators being registered (#68691)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68691

TraceType is a sharded file, so by only including specific operator
headers, we ensure that changing one (non-method) operator only needs
one shard to be re-compiled.

This also changes all the included autograd and jit headers from
including `ATen/ATen.h` to just including `ATen/core/Tensor.h`.

Test Plan: Imported from OSS

Reviewed By: gchanan

Differential Revision: D33336948

Pulled By: albanD

fbshipit-source-id: 4e40371592b9a5a7e7fcd1d8cecae11ffb873113
2022-01-02 13:09:19 -08:00
Tugsbayasgalan (Tugsuu) Manlaibaatar
5c7817fd43 Add test operator in upgrader entry (#69427)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/69427

Test Plan: Imported from OSS

Reviewed By: gmagogsfm

Differential Revision: D32867984

Pulled By: tugsbayasgalan

fbshipit-source-id: 25810fc2fd4b943911f950618968af067c04da5c
2021-12-15 00:40:05 -08:00
Tugsbayasgalan (Tugsuu) Manlaibaatar
20f7c893c1 Populate runtime with upgrader graph (#68773)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/68773

Test Plan: Imported from OSS

Reviewed By: qihqi, gmagogsfm

Differential Revision: D32603258

Pulled By: tugsbayasgalan

fbshipit-source-id: 6fa0b7ee4ebe46c9aa148923c6ef3e1de106ad13
2021-12-11 13:44:24 -08:00
Yanan Cao
17f3179d60 Back out "[pytorch][PR] Add ability for a mobile::Module to save as flatbuffer" (#69796)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/69796

(Note: this ignores all push blocking failures!)

Test Plan: External CI + Sandcastle

Reviewed By: zhxchen17

Differential Revision: D33032671

fbshipit-source-id: dbf6690e960e25d6a5f19043cbe792add2acd7ef
2021-12-10 21:29:53 -08:00
Han Qi
d3649309e6 [pytorch][PR] Add ability for a mobile::Module to save as flatbuffer (#69306)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/69306

Included functions:

save_mobile_module -> saves a mobile::Module to flatbuffer
load_mobile_module_from_file -> loads a flatbuffer into mobile::Module
parse_mobile_module -> parses from bytes or deserialized flatbuffer
Module object

Test Plan: unittests

Reviewed By: gmagogsfm

Differential Revision: D32806835

fbshipit-source-id: 71913c6650e225634f878946bd16960d377a7f57
2021-12-09 14:53:31 -08:00
CodemodService FBSourceClangFormatLinterBot
945d2e380c [AutoAccept][Codemod][FBSourceClangFormatLinter] Daily arc lint --take CLANGFORMAT
Reviewed By: zertosh

Differential Revision: D32910817

fbshipit-source-id: 60d0cb10412e1a37a0249bb223b75855c5596dbd
2021-12-07 08:11:09 -08:00
Tugsbayasgalan (Tugsuu) Manlaibaatar
bc89528931 Initialize upgrader and operator version files (#68772)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/68772

Test Plan: Imported from OSS

Reviewed By: gmagogsfm

Differential Revision: D32603257

Pulled By: tugsbayasgalan

fbshipit-source-id: 5a3d9ba4d0a01ddff4ff6ebdf7bb88ec125765b0
2021-12-06 16:27:52 -08:00
Tugsbayasgalan (Tugsuu) Manlaibaatar
dde801686b Expose MobileCode to python (#66592)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/66592

Test Plan: Imported from OSS

Reviewed By: samdow

Differential Revision: D31632600

Pulled By: tugsbayasgalan

fbshipit-source-id: 46a7ac20ddb6b433bd037280ed020481901a15c9
2021-12-02 13:18:46 -08:00
Alban Desmaison
00ebbd5ef6 Revert D32010095: [pytorch][PR] Add ability for a mobile::Module to save as flatbuffer
Test Plan: revert-hammer

Differential Revision:
D32010095 (41d35dc201)

Original commit changeset: d763b0557780

fbshipit-source-id: bf746a0389135c9f5f67f00f449435ce08fb5f6d
2021-12-02 06:41:40 -08:00
Han Qi
41d35dc201 Add ability for a mobile::Module to save as flatbuffer (#67351)
Summary:
Included functions:

* save_mobile_module -> saves a mobile::Module to flatbuffer
* load_mobile_module_from_file -> loads a flatbuffer into mobile::Module
* parse_mobile_module -> parses from bytes or deserialized flatbuffer
      Module object

Fixes #{issue number}

Pull Request resolved: https://github.com/pytorch/pytorch/pull/67351

Reviewed By: iseeyuan

Differential Revision: D32010095

Pulled By: qihqi

fbshipit-source-id: d763b0557780f7c2661b6485105b045e41a5e8f1
2021-12-01 23:58:15 -08:00