Commit Graph

5 Commits

Author SHA1 Message Date
Jane Xu
c23dceb8f1 Add Adafactor foreach impl (#132336)
This PR adds the foreach impl for Adafactor knowing that there are many ways to improve its runtime perf today (by adding more foreach support). After this PR:
- we have a foreach flag for Adafactor
- It is NOT the default. Why not? It is only slightly faster + uses O(n) more memory where n is the number of params in your max param group. People tend to use Adafactor for memory efficiency.

Next steps:
- make torch.compile possible on it
- make it faster (by adding more foreach apis)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132336
Approved by: https://github.com/albanD
ghstack dependencies: #133360
2024-08-15 17:00:33 +00:00
PyTorch MergeBot
cbee9c1fd2 Revert "Deprecate torch._utils.is_compiling() and torch._dynamo.external_utils.is_compiling() (#127690)"
This reverts commit 0e7e61f7ce.

Reverted https://github.com/pytorch/pytorch/pull/127690 on behalf of https://github.com/kit1980 due to breaking internal builds ([comment](https://github.com/pytorch/pytorch/pull/127690#issuecomment-2272370386))
2024-08-07 00:05:20 +00:00
Xuehai Pan
0e7e61f7ce Deprecate torch._utils.is_compiling() and torch._dynamo.external_utils.is_compiling() (#127690)
This PR is split from PR #126898.

- #126898

------

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127690
Approved by: https://github.com/Skylion007, https://github.com/malfet
2024-08-03 09:43:38 +00:00
Xuehai Pan
30293319a8 [BE][Easy][19/19] enforce style for empty lines in import segments in torch/[o-z]*/ (#129771)
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter.

You can review these PRs via:

```bash
git diff --ignore-all-space --ignore-blank-lines HEAD~1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129771
Approved by: https://github.com/justinchuby, https://github.com/janeyx99
2024-08-01 17:07:14 +00:00
Jane Xu
9c4cf866c2 Adafactor forloop basic impl (#129905)
#109581

At this point, the vanilla implementation (the default) is good.
Docs: https://docs-preview.pytorch.org/pytorch/pytorch/129905/generated/torch.optim.Adafactor.html#torch.optim.Adafactor

Specifically, the impl in this PR, which attempts to replicate the paper,
```
optim = torch.optim.Adafactor([weight])
```
is close enough to https://pytorch-optimizers.readthedocs.io/en/latest/optimizer/#pytorch_optimizer.AdaFactor
```
optim_c = AdaFactor([weight], betas=(0, 0.999), scale_parameter=False)
```
is close enough to https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adafactor
```
optim = keras.optimizers.Adafactor(learning_rate=0.01)
```

The three results respectively for the same randomly generated weights:
```
# ours
tensor([[ 0.3807594, -0.3912092],
        [ 0.0762539,  0.5377805],
        [ 0.2459473,  0.4662207]])

# pytorch-optimizer
tensor([[ 0.3807592, -0.3912172],
        [ 0.0762507,  0.5377818],
        [ 0.2459457,  0.4662213]])

# keras
array([[ 0.38076326, -0.39121315],
        [ 0.0762547 ,  0.5377859 ],
        [ 0.24594972,  0.46622536]], dtype=float32)
```

This gives me confidence to move forward in speeding up the implementation now that a baseline has been established. If you're curious about differences:
* keras assigns step_size (rho_t in their code) to `min(lr, 1 / sqrt(step)` whereas the OG impl uses a hardcoded 0.01 instead of lr. We do the same thing as keras, but our lr default is 0.01.
* We differ from the pytorch-optimizers default in that our default will not track momentum (thus `beta1=0`) and we do not apply parameter scaling.

<details>

Keras collab: https://colab.research.google.com/drive/1i3xF8ChL7TWKJGV_5v_5nMhXKnYmQQ06?usp=sharing

My script repro:

```
import torch
from pytorch_optimizer import AdaFactor
torch.set_printoptions(precision=7)

weight = torch.tensor([[ 0.37697506, -0.39500135],
        [ 0.07246649,  0.53399765],
        [ 0.24216151,  0.46243715]], dtype=torch.float32)
# bias = torch.tensor([0, 0], dtype=torch.float32)

weight.grad = torch.tensor([[-0.5940447, -0.7743838],
        [-0.5940447, -0.7743838],
        [-0.5940447, -0.7743838]], dtype=torch.float32)
# bias.grad = torch.tensor([-2.5027974,  1.5422692], dtype=torch.float32)

weight_c = weight.clone()
weight_c.grad = weight.grad.clone()

optim = torch.optim.Adafactor([weight])
optim.step()
print(weight)

optim_c = AdaFactor([weight_c], betas=(0, 0.999), scale_parameter=False)
optim_c.step()
print(weight_c)
```

<details>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129905
Approved by: https://github.com/albanD
2024-07-25 13:17:19 +00:00