### Description
Across PyTorch's docstrings, both `callable` and `Callable` for variable types. The Callable should be capitalized as we are referring to the `Callable` type, and not the Python `callable()` function.
### Testing
There shouldn't be any testing required.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82487
Approved by: https://github.com/albanD
Summary:
While implementing https://github.com/pytorch/pytorch/issues/70275, I thought that it will be useful if there is a `torch.distributions.constraints` to check the positive-semidefiniteness of matrix random variables.
This PR implements it with `torch.linalg.eigvalsh`, different from `torch.distributions.constraints.positive_definite` implemented with `torch.linalg.cholesky_ex`.
Currently, `torch.linalg.cholesky_ex` returns only the order of the leading minor that is not positive-definite in symmetric matrices and we can't check positive semi-definiteness by the mechanism.
cc neerajprad
Pull Request resolved: https://github.com/pytorch/pytorch/pull/71375
Reviewed By: H-Huang
Differential Revision: D33663990
Pulled By: neerajprad
fbshipit-source-id: 02cefbb595a1da5e54a239d4f17b33c619416518
(cherry picked from commit 43eaea5bd8)
Summary:
While implementing https://github.com/pytorch/pytorch/issues/68644,
during the testing of 'torch.distributions.constraint.positive_definite', I found an error in the code: [location](c7ecf1498d/torch/distributions/constraints.py (L465-L468))
```
class _PositiveDefinite(Constraint):
"""
Constrain to positive-definite matrices.
"""
event_dim = 2
def check(self, value):
# Assumes that the matrix or batch of matrices in value are symmetric
# info == 0 means no error, that is, it's SPD
return torch.linalg.cholesky_ex(value).info.eq(0).unsqueeze(0)
```
The error is caused when I check the positive definiteness of
`torch.cuda.DoubleTensor([[2., 0], [2., 2]])`
But it did not made a problem for
`torch.DoubleTensor([[2., 0], [2., 2]])`
You may easily reproduce the error by following code:
```
Python 3.9.7 (default, Sep 16 2021, 13:09:58)
[GCC 7.5.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> const = torch.distributions.constraints.positive_definite
>>> const.check(torch.cuda.DoubleTensor([[2., 0], [2., 2]]))
tensor([False], device='cuda:0')
>>> const.check(torch.DoubleTensor([[2., 0], [2., 2]]))
tensor([True])
```
The cause of error can be analyzed more if you give 'check_errors = True' as a additional argument for 'torch.linalg.cholesky_ex'.
It seem that it is caused by the recent changes in 'torch.linalg'.
And, I suggest to modify the '_PositiveDefinite' class by using 'torch.linalg.eig' function like the below:
```
class _PositiveDefinite(Constraint):
"""
Constrain to positive-definite matrices.
"""
event_dim = 2
def check(self, value):
return (torch.linalg.eig(value)[0].real > 0).all(dim=-1)
```
By using above implementation, I get following result:
```
Python 3.9.7 (default, Sep 16 2021, 13:09:58)
[GCC 7.5.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> const = torch.distributions.constraints.positive_definite
>>> const.check(torch.cuda.DoubleTensor([[2., 0.], [2., 2.]]))
tensor(True, device='cuda:0')
>>> const.check(torch.DoubleTensor([[2., 0.], [2., 2.]]))
tensor(True)
```
FYI, I do not know what algorithm is used in 'torch.linalg.eig' and 'torch.linalg.cholesky_ex'. As far as I know, they have same time complexity generally, O(n^3). It seems that in case you used special algorithms or finer parallelization, time complexity of Cholesky decomposition may be reduced to approximately O(n^2.5). If there is a reason 'torch.distributions.constraints.positive_definite' used 'torch.linalg.cholesky_ex' rather than 'torch.linalg.eig' previously, I hope to know.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68720
Reviewed By: samdow
Differential Revision: D32724391
Pulled By: neerajprad
fbshipit-source-id: 32e2a04b2d5b5ddf57a3de50f995131d279ede49
Summary:
Implemented submodule for https://github.com/pytorch/pytorch/issues/68050
Opened cleaned, final version of PR for https://github.com/pytorch/pytorch/issues/68240
Explanation:
I am trying to contribute to PyTorch by implementing distributions for symmetric matrices like Wishart distribution and Inverse Wishart distribution. Although there is a LKJ distribution for the Cholesky decomposition of correlation matrices, it only represents equivalence to restricted form of Wishart distribution. [https://arxiv.org/abs/1809.04746](https://arxiv.org/abs/1809.04746) Thus, I started implementing Wishart distribution and Inverse Wishart distribution seperately.
I added a short code about the 'torch.distributions.constraints.symmetric', which was not included in 'torch.distributions.constraints' previously. i.e., 'torch.distributions.constraints' contains module like 'positive_definite' constraints, but it just assumes symmetricity of the input matrix. [Link](1adeeabdc0/torch/distributions/constraints.py (L466)) So, I think it will be better if we have constraint checking symmetricity of the tensors in PyTorch.
We may further utilize it like
`constraints.stack([constraints.symmetric, constraints.positive_definite])`
for the constraint of the covariance matrix in Multivariate Normal distribution, for example, to check if the random matrix is a symmetric positive definite matrix.
cc fritzo neerajprad alicanb nikitaved
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68644
Reviewed By: jbschlosser
Differential Revision: D32599540
Pulled By: neerajprad
fbshipit-source-id: 9227f7e9931834a548a88da69e4f2e9af7732cfe
Summary:
This PR fixes https://github.com/pytorch/pytorch/issues/53485 by allowing zero rates for the Poisson distribution. This implementation is consistent with `scipy.stats.poisson` which admits zero rates. In addition to addressing the aforementioned issue, this PR makes two supporting changes:
1. add a `nonnegative` constraint to enforce non-negative rates for the Poisson distribution.
2. adjust the evaluation of the gradient of `xlogy` such that it is well defined for `x == 0 and y == 0`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61511
Reviewed By: ejguan
Differential Revision: D30352917
Pulled By: albanD
fbshipit-source-id: f3d33da58360e80d75eb83519f199b93232a2a2d
Summary:
This one had a tricky usage of `torch.symeig` that had to be replaced. I tested the replacement locally though.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57732
Reviewed By: bdhirsh
Differential Revision: D28328189
Pulled By: mruberry
fbshipit-source-id: 7f000fcbf2b029beabc76e5a89ff158b47977474
Summary:
Fixes https://github.com/pytorch/pytorch/issues/50496
Fixes https://github.com/pytorch/pytorch/issues/34859
Fixes https://github.com/pytorch/pytorch/issues/21596
This fixes many bugs involving `TransformedDistribution` and `ComposeTransform` when the component transforms changed their event shapes. Part of the fix is to introduce an `IndependentTransform` analogous to `distributions.Independent` and `constraints.independent`, and to introduce methods `Transform.forward_shape()` and `.inverse_shape()`. I have followed fehiepsi's suggestion and replaced `.input_event_dim` -> `.domain.event_dim` and `.output_event_dim` -> `.codomain.event_dim`. This allows us to deprecate `.event_dim` as an attribute.
## Summary of changes
- Fixes `TransformDistribution` and `ComposeTransform` shape errors.
- Fixes a behavior bug in `LogisticNormal`.
- Fixes `kl_divergence(TransformedDistribution, TransformedDistribution)`
- Adds methods `Transform.forward_shape()`, `.inverse_shape()` which are required for correct shape computations in `TransformedDistribution` and `ComposeTransform`.
- Adds an `IndependentTransform`.
- Adds a `ReshapeTransform` which is invaluable in testing shape logic in `ComposeTransform` and `TransformedDistribution` and which will be used by stefanwebb flowtorch.
- Fixes incorrect default values in `constraints.dependent.event_dim`.
- Documents the `.event_dim` and `.is_discrete` attributes.
## Changes planned for follow-up PRs
- Memoize `constraints.dependent_property` as we do with `lazy_property`, since we now consult those properties much more often.
## Tested
- [x] added a test for `Dist.support` vs `Dist(**params).support` to ensure static and dynamic attributes agree.
- [x] refactoring is covered by existing tests
- [x] add test cases for `ReshapedTransform`
- [x] add a test for `TransformedDistribution` on a wide grid of input shapes
- [x] added a regression test for https://github.com/pytorch/pytorch/issues/34859
cc fehiepsi feynmanliang stefanwebb
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50581
Reviewed By: ezyang, glaringlee, jpchen
Differential Revision: D26024247
Pulled By: neerajprad
fbshipit-source-id: f0b9a296f780ff49659b132409e11a29985dde9b
Summary:
Addresses https://github.com/pytorch/pytorch/issues/50496
This fixes a number of inconsistencies in torch.distributions.constraints as used for parameters and supports of probability distributions.
- Adds a `constraints.independent` and replaces `real_vector` with `independent(real, 1)`. (this pattern has long been used in Pyro)
- Adds an `.event_dim` attribute to all constraints.
- Tests that `constraint.check(data)` has the correct shape. (Previously the shapes were incorrect).
- Adds machinery to set static `.is_discrete` and `.event_dim` for `constraints.dependent`.
- Fixes constraints for a number of distributions.
## Tested
- added a new check to the constraints tests
- added a new check for `.event_dim`
cc fehiepsi feynmanliang stefanwebb
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50547
Reviewed By: VitalyFedyunin
Differential Revision: D25918330
Pulled By: neerajprad
fbshipit-source-id: a648c3de3e8704f70f445c0f1c39f2593c8c74db
Summary:
Fixes https://github.com/pytorch/pytorch/issues/47123
Follows https://github.com/pyro-ppl/pyro/pull/2701
This turns on `Distribution` validation by default. The motivation is to favor beginners by providing helpful error messages. Advanced users focused on speed can disable validation by calling
```py
torch.distributions.Distribution.set_default_validate_args(False)
```
or by disabling individual distribution validation via `MyDistribution(..., validate_args=False)`.
In practice I have found many beginners forget or do not know about validation. Therefore I have [enabled it by default](https://github.com/pyro-ppl/pyro/pull/2701) in Pyro. I believe PyTorch could also benefit from this change. Indeed validation caught a number of bugs in `.icdf()` methods, in tests, and in PPL benchmarks, all of which have been fixed in this PR.
## Release concerns
- This may slightly slow down some models. Concerned users may disable validation.
- This may cause new `ValueErrors` in models that rely on unsupported behavior, e.g. `Categorical.log_prob()` applied to continuous-valued tensors (only {0,1}-valued tensors are supported).
We should clearly note this change in release notes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48743
Reviewed By: heitorschueroff
Differential Revision: D25304247
Pulled By: neerajprad
fbshipit-source-id: 8d50f28441321ae691f848c55f71aa80cb356b41
Summary:
This adds a transform to convert a real vector of (D * (D-1))/2 dimension into the cholesky factor of a D x D correlation matrix. This follows the implementation in [NumPyro](https://github.com/pyro-ppl/numpyro/blob/master/numpyro/distributions/transforms.py) by fehiepsi. This is needed for the LKJDistribution which will be added in a subsequent PR.
Also in line with the ongoing effort to refactor distributions test, this moves the transforms test into its own file that uses pytest with parametrized fixtures.
For review:
fehiepsi - could you help review the math?
fritzo - do you have any suggestions for what to do about the event dimension (more details are in the comment below)?
ezyang - could you review the changes in `run_test.py`? Instead of a separate `PYTEST_TESTS`, I have clubbed these tests in `USE_PYTEST_LIST` to avoid duplicate logic. The only difference is that we do not anymore check if pytest is not installed and exclude the tests in the list. I figured that if existing tests are already using pytest, this should not matter.
TODOs (probably not all can be satisfied at the same time):
- [x] Use operations that are JIT friendly, i.e. the transform works with different sized input under JIT.
- [x] Resolve test failures - currently `arange(scalar_tensor)` fails on certain backends but this is needed for JIT. Maybe we should only support same sized tensor under JIT?
- [x] Add tests to check that the transform gives correct gradients and is in agreement with the `log_det_jacobian`.
- [x] Add `input_event_dim` and `output_event_dim` to `CorrCholeskyTransform`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48041
Reviewed By: zhangguanheng66
Differential Revision: D25262505
Pulled By: neerajprad
fbshipit-source-id: 5a57e1c19d8230b53592437590b9169bdf2f71e9
Summary:
This PR addresses some numerical issues of Sigmoid/StickBreakingTransform, where these transforms give +-inf when the unconstrained values move to +-20 areas.
For example, with
```
t = torch.distributions.SigmoidTransform()
x = torch.tensor(20.)
t.inv(t(x)), t.log_abs_det_jacobian(x, t(x))
```
current behaviour the inverse will return `inf` and logdet return `-inf` while this PR makes it to `15.9424` and `-15.9424`.
And for
```
t = torch.distributions.StickBreakingTransform()
x = torch.tensor([20., 20.])
t.inv(t(x)), t.log_abs_det_jacobian(x, t(x))
```
current value is `(inf, nan)` and `-inf` for logdet, while this PR makes it `[16.6355, 71.3942]` and `-47.8272` for logdet.
Although these finite values are wrong and seems unavoidable, it is better than returning `inf` or `nan` in my opinion. This is useful in HMC where despite that the grad will be zero when the unconstrained parameter moves to unstable area (due to clipping), velocity variable will force the parameter move to another area which by chance can move the parameter out of unstable area. But inf/nan can be useful to stop doing inference early. So the changes in this PR might be inappropriate.
I also fix some small issues of `_Simplex` and `_RealVector` constraints where batch shape of the input is not respected when checking validation.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20288
Differential Revision: D15742047
Pulled By: ezyang
fbshipit-source-id: b427ed1752c41327abb3957f98d4b289307a7d17
Summary:
This works around #11535 by avoiding `arange(n, out=x)` and `eye(n, out=x)` in `torch.distributions`. I've confirmed that the `.enumerate_support()` methods are now jittable.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11542
Differential Revision: D9777805
Pulled By: apaszke
fbshipit-source-id: fa38f2f1acfc0a289f725fd8c92478573cfdbefb
* Add numpy.array-like type inference to torch.tensor.
* Temporary fix for int/double types.
* Treat python floats as the default (scalar) dtype.
* Also make 0-length sequences the default scalar type and add more tests.
* Add type inference to sparse_coo_tensor.
* Fix sparse test.
* Remove allow_variables.
* Check numpy platform bits.
* Address review comments.
* Make suggested changes to constraints.
* More checking windows builds.
* Fix test for windows.