Commit Graph

245 Commits

Author SHA1 Message Date
Tobias Ringwald
441c1c03d5 Prevent an unnecessary device -> host copy for CuPy arrays when not explicitly setting a device in torch.as_tensor. (#132595)
See title. Until now, calling `torch.as_tensor` on a CuPy array would return a CPU tensor, when not providing a device. This is most likely not desired.

Fixes #132553

```python3
import torch
import cupy as cp

cupy_arr = cp.asarray([1, 2, 3])

# Default case
t = torch.as_tensor(cupy_arr)
# New behavior, same device as cupy_arr now, was cpu before
print(t.device)  # cuda:0

# Explicitly set device
t = torch.as_tensor(cupy_arr, device='cpu')
print(t.device)  # cpu

# Implicit default device
torch.set_default_device('cpu')
t = torch.as_tensor(cupy_arr)
print(t.device)  # cpu

# Default device via context manager
torch.set_default_device('cuda')
with torch.device('cpu'):
    t = torch.as_tensor(cupy_arr)
    print(t.device)  # cpu

# Unset default device
torch.set_default_device(None)
t = torch.as_tensor(cupy_arr)
# New behavior, same device as cupy_arr now, was cpu before
print(t.device)  # cuda:0
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132595
Approved by: https://github.com/ezyang
2024-08-08 00:26:58 +00:00
Pearu Peterson
a4ea776881 Add pinned memory support to sparse COO/CSR/CSC/BSR/BSC tensors (#129645)
As in the title:

To register indices/values of a sparse XYZ tensor with CUDA, the following methods are supported
- `sparse_xyz_tensor(indices, values, pin_memory=True)`
- `sparse_xyz_tensor(indices, values).pin_memory()`
- `sparse_xyz_tensor(indices.pin_memory(), values.pin_memory())`

Fixes https://github.com/pytorch/pytorch/issues/115330

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129645
Approved by: https://github.com/amjames, https://github.com/cpuhrsch, https://github.com/eqy
2024-08-02 08:55:55 +00:00
cyy
35d14d22a0 Fix some issues detected by static analysis tools (#131989)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131989
Approved by: https://github.com/ezyang
2024-08-02 04:18:57 +00:00
cyy
798b9652f7 [6/N] Replace c10::optional with std::optional (#130438)
Follows #130408

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130438
Approved by: https://github.com/janeyx99
2024-07-11 01:15:37 +00:00
cyy
f4dcf2ae93 [1/N] Change #include <c10/util/Optional.h> to #include <optional> (#128301)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128301
Approved by: https://github.com/ezyang, https://github.com/r-barnes
2024-07-08 07:03:53 +00:00
PyTorch MergeBot
846bb30e13 Revert "[1/N] Change #include <c10/util/Optional.h> to #include <optional> (#128301)"
This reverts commit bd72e28314.

Reverted https://github.com/pytorch/pytorch/pull/128301 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it fails XLA build bd72e28314. Please rebase your PR before relanding because I think the failure is hidden by an unrelated broken trunk XLA failure from your current base commit ([comment](https://github.com/pytorch/pytorch/pull/128301#issuecomment-2169035822))
2024-06-15 01:58:20 +00:00
cyy
bd72e28314 [1/N] Change #include <c10/util/Optional.h> to #include <optional> (#128301)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128301
Approved by: https://github.com/ezyang
2024-06-14 23:21:01 +00:00
Richard Barnes
ed327876f5 [codemod] c10:optional -> std::optional (#126135)
Generated by running the following from PyTorch root:
```
find . -regex ".*\.\(cpp\|h\|cu\|hpp\|cc\|cxx\)$" | grep -v "build/" | xargs -n 50 -P 4 perl -pi -e 's/c10::optional/std::optional/'
```

`c10::optional` is just an alias for `std::optional`. This removes usages of that alias in preparation for eliminating it entirely.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126135
Approved by: https://github.com/Skylion007, https://github.com/malfet, https://github.com/albanD, https://github.com/aaronenyeshi
2024-05-14 19:35:51 +00:00
rzou
889e3eeed3 Avoid cuda init to FakeTensorMode (#124413)
Also partially fixes #122109

This PR:
- We add a C++ flag (only_lift_cpu_tensors) to toggle the
  torch.tensor(1, device='cuda') ctor strategy.
  When false (default), it does the current PyTorch behavior
  of unconditionally constructing a concrete CUDA tensor then calling
  lift_fresh on it. When true, we instead construct a concrete CPU
  tensor, call lift_fresh, and then call Tensor.to(device) (under any ambient
  modes).
- FakeTensorMode flips this flag depending on if CUDA is available or
  not. We don't unconditionally set the flag to True because that is
  likely BC-breaking.

Test Plan:
- existing tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124413
Approved by: https://github.com/eellison
2024-04-19 02:39:35 +00:00
Gao Tianlin
fc33bbf827 better support set_default_dtype(torch.float16), update doc (#121730)
1. Fixes #121300
2. Previously, calling `torch.tensor([2j])` after `torch.set_default_dtype(torch.float16)` will cause a runtime error. This PR also fixes it and enables test.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121730
Approved by: https://github.com/peterbell10
2024-03-15 06:48:42 +00:00
Shan19900305
685d862c45 Add SparsePrivateUse1 in backend_to_string, layout_from_backend and check_base_legacy_new. (#119263)
1) Using items stored in torch._tensor_classes to check item passed from python side;
2) Add SparsePrivateUse1 in backend_to_string, layout_from_backend and check_base_legacy_new;
3) Using more general API to get python module name in get_storage_obj and get_name functions.

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119263
Approved by: https://github.com/ezyang
2024-02-26 01:54:30 +00:00
Yu, Guangye
5c46600f84 [RELAND] refactor lazy init to device-agnostic (#119248)
# Motivation
This PR intends to extend `cuda_lazy_init` to `device_lazy_init` which is a device-agnostic API that can support any backend. And change `maybe_initialize_cuda` to `maybe_initialize_device` to support lazy initialization for CUDA while maintaining scalability.

# Design
We maintain a flag for each backend to manage the lazy initialization state separately.

# Additional Context
No need more UTs.
This is a reland PR, the original PR is [refactor lazy init to device-agnostic](https://github.com/pytorch/pytorch/pull/118846).
This is a common PR, and does not trigger xpu ciflow.

Differential Revision: [D53478332](https://our.internmc.facebook.com/intern/diff/D53478332)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119248
Approved by: https://github.com/EikanWang, https://github.com/gujinghui, https://github.com/jgong5, https://github.com/atalman
2024-02-07 15:58:51 +00:00
PyTorch MergeBot
ab613a4019 Revert "refactor lazy init to device-agnostic (#118846)"
This reverts commit 520771d7b3.

Reverted https://github.com/pytorch/pytorch/pull/118846 on behalf of https://github.com/atalman due to Failing, tests https://github.com/pytorch/torchdistx/blob/main/src/python/torchdistx/_C/fake.cc#L11  ([comment](https://github.com/pytorch/pytorch/pull/118846#issuecomment-1927651305))
2024-02-05 18:06:30 +00:00
Yu, Guangye
520771d7b3 refactor lazy init to device-agnostic (#118846)
# Motivation
This PR intends to extend `cuda_lazy_init` to `device_lazy_init` which is a device-agnostic API that can support any backend. And change `maybe_initialize_cuda` to `maybe_initialize_device` to support lazy initialization for CUDA while maintaining scalability.

# Design
We maintain a flag for each backend to manage the lazy initialization state separately.

# Additional Context
No need more UTs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118846
Approved by: https://github.com/malfet
2024-02-02 12:10:39 +00:00
PyTorch MergeBot
dabb90f2a4 Revert "[Exception] [6/N] Remove use of torch::TypeError (#117964)"
This reverts commit 87335fabae.

Reverted https://github.com/pytorch/pytorch/pull/117964 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/117964#issuecomment-1913079096))
2024-01-27 08:44:34 +00:00
cyy
87335fabae [Exception] [6/N] Remove use of torch::TypeError (#117964)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117964
Approved by: https://github.com/albanD
2024-01-25 03:35:58 +00:00
cyy
396a5c3091 [Exception] [4/N] Replace torch::IndexError and torch::ValueError with C10 counterparts (#117317)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117317
Approved by: https://github.com/ezyang
2024-01-18 00:35:29 +00:00
Scott Wolchok
165f4f6ccf [PyTorch] Redirect c10::optional to std::optional (#101995)
We have C++17 now!

I am intentionally dropping the `c10::optional<c10::ArrayRef>` size optimization. It was intended to improve dispatch, but thanks to D34602980 / #70864 we don't use `optional<ArrayRef>` in function arguments anymore anyway.

Differential Revision: [D46079028](https://our.internmc.facebook.com/intern/diff/D46079028/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/101995
Approved by: https://github.com/malfet, https://github.com/Skylion007, https://github.com/ezyang
2023-11-30 02:46:41 +00:00
cyy
bae61ecb96 [Reland 1] Cleanup header inclusions in torch_cpu by iwyu (#112311)
Reland https://github.com/pytorch/pytorch/pull/101178 to use IWYU on torch_cpu. The header file changes are excluded to avoid breaking internal jobs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/112311
Approved by: https://github.com/ezyang
2023-11-19 04:06:36 +00:00
albanD
8edb561631 Fix use after free in tensor creation (#106707)
Fix https://github.com/pytorch/pytorch/issues/106534
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106707
Approved by: https://github.com/Skylion007, https://github.com/ezyang
2023-10-07 22:41:21 +00:00
PyTorch MergeBot
83deaa16ed Revert "[1/N] Cleanup header inclusions in torch_cpu by iwyu (#101178)"
This reverts commit b7a95f4fdb.

Reverted https://github.com/pytorch/pytorch/pull/101178 on behalf of https://github.com/atalman due to Break internal CI ([comment](https://github.com/pytorch/pytorch/pull/101178#issuecomment-1734384645))
2023-09-25 20:05:25 +00:00
cyy
b7a95f4fdb [1/N] Cleanup header inclusions in torch_cpu by iwyu (#101178)
Following our previous IWYU work  #100304 on C10, it makes more sense to try IWYU on torch_cpu. This PR does exactly that. Meanwhile, it fixes issue #48684.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/101178
Approved by: https://github.com/ezyang
2023-09-24 05:01:20 +00:00
Edward Z. Yang
2c1554a032 Make SymFloat behave symmetrically with float in torch.tensor (#109513)
Previously, SymFloat would force double precision.  That's wrong;
instead, we must respect default dtype.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109513
Approved by: https://github.com/voznesenskym
2023-09-19 01:52:41 +00:00
cyy
51d2d825ab [3/N] apply clang-tidy in torch/csrc/autograd (#109368)
This PR applies clang-tidy fixes in torch/csrc/autograd/FunctionsManual.cpp. There are also other fixes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109368
Approved by: https://github.com/Skylion007
2023-09-17 07:26:59 +00:00
Kurt Mohler
4c5e43574c Reland 2: Add PyObject preservation for UntypedStorage (#109039)
Relands #103907 after it was reverted. This PR makes the new `ignore_hermetic_tls` argument of `check_pyobj` optional to avoid causing a compilation error in torchdistx

Part of #91395

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109039
Approved by: https://github.com/ezyang
2023-09-12 22:26:05 +00:00
PyTorch MergeBot
59f605be57 Revert "Reland 2: Add PyObject preservation for UntypedStorage (#109039)"
This reverts commit 419e4e17a2.

Reverted https://github.com/pytorch/pytorch/pull/109039 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it is failing linter job in trunk, probably due to a landrace ([comment](https://github.com/pytorch/pytorch/pull/109039#issuecomment-1715147020))
2023-09-12 07:26:11 +00:00
Kurt Mohler
419e4e17a2 Reland 2: Add PyObject preservation for UntypedStorage (#109039)
Relands #103907 after it was reverted. This PR makes the new `ignore_hermetic_tls` argument of `check_pyobj` optional to avoid causing a compilation error in torchdistx

Part of #91395

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109039
Approved by: https://github.com/ezyang
2023-09-12 01:19:40 +00:00
PyTorch MergeBot
68238606f3 Revert "Reland: Add PyObject preservation for UntypedStorage (#103907)"
This reverts commit 56b848157c.

Reverted https://github.com/pytorch/pytorch/pull/103907 on behalf of https://github.com/huydhn due to Sorry for reverting your change, but it is failing torchdistx build which uses check_pyobj here 9c1b9f5cb2/src/python/torchdistx/_C/deferred_init.cc (L87) ([comment](https://github.com/pytorch/pytorch/pull/103907#issuecomment-1712121158))
2023-09-08 19:27:07 +00:00
Kurt Mohler
56b848157c Reland: Add PyObject preservation for UntypedStorage (#103907)
This relands #97470 after #102553 reverted it. This PR attempts to fix the internal failure by avoiding an unnecessary intermediate storage buffer allocation in `c10::newStorageImplFromRefcountedDataPtr`.

Part of #91395

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103907
Approved by: https://github.com/ezyang
2023-09-07 04:24:11 +00:00
FFFrog
6edd06441a Fix copy=True behavior for torch.asarray when device is not None/cpu (#108511)
Fixes #108408

See issue for details

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108511
Approved by: https://github.com/ysiraichi, https://github.com/rgommers, https://github.com/ezyang
2023-09-06 15:16:30 +00:00
Pearu Peterson
fe3309b4b8 Add optional is_coalesced argument to sparse coo tensor factory function. (#107638)
Resolves https://github.com/pytorch/pytorch/issues/107097

After this PR, instead of
```python
torch.sparse_coo_tensor(indices, values, size)._coalesced_(is_coalesced)
```
(that does not work in the autograd context, see #107097), use
```python
torch.sparse_coo_tensor(indices, values, size, is_coalesced=is_coalesced)
```

All sparse coo factory functions that take indices as input support the `is_coalesced` argument.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107638
Approved by: https://github.com/cpuhrsch
2023-08-26 07:24:29 +00:00
Yukio Siraichi
a5d841ef01 asarray: take the default device into consideration. (#106779)
Fix: #106773

This PR makes it so `asarray` takes the default device into consideration when called with
a Python sequence as the data.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106779
Approved by: https://github.com/rgommers, https://github.com/lezcano
2023-08-11 13:16:42 +00:00
cyy
646fa36875 Add const reference in opportunities detected by clang-tidy (#105931)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105931
Approved by: https://github.com/Skylion007
2023-07-26 21:38:10 +00:00
Shiyan Deng
685505353a Back out "Add PyObject preservation for UntypedStorage (#97470)" (#102553)
Summary:
Original commit changeset: c24708d18ccb

Original Phabricator Diff: D46159983

Test Plan: SL tests and CI

Differential Revision: D46284986

Pull Request resolved: https://github.com/pytorch/pytorch/pull/102553
Approved by: https://github.com/DanilBaibak
2023-06-01 17:23:43 +00:00
Kurt Mohler
5fe629e314 Add PyObject preservation for UntypedStorage (#97470)
Part of #91395

Pull Request resolved: https://github.com/pytorch/pytorch/pull/97470
Approved by: https://github.com/ezyang
2023-05-23 01:27:30 +00:00
Nikita Shulga
75e4214f92 Fix recursive_store for smaller elementSize (#100902)
<!--
copilot:summary
-->
### <samp>🤖 Generated by Copilot at 8cbc54f</samp>

Add support for symbolic integers of different sizes in `tensor_new.cpp`. Use a switch statement to cast them to the appropriate fixed-width integer type.

Fixes crash reported in https://github.com/pytorch/pytorch/issues/100455

Pull Request resolved: https://github.com/pytorch/pytorch/pull/100902
Approved by: https://github.com/ngimel
2023-05-09 04:10:29 +00:00
cyy
dbc7e919b8 add Wmissing-prototypes to clang-tidy (#96805)
This PR introduces **-Wmissing-prototypes** of clang-tidy to prevent further coding errors such as the one fixed by PR #96714.

<!--
copilot:summary
-->
### <samp>🤖 Generated by Copilot at fd2cf2a</samp>

This pull request makes several internal functions static to improve performance and avoid name clashes. It also fixes some typos, formatting, and missing includes in various files. It adds a new .clang-tidy check to warn about missing prototypes for non-static functions.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/96805
Approved by: https://github.com/malfet, https://github.com/albanD
2023-04-25 18:20:36 +00:00
Nikita Shulga
b756fd98bb Fix NumPy scalar arrays to tensor conversion (#97696)
By performing cast from scalar to 0-dim array only if object is not an
array already.

Fixes https://github.com/pytorch/pytorch/issues/97021

Pull Request resolved: https://github.com/pytorch/pytorch/pull/97696
Approved by: https://github.com/albanD
2023-03-28 03:00:18 +00:00
Wonjoo Lee
3095c95828 Fixes for PyTorch/XLA functionalization integration (#94537)
Fixes for PyTorch/XLA functionalization integration

---
Some notable changes include:
- More asserts in `FunctionalTensorWrapper`, so bugs show up more cleanly in cases where we e.g. forget to wrap an output
- Make the *_scatter ops `CompositeExplicitAutogradNonFunctional`, so we get a better error message and XLA doesn't accidentally try to us them
- Fix LTC/XLA codegen in core to handle multi-tensor out= ops with no returns
- Better erroring: Allow XLA to use the CPU fallback from core in a way so that it always errors on view ops, which XLA should no longer see.
- Update MetaConverter to exclude XLA tensors in raising NotImplemented…
- Add `_propagate_xla_data` op
- Add meta tensor support for some ops
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94537
Approved by: https://github.com/bdhirsh
2023-03-02 23:02:34 +00:00
Brian Hirsh
9b86b53285 allow privateuse1 key to be used with legacy constructor (#95748)
fixes https://github.com/pytorch/pytorch/issues/95734

Pull Request resolved: https://github.com/pytorch/pytorch/pull/95748
Approved by: https://github.com/ezyang
2023-03-01 06:11:00 +00:00
Pearu Peterson
cece63f197 Add warn-once deprecation warning to legacy sparse constructors (#94850)
Addresses https://github.com/pytorch/pytorch/issues/68323#issuecomment-1425174341

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94850
Approved by: https://github.com/amjames, https://github.com/cpuhrsch
2023-02-23 15:05:12 +00:00
cyy
37f7c00a8a More fixes and improved clang-tidy checkers (#93213)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/93213
Approved by: https://github.com/Skylion007
2023-02-01 14:44:17 +00:00
Yukio Siraichi
3f64c96655 asarray: Add support for NumPy scalars (#90914)
Follow up from: Quansight-Labs/numpy_pytorch_interop#3

This PR adds support for NumPy scalars for `torch.asarray`.

**Before:** treats the scalar as an object that implements the buffer protocol. Thus, interprets the data as the default data type (`float32`)

```python
>>> torch.asarray(numpy.float64(0.5))
tensor([0.0000, 1.7500])
```

**After:** identifies the NumPy scalar, and does the "right" thing. i.e. creates a 0-dimensional tensor from the NumPy array that doesn't share its memory

```python
>>> torch.asarray(numpy.float64(0.5))
tensor(0.5000, dtype=torch.float64)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90914
Approved by: https://github.com/lezcano, https://github.com/mruberry
2023-01-24 08:09:30 +00:00
Pearu Peterson
4a4520e74b Retire unsafe sparse tensor constructors in Python API (#91331)
This PR removes sparse tensor constructor functions `torch._sparse_coo/csr/csc/bsr/bsc/compressed_tensor_unsafe(...)` as unneeded. The equivalent functionality is provided via `torch.sparse_coo/csr/csc/bsr/bsc/compressed_tensor(..., check_invariants=False)`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/91331
Approved by: https://github.com/amjames, https://github.com/cpuhrsch
2023-01-18 08:55:22 +00:00
Pearu Peterson
b3e4f5029b Add check-sparse-tensor-invariants flag to Context - 2nd try. (#92094)
This PR is a copy of https://github.com/pytorch/pytorch/pull/90849 that merge was reverted.

The PR adds "check sparse tensor invariants" flag to Context that when enabled will trigger sparse tensor data invariants checks in unsafe methods of constructing sparse COO/CSR/CSC/BSR/BSC tensors. The feature includes the following changes to UI:

`torch.sparse.check_sparse_tensor_invariants` class provides different ways to enable/disable the invariant checking.

`torch.sparse_coo/csr/csc/bsr/bsc/compressed_tensor` functions have a new optional argument `check_invariants` to enable/disable the invariant checks explicitly. When the `check_invariants` argument is specified, the global state of the feature is temporarily overridden.

The PR fixes https://github.com/pytorch/pytorch/issues/90833

Pull Request resolved: https://github.com/pytorch/pytorch/pull/92094
Approved by: https://github.com/cpuhrsch
2023-01-13 14:50:33 +00:00
PyTorch MergeBot
c7a22bb7c7 Revert "Add check-sparse-tensor-invariants flag to Context. (#90849)"
This reverts commit b9a035c1c5.

Reverted https://github.com/pytorch/pytorch/pull/90849 on behalf of https://github.com/DanilBaibak due to Break internal build
2023-01-12 09:58:16 +00:00
Pearu Peterson
b9a035c1c5 Add check-sparse-tensor-invariants flag to Context. (#90849)
This PR adds "check sparse tensor invariants" flag to Context that when enabled will trigger sparse tensor data invariants checks in unsafe methods of constructing sparse COO/CSR/CSC/BSR/BSC tensors. The feature includes the following changes to UI:

- `torch.enable_check_sparse_tensor_invariants` and `torch.is_check_sparse_tensor_invariants_enabled` functions to globally enable/disable the invariant checks and to retrieve the state of the feature, respectively
- `torch.sparse_coo/csr/csc/bsr/bsc/compressed_tensor` functions have a new optional argument `check_invariants` to enable/disable the invariant checks explicitly. When the `check_invariants` argument is specified, the global state of the feature is temporarily overridden.

The PR also fixes https://github.com/pytorch/pytorch/issues/90833

# Main issue

*The following content is outdated after merging the PRs in this ghstack but kept for the record.*

The importance of this feature is that when enabling the invariants checks by default, say, via

<details>

```
$ git diff
diff --git a/torch/__init__.py b/torch/__init__.py
index c8543057c7..19a91d0482 100644
--- a/torch/__init__.py
+++ b/torch/__init__.py
@@ -1239,3 +1239,8 @@ if 'TORCH_CUDA_SANITIZER' in os.environ:

 # Populate magic methods on SymInt and SymFloat
 import torch.fx.experimental.symbolic_shapes
+
+# temporarily enable sparse tensor arguments validation in unsafe
+# constructors:
+
+torch._C._set_check_sparse_tensor_invariants(True)
```

</details>

a massive number of test failures/errors occur in test_sparse_csr.py tests:
```
$ pytest -sv test/test_sparse_csr.py
<snip>
==== 4293 failed, 1557 passed, 237 skipped, 2744 errors in 69.71s (0:01:09) ====
```
that means that we are silently constructing sparse compressed tensors that do not satisfy the sparse tensor invariants. In particular, the following errors are raised:

```
AssertionError: "resize_as_sparse_compressed_tensor_: self and src must have the same layout" does not match "expected values to be a strided and contiguous tensor"

RuntimeError: CUDA error: device-side assert triggered

RuntimeError: `col_indices[..., crow_indices[..., i - 1]:crow_indices[..., i]] for all i = 1, ..., nrows are sorted and distinct along the last dimension values` is not satisfied.

RuntimeError: expected col_indices to be a strided and contiguous tensor

RuntimeError: expected row_indices to be a strided and contiguous tensor

RuntimeError: expected values to be a strided and contiguous tensor

RuntimeError: for_each: failed to synchronize: cudaErrorAssert: device-side assert triggered

RuntimeError: tensor dimensionality must be sum of batch, base, and dense dimensionalities (=0 + 2 + 0) but got 3
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90849
Approved by: https://github.com/amjames, https://github.com/cpuhrsch
2023-01-11 01:05:14 +00:00
PyTorch MergeBot
b3603f8129 Revert "Deduplicate c10 error and PyTorchError hierarchy (#87855)"
This reverts commit 34f2d3e6ae.

Reverted https://github.com/pytorch/pytorch/pull/87855 on behalf of https://github.com/osalpekar due to perf regression in quantization tests
2023-01-06 19:56:35 +00:00
William Phetsinorath
34f2d3e6ae Deduplicate c10 error and PyTorchError hierarchy (#87855)
Fixes #53370

Pull Request resolved: https://github.com/pytorch/pytorch/pull/87855
Approved by: https://github.com/albanD
2023-01-02 15:53:36 +00:00
shademe
9f91e94080 Workaround for NumPy builds that ship with a broken Dlpack deleter (#89759)
NumPy versions 1.22 and 1.23 (and their respective bugfix releases included) have a buggy implementation of the Dlpack deleter that doesn't account for no-GIL contexts. Since we now release the GIL when deallocating tensors in `THPVariable_clear`, this leads to a failure of internal consistency checks when freeing a Dlpack-backed tensor from NumPy.

This PR adds a check for the buggy NumPy versions and overrides the `DlManagedTensor` deleter to reacquire the GIL before deallocation.

### Rationale for this implementation
The version check was added to `tensor_numpy.h/cpp` as it seemed like a more logical location for it than creating a new translation unit. The overriding of the deleter was originally attempted by directly modifying `at::fromDlpack`, but the lack of a build dependency on the Python C API in A10 prevented that. So, I extended the A10 Dlpack API instead to additionally accept a custom deleter functor.

Fixes #88082

Pull Request resolved: https://github.com/pytorch/pytorch/pull/89759
Approved by: https://github.com/albanD
2022-12-28 13:23:29 +00:00