Commit Graph

8 Commits

Author SHA1 Message Date
cyy
f9dae86222 Concat namespaces in torch/csrc/utils/* (#128787)
Concat namespaces in torch/csrc/utils/*
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128787
Approved by: https://github.com/Skylion007
2024-06-16 23:51:14 +00:00
Michael Suo
30fb2c4aba [lint] autoformat test/cpp and torch/csrc
Let's have some fun.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/78828

Approved by: https://github.com/ezyang
2022-06-11 21:11:16 +00:00
Michael Suo
f551c22a20 [lint] preparatory changes for mass clang-format
These were all the manual changes that were needed to preserve behavior
across autoformatting.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/78969

Approved by: https://github.com/ezyang
2022-06-06 23:49:45 +00:00
David Reiss
b140ed6848 Remove structseq_slice (#35625)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35625

Python 2 has reached end-of-life and is no longer supported by PyTorch.
This function was already ifdef'ed out in Python 2.

Added a comment about when we might be able to remove this entire file.

Test Plan: CI

Differential Revision: D20842885

Pulled By: dreiss

fbshipit-source-id: 1fd3b1b2ff5a82caaf3bc11344dde2941427cfc0
2020-05-14 15:03:24 -07:00
Xiang Gao
3880f14b64 Canonicalize includes in torch, and add tests for it (#36303)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/36303

Test Plan: Imported from OSS

Differential Revision: D20943003

Pulled By: ezyang

fbshipit-source-id: 81fcbaccc1a7eec422bd8347d196bb66a5467884
2020-04-23 08:09:21 -07:00
Sam Gross
430d1a2761 Attempt to fix flaky test_structseq_repr (#20931)
Summary:
Previously, this used `crepr` afer the decref of `repr`. This is not
allowed because `repr` owns the cached copy of `crepr`.

Let's see if this fixes the contbuild.

See #20926
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20931

Differential Revision: D15501929

Pulled By: colesbury

fbshipit-source-id: 24141ba62df8758d2a3998cf7c2054be09088b6a
2019-05-24 15:55:44 -07:00
Gao, Xiang
11c89dde55 Allow structseq to be input of operators where tuple is expected (#17208)
Summary:
Currently the following code gives an error on python 2 because `ret` is a structseq which is not a tuple
```python
ret = a.max(dim=0)
ret1 = torch.max(a, dim=0, out=ret)
```

This PR modify tuple check in python arg parser to allow structseq to be input of operators where tuple is expected, which would make the above code work.

Depend on: https://github.com/pytorch/pytorch/pull/17136
Partially fixes: https://github.com/pytorch/pytorch/issues/16813
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17208

Differential Revision: D14280198

Pulled By: VitalyFedyunin

fbshipit-source-id: beffebfd3951c4f5c7c8fe99a5847616a89491f3
2019-03-11 11:33:35 -07:00
Xiang Gao
2e5a8cee82 Customize the printing of namedtuple return (#17136)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/17112
```python
print("good", torch.randn(5,5,5).max(1))
print("terrible", torch.randn(5,5,10).max(1))
print("not as good", torch.randn(5,5,500).max(1))
print ("old behaviour = gold standard")
print(tuple(torch.randn(5,5,5).max(1)))
print(tuple(torch.randn(5,5,10).max(1)))
print(tuple(torch.randn(5,5,500).max(1)))
```
now gives
```
>>> import torch
>>> print("good", torch.randn(5,5,5).max(1))
good torch.return_types.max(
values=tensor([[ 1.2821,  1.8063,  1.8075,  1.3082, -0.1267],
        [ 0.3437,  0.7353,  1.2619,  0.7557,  1.6662],
        [ 0.8583,  1.8906,  1.0246,  1.7598,  1.1184],
        [ 1.7821,  0.0230,  0.9452,  1.0318,  1.0823],
        [ 0.4116, -0.0379, -0.1843,  1.4129,  1.8796]]),
indices=tensor([[4, 4, 3, 2, 1],
        [1, 2, 4, 1, 1],
        [2, 4, 0, 2, 1],
        [0, 2, 0, 3, 1],
        [0, 4, 4, 4, 4]]))
>>> print("terrible", torch.randn(5,5,10).max(1))
terrible torch.return_types.max(
values=tensor([[ 2.1272,  1.3664,  2.2067,  1.3974, -0.0883,  1.2505,  1.0074,  1.1217,
          0.3849,  0.6936],
        [ 0.6288, -0.4560,  1.2748,  1.5482,  1.2777,  1.6874,  0.7151,  0.6041,
          1.3572,  1.6232],
        [ 1.6703,  1.0075,  1.6480,  2.2839,  1.3390,  0.4938,  1.6449,  1.7628,
          0.8141,  2.5714],
        [ 0.7079,  1.8677,  3.2478,  1.5591,  2.4870,  0.8635, -0.1450,  1.6923,
          1.4924,  1.6298],
        [ 2.4056,  0.8002,  0.9317,  0.7455,  0.7866,  2.1191,  0.3492,  1.2095,
          1.8637,  1.7470]]),
indices=tensor([[1, 1, 0, 0, 0, 0, 3, 4, 4, 4],
        [4, 2, 2, 1, 2, 2, 3, 1, 1, 3],
        [0, 3, 3, 0, 2, 1, 4, 1, 0, 1],
        [4, 1, 3, 0, 3, 2, 0, 1, 4, 3],
        [1, 0, 3, 2, 1, 0, 0, 1, 0, 1]]))
>>> print("not as good", torch.randn(5,5,500).max(1))
not as good torch.return_types.max(
values=tensor([[ 0.3877,  0.7873,  1.8701,  ...,  0.5971,  1.6103, -0.3435],
        [ 1.1300,  2.2418,  1.4239,  ...,  1.3943,  0.3872,  1.6475],
        [ 2.0656,  1.3136,  0.9896,  ...,  2.3918,  0.8226,  1.0517],
        [ 1.1054,  0.9945,  1.0561,  ...,  2.1039,  1.1524,  3.0304],
        [ 1.5041,  2.2809,  1.0883,  ...,  0.8504,  2.4774,  1.1041]]),
indices=tensor([[4, 3, 1,  ..., 1, 4, 0],
        [4, 4, 4,  ..., 3, 0, 3],
        [3, 0, 1,  ..., 2, 2, 4],
        [0, 1, 1,  ..., 4, 2, 2],
        [1, 0, 4,  ..., 2, 0, 2]]))
>>> print ("old behaviour = gold standard")
old behaviour = gold standard
>>> print(tuple(torch.randn(5,5,5).max(1)))
(tensor([[ 1.1908,  1.1807,  1.3151,  1.7184,  0.3556],
        [ 0.3798,  0.9213,  0.3001,  1.3087,  2.2419],
        [ 1.4233,  1.4814,  1.9900,  1.7744,  1.3059],
        [ 1.0026, -0.0330,  1.3061,  1.8730,  2.0685],
        [ 1.3041,  1.6458,  1.3449,  1.8948,  3.6206]]), tensor([[0, 4, 3, 4, 0],
        [1, 1, 4, 0, 4],
        [4, 1, 0, 3, 3],
        [1, 2, 1, 4, 0],
        [3, 3, 0, 3, 3]]))
>>> print(tuple(torch.randn(5,5,10).max(1)))
(tensor([[-0.1232,  0.8275,  0.6732,  1.1223,  0.8247,  1.2851,  1.6009,  1.9979,
          1.9109,  0.7313],
        [ 0.2260,  0.5922,  1.6928,  0.6024,  2.1158,  3.0619,  0.5653,  0.7426,
          0.8316,  0.6346],
        [ 0.4319,  0.2231,  0.5255,  1.7620,  1.1657,  0.8875,  0.5782,  0.6506,
          0.5032,  1.7097],
        [ 0.4137,  1.7265,  1.4260,  2.0301,  1.2244,  0.7128,  2.6345,  0.7230,
          1.3553,  1.6508],
        [ 1.0684,  1.7195,  1.4068,  0.7076, -0.0242,  0.8474,  0.8754,  1.7108,
          0.2188,  1.1584]]), tensor([[0, 1, 3, 4, 2, 3, 4, 2, 1, 0],
        [1, 4, 0, 0, 3, 2, 0, 0, 3, 3],
        [2, 3, 1, 1, 4, 0, 1, 4, 4, 4],
        [0, 4, 1, 3, 2, 0, 2, 0, 3, 1],
        [1, 0, 0, 0, 0, 3, 3, 3, 2, 0]]))
>>> print(tuple(torch.randn(5,5,500).max(1)))
(tensor([[0.9395, 1.5572, 1.8797,  ..., 2.0494, 0.8202, 0.9623],
        [1.7937, 0.7225, 1.8836,  ..., 0.7927, 1.4976, 1.1813],
        [0.8558, 1.6943, 1.4192,  ..., 0.8327, 1.9661, 0.4197],
        [1.2993, 1.4995, 0.9357,  ..., 0.7810, 1.3030, 2.6216],
        [1.4206, 1.8315, 1.0338,  ..., 1.4312, 1.3198, 1.5233]]), tensor([[0, 4, 3,  ..., 3, 0, 2],
        [0, 1, 0,  ..., 0, 4, 3],
        [3, 4, 3,  ..., 3, 0, 0],
        [3, 2, 3,  ..., 1, 2, 1],
        [1, 2, 4,  ..., 3, 1, 3]]))
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17136

Differential Revision: D14250021

Pulled By: VitalyFedyunin

fbshipit-source-id: aae72f03b35980063b1ac1f07b8353eddb0c8b93
2019-02-28 13:07:26 -08:00