Sometimes, it could be difficult to write a fake class e.g. when the original implementation is using some third-party libraries or users are certain that the class is safe to trace with the real object.
This PR allows user to specify their intention by implementing a "safe_to_trace_with_real_obj" method on their script class.
Test Plan:
`pytest test/export/test_torchbind.py -k safe`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129586
Approved by: https://github.com/zou3519
As titled. Previously, __obj_flatten__ can run in a fake tensor mode, e.g. in process_input of aot_autograd, which is surrounded by a fake tensor mode. This causes the tensor ops inside __obj_flatten__ to run under fake tensor mode. However, tensors inside of script obejct are real tensors, this causes the fake tensor mode to error out saying that we need to first fakify fall the tensors (because allow_non_fake_inputs is set to True).
In this PR, we disable all the dispatch modes when running to_fake_obj.
Note that, the output of `__obj_flatten__` will be fakified and filled inside of the corresponding FakeScriptObject. So during traicng, we'll be using FakeScriptObject that has fake tensor contents.
Test Plan:
Add a new test: pytest test/export/test_torchbind.py -k test_compile_tensor_op_in_tensor_flatten
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129605
Approved by: https://github.com/angelayi
This PR does two things:
1. it duplicates the fake script object because aot_export trace the program twice. The result of tracing in the first time would cause the tracing result of second time be wrong.
2. Also add a new test for methods that return constant outputs. Before the PR, there's is no meta["val"] for these nodes because fx won't track these constants. We still need to preserve these constant return operators in the graph because torchbind objects are stateful and deleting it would remove the implicit state mutation inside of the object.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128844
Approved by: https://github.com/angelayi
Adds `C10_UBSAN_ENABLED` macro and use it to disable `SymIntTest::Overflows` (fails under `signed-integer-overflow` UBSAN check).
Also cleans up UBSAN guard in `jit/test_misc.cpp` to use `C10_UBSAN_ENABLED` and the existing `C10_ASAN_ENABLED` instead of locally defining `HAS_ASANUBSAN`.
> NOTE: This should fix `SymIntTest::Overflows` failing under ubsan in fbcode too...
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127967
Approved by: https://github.com/atalman, https://github.com/d4l3k, https://github.com/malfet
Summary: Now that we have reached nanosecond granularity, we can now remove the temporary guards that were previously required for nanosecond precision.
Test Plan: Regression should cover this change
Reviewed By: aaronenyeshi
Differential Revision: D56444570
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124734
Approved by: https://github.com/aaronenyeshi
Summary:
Kineto traces use microsecond level granularity because of chrome tracing defaults to that precision. Fix by adding preprocessor flag to TARGETS and BUCK files. Also remove any unnecessary ns to us conversions made in the profiler itself.
This diff contains profiler changes only. Libkineto changes found in D54964435.
Test Plan:
Check JSON and chrome tracing to make sure values are as expected. Tracing with flags enabled should have ns precision. Tracings without flags should be same as master.
Zoomer: https://www.internalfb.com/intern/zoomer/?profiling_run_fbid=796886748550189
Ran key_averages() to make sure FunctionEvent code working as expected:
-- ------------ ------------
Name Self CPU % Self CPU CPU total % CPU total CPU time avg Self CUDA Self CUDA % CUDA total CUDA time avg # of Calls
ProfilerStep* 0.74% 3.976ms 64.40% 346.613ms 69.323ms 0.000us 0.00% 61.710ms 12.342ms 5
Optimizer.zero_grad#SGD.zero_grad 0.76% 4.109ms 0.76% 4.109ms 821.743us 0.000us 0.00% 0.000us 0.000us 5
## forward ## 6.89% 37.057ms 27.19% 146.320ms 29.264ms 0.000us 0.00% 58.708ms 11.742ms 5
aten::conv2d 0.22% 1.176ms 7.74% 41.658ms 157.199us 0.000us 0.00% 27.550ms 103.962us 265
aten::convolution 0.79% 4.273ms 7.52% 40.482ms 152.762us 0.000us 0.00% 27.550ms 103.962us 265
aten::_convolution 0.69% 3.688ms 6.73% 36.209ms 136.637us 0.000us 0.00% 27.550ms 103.962us 265
aten::cudnn_convolution 6.04% 32.520ms 6.04% 32.520ms 122.719us 27.550ms 8.44% 27.550ms 103.962us 265
aten::add_ 2.42% 13.045ms 2.42% 13.045ms 30.694us 12.700ms 3.89% 12.700ms 29.882us 425
aten::batch_norm 0.19% 1.027ms 8.12% 43.717ms 164.971us 0.000us 0.00% 16.744ms 63.185us 265
aten::_batch_norm_impl_index 0.31% 1.646ms 7.93% 42.691ms 161.096us 0.000us 0.00% 16.744ms 63.185us 265
------------------------------------------------------- ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------
Differential Revision: D55925068
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123650
Approved by: https://github.com/aaronenyeshi
Summary:
Kineto traces use microsecond level granularity because of chrome tracing defaults to that precision. Fix by adding preprocessor flag to TARGETS and BUCK files. Also remove any unnecessary ns to us conversions made in the profiler itself.
This diff contains profiler changes only. Libkineto changes found in D54964435.
Test Plan:
Check JSON and chrome tracing to make sure values are as expected. Tracing with flags enabled should have ns precision. Tracings without flags should be same as master.
Tracing with flags enabled: https://www.internalfb.com/intern/perfdoctor/trace_view?filepath=tree/traces/dynocli/devvm2185.cco0.facebook.com/rank-0.Mar_18_14_37_22.4155151.pt.trace.json.gz&bucket=gpu_traces
Tracing without flags enabled: https://www.internalfb.com/intern/perfdoctor/trace_view?filepath=tree/traces/dynocli/devvm2185.cco0.facebook.com/rank-0.Mar_18_14_39_15.4166047.pt.trace.json.gz&bucket=gpu_traces
Tracing on main: https://www.internalfb.com/intern/perfdoctor/trace_view?filepath=tree/traces/dynocli/devvm2185.cco0.facebook.com/rank-0.Mar_18_14_42_43.4177559.pt.trace.json.gz&bucket=gpu_traces
Ran key_averages() to make sure FunctionEvent code working as expected:
-- ------------ ------------
Name Self CPU % Self CPU CPU total % CPU total CPU time avg Self CUDA Self CUDA % CUDA total CUDA time avg # of Calls
ProfilerStep* 0.74% 3.976ms 64.40% 346.613ms 69.323ms 0.000us 0.00% 61.710ms 12.342ms 5
Optimizer.zero_grad#SGD.zero_grad 0.76% 4.109ms 0.76% 4.109ms 821.743us 0.000us 0.00% 0.000us 0.000us 5
## forward ## 6.89% 37.057ms 27.19% 146.320ms 29.264ms 0.000us 0.00% 58.708ms 11.742ms 5
aten::conv2d 0.22% 1.176ms 7.74% 41.658ms 157.199us 0.000us 0.00% 27.550ms 103.962us 265
aten::convolution 0.79% 4.273ms 7.52% 40.482ms 152.762us 0.000us 0.00% 27.550ms 103.962us 265
aten::_convolution 0.69% 3.688ms 6.73% 36.209ms 136.637us 0.000us 0.00% 27.550ms 103.962us 265
aten::cudnn_convolution 6.04% 32.520ms 6.04% 32.520ms 122.719us 27.550ms 8.44% 27.550ms 103.962us 265
aten::add_ 2.42% 13.045ms 2.42% 13.045ms 30.694us 12.700ms 3.89% 12.700ms 29.882us 425
aten::batch_norm 0.19% 1.027ms 8.12% 43.717ms 164.971us 0.000us 0.00% 16.744ms 63.185us 265
aten::_batch_norm_impl_index 0.31% 1.646ms 7.93% 42.691ms 161.096us 0.000us 0.00% 16.744ms 63.185us 265
------------------------------------------------------- ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------
Differential Revision: D55087993
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122425
Approved by: https://github.com/aaronenyeshi
This PR only adds abstract class registration logic without touching existing tests so they still trace with real script object. The added tests are only for registration APIs and test error messages.
Our design is that the abstract implementation should be in Python. This is much better in terms of usability. But this also has implications for custom op that takes script object as input, which is detailed later in this stack.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122622
Approved by: https://github.com/zou3519
ghstack dependencies: #122619, #122620, #122621
Do not run test ConstantPropagation.CustomClassesCanBePropagated on a platform where QNNPACK is not supported.
For example, this test fails on M1 Mac because QNNPACK is not supported on M1 Mac:
[----------] 1 test from ConstantPropagation
[ RUN ] ConstantPropagation.CustomClassesCanBePropagated
unknown file: Failure
as described in more details in the issue #88613.
After the PR, test passes successfully as below:
[----------] 1 test from ConstantPropagation
[ RUN ] ConstantPropagation.CustomClassesCanBePropagated
[ OK ] ConstantPropagation.CustomClassesCanBePropagated (0 ms)
[----------] 1 test from ConstantPropagation (0 ms total)
Fixes#88613
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119139
Approved by: https://github.com/jcaip
Recently we made it possible to serialize ExportedPrograms with fake parameters/buffers/etc.
The serialization regime was kind of whacky; basically we serialized a stub and reassembled the FakeTensor using metadata that we had stashed elsewhere in the Graph state.
This was bad for a few reasons:
- Storing the metadata separately from the actual serialized object caused situations where you could have one but not the other. An example case is if you had a FakeTensor contained inside a TorchBind object—there was no obviously place to store the metadata for this. This actually happens—TensorQueue in fbgemm does this.
- It created an annoying cycle: we had to deserialize the Graph's tensor metadata in order to deserialize (potentially faked) constants, but we need constants in order to deserialize the Graph.
This fixes all that. The basic idea is to patch the reducer function for FakeTensor at serialization time, and serialize a copy of the FakeTensor metadata. We already are policing BC for the TensorMeta schema struct so it's not a net increase in the BC surface.
As a bonus, I fixed a weird bug with torchbind tracing where we were accidentally reinterpreting a torch.ScriptObject as a torch.ScriptModule (which was the root cause of some weird behavior @bahuang was seeing last week).
Differential Revision: [D53601251](https://our.internmc.facebook.com/intern/diff/D53601251/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119531
Approved by: https://github.com/zhxchen17
This PR adds the bare minimum functionality to get torchbind working in an e2e testable way on PT2.
It implements:
* ProxyTensor support
* Simple torch.export support (proxytensor-only path, e.g. non-strict).
* add some tests exercising the path.
Because all this is not fully baked, I hide the functionality behind a feature flag (`enable_torchbind_tracing()`) so it does not affect regular users for now.
Still on the agenda:
* Dynamo support
* Actual FakeMode support
* Mutability support
Hoping to get this first bit in as a standalone, as it will unblock some more extensive experimentation/testing going on internally.
Differential Revision: [D51825372](https://our.internmc.facebook.com/intern/diff/D51825372/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117697
Approved by: https://github.com/SherlockNoMad
Summary:
Move the profiler's Approximate Clock from libtorch to libc10. The main reason is to allow c10 features to get time.
The clock is using TSC when available for performance. CUDA Caching Allocator's implementation of memory snapshot will add the timestamps to memory events with this same clock in subsequent diff.
Test Plan: CI
Differential Revision: D50601935
Pulled By: aaronenyeshi
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111972
Approved by: https://github.com/davidberard98
- rename `__HIP_PLATFORM_HCC__` to `__HIP_PLATFORM_AMD__`
- rename `HIP_HCC_FLAGS` to `HIP_CLANG_FLAGS`
- rename `PYTORCH_HIP_HCC_LIBRARIES` to `PYTORCH_HIP_LIBRARIES`
- workaround in tools/amd_build/build_amd.py until submodules are updated
These symbols have had a long deprecation cycle and will finally be removed in ROCm 6.0.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111975
Approved by: https://github.com/ezyang, https://github.com/hongxiayang
This is reland of PRs #https://github.com/pytorch/pytorch/pull/108626 and #109564. We fixed the IOS build failure by changing
```
((CHECK) ? (EXPR) : ([] { assert(!#CHECK); }(), (EXPR)))
```
to
```
((CHECK) ? (EXPR) : ([] { assert(false); }(), (EXPR)))
```
in TR2_OPTIONAL_ASSERTED_EXPRESSION, since the former syntax was invalid on Apple Clang. Anyway, we could apply the simple fix hoping that c10::optional would be replaced by std::optional soon.
We also enabled -Wdeprecated on c10.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110019
Approved by: https://github.com/clee2000
This PR enables `-Winconsistent-missing-destructor-override` and `-Winconsistent-missing-override`
and fixes violations.
<!--
copilot:summary
-->
### <samp>🤖 Generated by Copilot at 47e904e</samp>
This pull request updates the code of various classes and operators in the `caffe2` and `aten` subdirectories to use the `override` specifier instead of the `virtual` keyword for destructors and other virtual functions that override a base class function. This improves the code readability, quality, and consistency with C++ best practices. It also modifies the `./CMakeLists.txt` file to enable warnings for these specifiers, but disable errors.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104032
Approved by: https://github.com/malfet
Potential null dereference after dynamic cast was found during static analysis.
**Description:**
Dereference of `ctx` is performed in `TORCH_CHECK` on line 1176, while `ctx` pointer may equal `nullptr`.
Previous `TORCH_CHECK` on line 1175 checks the value of `ctx_ptr` pointer that may be of type that cannot be casted to `TestContext*`. In such case, `dynamic_cast` returns `nullptr` despite `ctx_ptr` is not equal to `nullptr`.
**Fix:**
- Check `ctx` instead of `ctx_ptr` for equality to zero.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/97768
Approved by: https://github.com/kit1980