## Summary
We are currently [updating](https://github.com/conda-forge/pytorch-cpu-feedstock/pull/277) the [`conda-forge::pytorch`](https://anaconda.org/conda-forge/pytorch) package to version 2.5.0. This update includes a new dependency, the third_party/NVTX submodule. However, like other package management frameworks (e.g., apt), conda-forge prefers using system-installed packages instead of vendor-provided third-party packages.
This pull request aims to add an option, `USE_SYSTEM_NVTX`, to select whether to use the vendored nvtx or the system-installed one, with the default being the vendored one (which is the current behavior).
## Test Plan
The `USE_SYSTEM_NVTX` option is tested by building the `conda-forge::pytorch` package with the change applied as a [patch](cd1d2464dd/recipe/patches/0005-Use-system-nvtx3.patch).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138287
Approved by: https://github.com/albanD
**Motivation:**
In Pytorch, Aten vectorization supports multiple platforms, including x86 and Arm, as well as multiple data types. It provides a generic implementation of Vector (Vec) type that allows the programmer to write code packing various primitives (such as floats) within 256bit & 512bits registers. It can be extended to support other ISAs easily by adding more VecISA sub-classes.
**Reference Link:** https://github.com/pytorch/pytorch/tree/main/aten/src/ATen/cpu/vec
**This PR:**
* Our goal with this contribution is to add support for SVE backend for Vec in the Aten vectorization for CPU backend which can be benefitted by any ARM architecture supported CPU's that supports SVE.
* More about SVE ISA for ARM: [https://developer.arm.com/Architectures/Scalable Vector Extensions](https://developer.arm.com/Architectures/Scalable%20Vector%20Extensions)
* We are using the ARM C Language Extensions for SVE (https://developer.arm.com/documentation/102699/0100/Optimizing-with-intrinsics ) to accelerate performance for various operators in the SVE backend for Vec.
* Currently we are adding support only for SVE ISA with the vector length of 256 bits (SVE 256). In future, we plan to extend this SVE support for other vector lengths as well.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119571
Approved by: https://github.com/malfet, https://github.com/snadampal
Co-authored-by: Divya Kotadiya <divya.kotadiya@fujitsu.com>
* Added a cpp loader, AOTIModelPackageLoader, which can load the .pt2, build the .so, and create a runner. The python-facing API is that users can directly call the `run` function, whereas in cpp users can directly access the `runner_` if they are more familiar with that. I couldn't figure out how to bind the `get_runner()` function to python...
* Added a new config, `aot_inductor.package_cpp_only` which will **not** package the so. This means that whenever the package is loaded, we will need to build the so. This is turned off by default so that new environments do not need to rebuild their so. The `package_cpp_only` is a feature which torchchat intends to use to provide flexibility to users.
* Added a new config, `aot_inductor.metadata` which stores user-provided metadata, serialized to the pt2 as a json file. It also stores the device used when exporting, "cuda" or "cpu", so that during load time, we can use that data to determine which AOTIModelContainerRunner to use. The metadata can be accessed through `loader.get_metadata()`. TODO is to move this metadata to the toplevel `package_aoti` function so that we can remove the metadata as a config.
* Separated out `package_aoti` as a standalone function, instead of it automatically being called in inductor. This is to prepare for the case where users will compile multiple models, and want to bundle it in one package. The specific use case is in torchchat, where we want to package the separately-exported encoder and decoder layers. An example of how to use this is in `test_multiple_methods`.
* `load_package` will load a singular model, given the model name.
* The loader doesn't support windows for now, I think I need to add some more casing to make the build commands work on windows?
Differential Revision: [D62329906](https://our.internmc.facebook.com/intern/diff/D62329906)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135374
Approved by: https://github.com/desertfire, https://github.com/malfet
This PR switches to cuDSS library and has the same purpose of #127692, which is to add Sparse CSR tensor support to linalg.solve.
Fixes#69538
Minimum example of usage:
```
import torch
if __name__ == '__main__':
spd = torch.rand(4, 3)
A = spd.T @ spd
b = torch.rand(3).to(torch.float64).cuda()
A = A.to_sparse_csr().to(torch.float64).cuda()
x = torch.linalg.solve(A, b)
print((A @ x - b).norm())
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129856
Approved by: https://github.com/amjames, https://github.com/lezcano, https://github.com/huydhn
Co-authored-by: Zihang Fang <zhfang1108@gmail.com>
Co-authored-by: Huy Do <huydhn@gmail.com>
Another attempt to update NVTX to NVTX3. We now avoid changing NVTX header inclusion of existing code. The advantage of NVTX3 over NVTX is that it is a header-only library so that linking with NVTX3 can greatly simplify our CMake and other building scripts for finding libraries in user environments. In addition, NVTX are indeed still present in the latest CUDA versions, but they're no longer a compiled library: It's now a header-only library. That's why there isn't a .lib file anymore.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109843
Approved by: https://github.com/peterbell10, https://github.com/eqy
Co-authored-by: Ivan Zaitsev <108101595+izaitsevfb@users.noreply.github.com>
0.12.0 Major Updates:
- Add context manager to temporarily set the dictionary sorting mode
- Add accessor APIs
- Use `stable` tag for `pybind11` for Python 3.13 support
- Fix potential segmentation fault for pickling support
0.12.1 Updates:
- Fix warning regression during import when launch with strict warning filters
Closes#130155
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130139
Approved by: https://github.com/zou3519
ghstack dependencies: #130895
------
The opposite of #130836. Pin `sympy >= 1.13.0` for Python >= 3.9 and `sympy == 1.12.1` for Python 3.8.
- #130836
See the PR description of #130836 for more details.
`sympy` 1.13.0 introduces some breaking changes which break our tests. More specifically:
- Ref [Backwards compatibility breaks and deprecations](https://github.com/sympy/sympy/wiki/release-notes-for-1.13.0#backwards-compatibility-breaks-and-deprecations)
> BREAKING CHANGE: Float and Integer/Rational no longer compare equal with a == b. From now on Float(2.0) != Integer(2). Previously expressions involving Float would compare unequal e.g. x*2.0 != x*2 but an individual Float would compare equal to an Integer. In SymPy 1.7 a Float will always compare unequal to an Integer even if they have the same "value". Use sympy.numbers.int_valued(number) to test if a number is a concrete number with no decimal part. ([#25614](https://github.com/sympy/sympy/pull/25614) by [@smichr](https://github.com/smichr))
`sympy >= 1.13.0` is required to enable Python 3.13 support. This should be part of #130689.
- #130689
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130895
Approved by: https://github.com/ezyang
0.12.0 Major Updates:
- Add context manager to temporarily set the dictionary sorting mode
- Add accessor APIs
- Use `stable` tag for `pybind11` for Python 3.13 support
- Fix potential segmentation fault for pickling support
0.12.1 Updates:
- Fix warning regression during import when launch with strict warning filters
Closes#130155
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130139
Approved by: https://github.com/zou3519
Removes extraneous .a, .so, and .py files from the split build. From here we can also clean up the builder script which produces the binary to do this. That pr is https://github.com/pytorch/builder/pull/1912
Verification:
The built wheel with BUILD_LIBTORCH_WHL=1 has the following files only (with .a, .so, and .py extensions)
```
sahanp@devgpu086 ~/p/dist (viable/strict)> pwd (pytorch-3.10)
/home/sahanp/pytorch/dist
sahanp@devgpu086 ~/p/dist (viable/strict)> find . -type f \( -name "*.py" -o -name "*.a" -o -name "*.so" \) (pytorch-3.10)
./torch/__init__.py
./torch/lib/libbackend_with_compiler.so
./torch/lib/libc10.so
./torch/lib/libjitbackend_test.so
./torch/lib/libtorch.so
./torch/lib/libtorch_cpu.so
./torch/lib/libtorch_global_deps.so
./torch/lib/libtorchbind_test.so
sahanp@devgpu086 ~/p/dist (viable/strict)>
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130053
Approved by: https://github.com/atalman
This PR removes the second separate package we were using for the libtorch wheel.
In terms of testing that this works we will look use the PRs above this in the stack.
As for sanity checking these are the wheels that are produced by running
```
python setup.py clean && BUILD_LIBTORCH_WHL=1 with-proxy python setup.py bdist_whee
l && BUILD_PYTHON_ONLY=1 with-proxy python setup.py bdist_wheel --cmake
```
```
sahanp@devgpu086 ~/pytorch ((5f15e171…))> ls -al dist/ (pytorch-3.10)
total 677236
drwxr-xr-x 1 sahanp users 188 Jun 4 12:19 ./
drwxr-xr-x 1 sahanp users 1696 Jun 4 12:59 ../
-rw-r--r-- 1 sahanp users 81405742 Jun 4 12:19 torch-2.4.0a0+gitca0a73c-cp310-cp310-linux_x86_64.whl
-rw-r--r-- 1 sahanp users 612076919 Jun 4 12:19 libtorch-2.4.0a0+gitca0a73c-py3-none-any.whl
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127934
Approved by: https://github.com/atalman
Summary:
1.Package public headers of kineto if USE_KINETO so that they can be used by PrivateUse1 user.
2.Add PrivateUse1 key to ActivityType.
3. Support PrivateUse1 key in function deviceTypeFromActivity and _supported_activities.
4. Fix some bugs when processing profiler results.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124818
Approved by: https://github.com/aaronenyeshi
Summary:
1.Package public headers of kineto if USE_KINETO so that they can be used by PrivateUse1 user.
2.Add PrivateUse1 key to ActivityType.
3. Support PrivateUse1 key in function deviceTypeFromActivity and _supported_activities.
4. Fix some bugs when processing profiler results.
Co-authored-by: albanD <desmaison.alban@gmail.com>
Co-authored-by: Aaron Shi <enye.shi@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120556
Approved by: https://github.com/aaronenyeshi
This PR adds a linker script optimization based on prioritized symbols that can be extracted from the profiles of popular workloads. The present linker script was generated to target ARM+CUDA and later can be extended if necessary. The reason we target ARM is shown below:
> PyTorch and other applications that access more than 24x 2MB code regions in quick succession can result in performance bottlenecks in the CPU front-end. The link-time optimization improves executable code locality and improve performance. We recommend turning on the optimization always for PyTorch and other application that behaves similarly.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121975
Approved by: https://github.com/ptrblck, https://github.com/atalman
Summary: The current C shim layer manually implements a C interface for a handful of ops. Obviously that's not scalable if we want to extend it to cover all aten ops. This new torchgen script automatically generates C shim interfaces for CPU and CUDA backends. The interface follows the same parameter passing rules as the current C shim layer, such as
* Use plain C data types to pass parameters
* Use AtenTensorHandle to pass at::Tensor
* Use pointer type to pass optional parameter
* Use pointer+length to pass list
* Use device_type+device_index to pass device
* When a parameter is a pointer of pointer, e.g. AtenTensorHandle**, the script generates either a list of optional values or an optional list of values
https://gist.github.com/desertfire/83701532b126c6d34dae6ba68a1b074a is an example of the generated torch/csrc/inductor/aoti_torch/generated/c_shim_cuda.cpp file. The current version doesn't generate C shim wrappers for all aten ops, and probably generates more wrappers than needed on the other hand, but it should serve as a good basis.
This PR by itself won't change AOTI codegen and thus won't introduce any FC breakage. The actual wrapper codegen changes will come in another PR with some version control flag to avoid FC breakage.
Differential Revision: [D54258087](https://our.internmc.facebook.com/intern/diff/D54258087)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120513
Approved by: https://github.com/jansel
Summary:
Expose an option to users to specify name of the LogsSpec implementation to use.
- Has to be defined in entrypoints under `torchrun.logs_specs` group.
- Must implement LogsSpec defined in prior PR/diff.
Test Plan: unit test+local tests
Reviewed By: ezyang
Differential Revision: D54180838
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120942
Approved by: https://github.com/ezyang
Some operations, such as GEMMs, could be implemented using more than one library or more than one technique. For example, a GEMM could be implemented for CUDA or ROCm using either the blas or blasLt libraries. Further, ROCm's rocblas and hipblaslt libraries allow the user to query for all possible algorithms and then choose one. How does one know which implementation is the fastest and should be chosen? That's what TunableOp provides.
See the README.md for additional details.
TunableOp was ported from onnxruntime starting from commit 08dce54266. The content was significantly modified and reorganized for use within PyTorch. The files copied and their approximate new names or source content location within aten/src/ATen/cuda/tunable include the following:
- onnxruntime/core/framework/tunable.h -> Tunable.h
- onnxruntime/core/framework/tuning_context.h -> Tunable.h
- onnxruntime/core/framework/tuning_context_impl.h -> Tunable.cpp
- onnxruntime/core/providers/rocm/tunable/gemm_common.h -> GemmCommon.h
- onnxruntime/core/providers/rocm/tunable/gemm_hipblaslt.h -> GemmHipblaslt.h
- onnxruntime/core/providers/rocm/tunable/gemm_rocblas.h -> GemmRocblas.h
- onnxruntime/core/providers/rocm/tunable/gemm_tunable.cuh -> TunableGemm.h
- onnxruntime/core/providers/rocm/tunable/rocm_tuning_context.cc -> Tunable.cpp
- onnxruntime/core/providers/rocm/tunable/util.h -> StreamTimer.h
- onnxruntime/core/providers/rocm/tunable/util.cc -> StreamTimer.cpp
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114894
Approved by: https://github.com/xw285cornell, https://github.com/jianyuh
# Motivation
According to [[1/4] Intel GPU Runtime Upstreaming for Device](https://github.com/pytorch/pytorch/pull/116019), As mentioned in [[RFC] Intel GPU Runtime Upstreaming](https://github.com/pytorch/pytorch/issues/114842), this third PR covers the changes under `libtorch_python`.
# Design
This PR primarily offers device-related APIs in python frontend, including
- `torch.xpu.is_available`
- `torch.xpu.device_count`
- `torch.xpu.current_device`
- `torch.xpu.set_device`
- `torch.xpu.device`
- `torch.xpu.device_of`
- `torch.xpu.get_device_name`
- `torch.xpu.get_device_capability`
- `torch.xpu.get_device_properties`
- ====================
- `torch.xpu._DeviceGuard`
- `torch.xpu._is_compiled`
- `torch.xpu._get_device`
# Additional Context
We will implement the support of lazy initialization in the next PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116850
Approved by: https://github.com/EikanWang, https://github.com/jgong5, https://github.com/gujinghui, https://github.com/malfet
Summary:
This diff implements a mechanism for safely update torch.export serialization schema, aka schema.py, which is the API surface having the strongest compatibility guarantee.
The diff is consist of 3 changes:
- Added a script to "build" or "materialize" schema.py into a platform neutral format (yaml), which serves as the committed form of the seialization schema.
- Added unittest to compare against schema.py and schema.yaml, so that it forces developers to execute the updater script when there is mismatch between two files.
- Added a checker inside the updater script, so that all the compatible change will result in a minor version bump, and all the incompatible changes will result in a major version bump.
torch.export's serialization BC/FC policy is (tentatively) documented here: https://docs.google.com/document/d/1EN7JrHbOPDhbpLDtiYG4_BPUs7PttpXlbZ27FuwKhxg/edit#heading=h.pup7ir8rqjhx , we will update the
As noted in the code doc, people should be able to run the following command to update schema properly from now on:
```
python scripts/export/update_schema.py --prefix <path_to_torch_development_diretory>
or
buck run caffe2:export_update_schema -- --prefix /data/users/$USER/fbsource/fbcode/caffe2/
```
Test Plan:
buck test mode/opt caffe2/test:test_export -- -r test_schema
buck run caffe2:update_export_schema -- --prefix /data/users/$USER/fbsource/fbcode/caffe2/
Differential Revision: D52971020
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118424
Approved by: https://github.com/angelayi
Fixes #ISSUE_NUMBER
We are trying to adapt `SparsePrivateUse1` in our code. However, I found that `sparse_stup` has not been exposed yet, which makes it impossible for me to implement stup and register. I hope that the header files in this directory can be exposed. @albanD
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118274
Approved by: https://github.com/ezyang
Fix https://github.com/pytorch/pytorch/issues/97352.
This PR changes the way the linking to intel MKL is done and updating MKL on Windows to mkl-2021.4.0 .
There are for both conda and pip packages MKL version with which you can link dynamically. mkl-devel contains the static versions of the dlls and MKL contains the needed dlls for the runtime. MKL dlls and static libs starting with 2021.4.0 have the version in their names( for MKL 2023 we have mkl_core.2.dll and for 2021.4.0 we have mkl_core.1.dll) so its possible to have multiple versions installed and it will work properly.
For the wheel build, I added dependency for whell MKL and on conda a dependecy for the conda MKL and on libtorch I copied the MKL binaries in libtorch.
In order to test this PR I have to use custom builder https://github.com/pytorch/builder/pull/1467
Pull Request resolved: https://github.com/pytorch/pytorch/pull/102604
Approved by: https://github.com/IvanYashchuk, https://github.com/malfet
# Motivation
As mentioned in [[RFC] Intel GPU Runtime Upstreaming](https://github.com/pytorch/pytorch/issues/114842), The first runtime component we would like to upstream is `Device` which contains the device management functions of Intel GPU's runtime. To facilitate the code review, we split the code changes into 4 PRs. This is one of the 4 PRs and covers the changes under `c10`.
# Design
Intel GPU device is a wrapper of sycl device on which kernels can be executed. In our design, we will maintain a sycl device pool containing all the GPU devices of the current machine, and manage the status of the device pool by PyTorch. The thread local safe is considered in this design. The corresponding C++ files related to `Device` will be placed in c10/xpu folder. And we provide the c10 device runtime APIs, like
- `c10::xpu::device_count`
- `c10::xpu::set_device`
- ...
# Additional Context
In our plan, 4 PRs should be submitted to PyTorch for `Device`:
1. for c10
2. for aten
3. for python frontend
4. for lazy initialization shared with CUDA
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116019
Approved by: https://github.com/gujinghui, https://github.com/jgong5, https://github.com/EikanWang, https://github.com/malfet
# Motivation
As mentioned in [[RFC] Intel GPU Runtime Upstreaming](https://github.com/pytorch/pytorch/issues/114842), The first runtime component we would like to upstream is `Device` which contains the device management functions of Intel GPU's runtime. To facilitate the code review, we split the code changes into 4 PRs. This is one of the 4 PRs and covers the changes under `c10`.
# Design
Intel GPU device is a wrapper of sycl device on which kernels can be executed. In our design, we will maintain a sycl device pool containing all the GPU devices of the current machine, and manage the status of the device pool by PyTorch. The thread local safe is considered in this design. The corresponding C++ files related to `Device` will be placed in c10/xpu folder. And we provide the c10 device runtime APIs, like
- `c10::xpu::device_count`
- `c10::xpu::set_device`
- ...
# Additional Context
In our plan, 4 PRs should be submitted to PyTorch for `Device`:
1. for c10
2. for aten
3. for python frontend
4. for lazy initialization shared with CUDA
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116019
Approved by: https://github.com/gujinghui, https://github.com/jgong5, https://github.com/EikanWang, https://github.com/malfet
Related to #103973#110532#108404#94891
**Context:**
As commented in 6ae0554d11/cmake/Dependencies.cmake (L1198)
Kernel asserts are enabled by default for CUDA and disabled for ROCm.
However it is somewhat broken, and Kernel assert was still enabled for ROCm.
Disabling kernel assert is also needed for users who do not have PCIe atomics support. These community users have verified that disabling the kernel assert in PyTorch/ROCm platform fixed their pytorch workflow, like torch.sum script, stable-diffusion. (see the related issues)
**Changes:**
This pull request serves the following purposes:
* Refactor and clean up the logic, make it simpler for ROCm to enable and disable Kernel Asserts
* Fix the bug that Kernel Asserts for ROCm was not disabled by default.
Specifically,
- Renamed `TORCH_DISABLE_GPU_ASSERTS` to `C10_USE_ROCM_KERNEL_ASSERT` for the following reasons:
(1) This variable only applies to ROCm.
(2) The new name is more align with #define CUDA_KERNEL_ASSERT function.
(3) With USE_ in front of the name, we can easily control it with environment variable to turn on and off this feature during build (e.g. `USE_ROCM_KERNEL_ASSERT=1 python setup.py develop` will enable kernel assert for ROCm build).
- Get rid of the `ROCM_FORCE_ENABLE_GPU_ASSERTS' to simplify the logic and make it easier to understand and maintain
- Added `#cmakedefine` to carry over the CMake variable to C++
**Tests:**
(1) build with default mode and verify that USE_ROCM_KERNEL_ASSERT is OFF(0), and kernel assert is disabled:
```
python setup.py develop
```
Verify CMakeCache.txt has correct value.
```
/xxxx/pytorch/build$ grep USE_ROCM_KERNEL_ASSERT CMakeCache.txt
USE_ROCM_KERNEL_ASSERT:BOOL=0
```
Tested the following code in ROCm build and CUDA build, and expected the return code differently.
```
subprocess.call([sys.executable, '-c', "import torch;torch._assert_async(torch.tensor(0,device='cuda'));torch.cuda.synchronize()"])
```
This piece of code is adapted from below unit test to get around the limitation that this unit test now was skipped for ROCm. (We will check to enable this unit test in the future)
```
python test/test_cuda_expandable_segments.py -k test_fixed_cuda_assert_async
```
Ran the following script, expecting r ==0 since the CUDA_KERNEL_ASSERT is defined as nothing:
```
>> import sys
>>> import subprocess
>>> r=subprocess.call([sys.executable, '-c', "import torch;torch._assert_async(torch.tensor(0,device='cuda'));torch.cuda.synchronize()"])
>>> r
0
```
(2) Enable the kernel assert by building with USE_ROCM_KERNEL_ASSERT=1, or USE_ROCM_KERNEL_ASSERT=ON
```
USE_ROCM_KERNEL_ASSERT=1 python setup.py develop
```
Verify `USE_ROCM_KERNEL_ASSERT` is `1`
```
/xxxx/pytorch/build$ grep USE_ROCM_KERNEL_ASSERT CMakeCache.txt
USE_ROCM_KERNEL_ASSERT:BOOL=1
```
Run the assert test, and expected return code not equal to 0.
```
>> import sys
>>> import subprocess
>>> r=subprocess.call([sys.executable, '-c', "import torch;torch._assert_async(torch.tensor(0,device='cuda'));torch.cuda.synchronize()"])
>>>/xxxx/pytorch/aten/src/ATen/native/hip/TensorCompare.hip:108: _assert_async_cuda_kernel: Device-side assertion `input[0] != 0' failed.
:0:rocdevice.cpp :2690: 2435301199202 us: [pid:206019 tid:0x7f6cf0a77700] Callback: Queue 0x7f64e8400000 aborting with error : HSA_STATUS_ERROR_EXCEPTION: An HSAIL operation resulted in a hardware exception. code: 0x1016
>>> r
-6
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114660
Approved by: https://github.com/jeffdaily, https://github.com/malfet, https://github.com/jithunnair-amd
Fixes#113940. This vendors the relevant parts of [`packaging==23.2.0`]() to have access to `Version` and `InvalidVersion` without taking a runtime dependency on `setuptools` or `packaging`.
I didn't find any vendoring policy so I put it under `torch._vendor.packaging`. While I have only vendored the files we need, I have not touched or trimmed the files otherwise.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114108
Approved by: https://github.com/malfet, https://github.com/albanD
Building with `USE_CUSTOM_DEBINFO=torch/csrc/Module.cpp python setup.py develop` for example will provide debug info only for this file.
This allows to enable debug symbols very fast from a non-debug build by doing a clean then develop (as long as you have ccache) and avoid very large binaries that take a very long time to load in gdb.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111748
Approved by: https://github.com/drisspg, https://github.com/ezyang, https://github.com/malfet
Removes the existing integration code & build of nvfuser in TorchScript.
Note that I intentionally left the part where we wipe out `third_party/nvfuser` repo. I'll do that in a separate PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111093
Approved by: https://github.com/albanD
Summary:
This PR adds a limited C shim layer for libtorch. The ultimate goal is to ban any direct reference to aten/c10 data structures or functions, to avoid ABI breakage by providing stable C interfaces.
To make the review and landing easier, we broke the changes into several steps. In this PR (a combination of https://github.com/pytorch/pytorch/pull/109022 and https://github.com/pytorch/pytorch/pull/109351), we add C interfaces for certain libtorch functions and modify the wrapper codegen to generate calls to those interfaces. There are a few other items to be addressed in future PRs:
* The AOTInductor runtime interface still takes lists of aten tensors as input and output
* The interaction with ProxyExecutor (general fallback support) needs to move away from aten tensor
* Remove all references to aten/c10 headers in the AOTInductor-generated code
Differential Revision: D49302669
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109391
Approved by: https://github.com/chenyang78
# Motivate
Without this PR, if we would like to include the header file like ```#include <ATen/native/ForeachUtils.h>``` in our C++ extension, it will raise a Error ```/home/xxx/torch/include/ATen/native/ForeachUtils.h:7:10: fatal error: 'ATen/native/utils/ParamsHash.h' file not found```. We should fix it.
# Solution
Add the ATen/native/utils header file in the build.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109013
Approved by: https://github.com/ezyang
Summary: Move AOTInductor runtime header files into its own subdirectory, to separate them from to-be-added libtorch C interface.
Reviewed By: frank-wei
Differential Revision: D48905038
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108564
Approved by: https://github.com/frank-wei
The dependency was added twice before in CUDA and ROCm binaries, one as an installation dependency from builder and the later as an extra dependency for dynamo, for example:
```
Requires-Python: >=3.8.0
Description-Content-Type: text/markdown
License-File: LICENSE
License-File: NOTICE
Requires-Dist: filelock
Requires-Dist: typing-extensions
Requires-Dist: sympy
Requires-Dist: networkx
Requires-Dist: jinja2
Requires-Dist: fsspec
Requires-Dist: pytorch-triton (==2.1.0+e6216047b8)
Provides-Extra: dynamo
Requires-Dist: pytorch-triton (==2.1.0+e6216047b8) ; extra == 'dynamo'
Requires-Dist: jinja2 ; extra == 'dynamo'
Provides-Extra: opt-einsum
Requires-Dist: opt-einsum (>=3.3) ; extra == 'opt-einsum'
```
In the previous release, we needed to remove this part from `setup.py` to build release binaries https://github.com/pytorch/pytorch/pull/96010. With this, that step isn't needed anymore because the dependency will come from builder.
### Testing
Using the draft https://github.com/pytorch/pytorch/pull/108374 for testing and manually inspect the wheels artifact at https://github.com/pytorch/pytorch/actions/runs/6045878399 (don't want to go through all `ciflow/binaries` again)
* torch-2.1.0.dev20230901+cu121-cp39-cp39-linux_x86_64
```
Requires-Python: >=3.8.0
Description-Content-Type: text/markdown
Requires-Dist: filelock
Requires-Dist: typing-extensions
Requires-Dist: sympy
Requires-Dist: networkx
Requires-Dist: jinja2
Requires-Dist: fsspec
Requires-Dist: pytorch-triton (==2.1.0+e6216047b8) <-- This will be 2.1.0 on the release branch after https://github.com/pytorch/builder/pull/1515
Provides-Extra: dynamo
Requires-Dist: jinja2 ; extra == 'dynamo'
Provides-Extra: opt-einsum
Requires-Dist: opt-einsum (>=3.3) ; extra == 'opt-einsum'
```
* torch-2.1.0.dev20230901+cu121.with.pypi.cudnn-cp39-cp39-linux_x86_64
```
Requires-Python: >=3.8.0
Description-Content-Type: text/markdown
Requires-Dist: filelock
Requires-Dist: typing-extensions
Requires-Dist: sympy
Requires-Dist: networkx
Requires-Dist: jinja2
Requires-Dist: fsspec
Requires-Dist: pytorch-triton (==2.1.0+e6216047b8)
Requires-Dist: nvidia-cuda-nvrtc-cu12 (==12.1.105) ; platform_system == "Linux" and platform_machine == "x86_64"
Requires-Dist: nvidia-cuda-runtime-cu12 (==12.1.105) ; platform_system == "Linux" and platform_machine == "x86_64"
Requires-Dist: nvidia-cuda-cupti-cu12 (==12.1.105) ; platform_system == "Linux" and platform_machine == "x86_64"
Requires-Dist: nvidia-cudnn-cu12 (==8.9.2.26) ; platform_system == "Linux" and platform_machine == "x86_64"
Requires-Dist: nvidia-cublas-cu12 (==12.1.3.1) ; platform_system == "Linux" and platform_machine == "x86_64"
Requires-Dist: nvidia-cufft-cu12 (==11.0.2.54) ; platform_system == "Linux" and platform_machine == "x86_64"
Requires-Dist: nvidia-curand-cu12 (==10.3.2.106) ; platform_system == "Linux" and platform_machine == "x86_64"
Requires-Dist: nvidia-cusolver-cu12 (==11.4.5.107) ; platform_system == "Linux" and platform_machine == "x86_64"
Requires-Dist: nvidia-cusparse-cu12 (==12.1.0.106) ; platform_system == "Linux" and platform_machine == "x86_64"
Requires-Dist: nvidia-nccl-cu12 (==2.18.1) ; platform_system == "Linux" and platform_machine == "x86_64"
Requires-Dist: nvidia-nvtx-cu12 (==12.1.105) ; platform_system == "Linux" and platform_machine == "x86_64"
Requires-Dist: triton (==2.1.0) ; platform_system == "Linux" and platform_machine == "x86_64" <--This is 2.1.0 because it already has https://github.com/pytorch/pytorch/pull/108423, but the package doesn't exist yet atm
Provides-Extra: dynamo
Requires-Dist: jinja2 ; extra == 'dynamo'
Provides-Extra: opt-einsum
Requires-Dist: opt-einsum (>=3.3) ; extra == 'opt-einsum'
```
* torch-2.1.0.dev20230901+rocm5.6-cp38-cp38-linux_x86_64
```
Requires-Python: >=3.8.0
Description-Content-Type: text/markdown
Requires-Dist: filelock
Requires-Dist: typing-extensions
Requires-Dist: sympy
Requires-Dist: networkx
Requires-Dist: jinja2
Requires-Dist: fsspec
Requires-Dist: pytorch-triton-rocm (==2.1.0+34f8189eae) <-- This will be 2.1.0 on the release branch after https://github.com/pytorch/builder/pull/1515
Provides-Extra: dynamo
Requires-Dist: jinja2 ; extra == 'dynamo'
Provides-Extra: opt-einsum
Requires-Dist: opt-einsum (>=3.3) ; extra == 'opt-einsum'
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108424
Approved by: https://github.com/atalman
PR #90689 replaces NVTX with NVTX3. However, the torch::nvtoolsext is created only when the third party NVTX is used.
This is clear a logical error. We now move the creation code out of the branch to cover all cases. This should fix the issues reported in the comments of #90689.
It would be better to move configurations of the failed FRL jobs to CI tests so that we can find such issues early before merging.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/97582
Approved by: https://github.com/peterbell10
Summary:
This stack of PR's integrates cuSPARSELt into PyTorch.
This PR adds support for cuSPARSELt into the build process.
It adds in a new flag, USE_CUSPARSELT that defaults to false.
When USE_CUSPASRELT=1 is specified, the user can also specify
CUSPASRELT_ROOT, which defines the path to the library.
Compiling pytorch with cusparselt support can be done as follows:
``
USE_CUSPARSELT=1
CUSPARSELT_ROOT=/path/to/cusparselt
python setup.py develop
```
Test Plan:
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103700
Approved by: https://github.com/albanD
This change adds the TensorPipe header files to `torch_package_data` if `USE_DISTRIBUTED` is set to `ON` in the CMake cache. The TensorPipe library and CMake config is already available in the Torch wheel, but the headers are not. This resolves issue where out-of-tree backends could not implement TensorPipe converters, because the definition of the `tensorpipe::Message` struct is defined in the TensorPipe headers.
Fixes#105224.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105521
Approved by: https://github.com/albanD
Summary:
Original PR at https://github.com/pytorch/pytorch/pull/104977. Landing from fbcode instead.
Add an aot_inductor backend (Export+AOTInductor) in the benchmarking harness. Note it is not a dynamo backend.
Moved files from torch/_inductor/aot_inductor_include to torch/csrc/inductor as a more standard way for exposing headers
Created a caching function in benchmarks/dynamo/common.py for compiling, loading and caching the .so file, as a proxy for a pure C++ deployment, but easier for benchmarking.
Differential Revision: D47452591
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105221
Approved by: https://github.com/jansel
This PR combines the C++ code for the AOTInductor's model and interface with Bin Bao's changes to AOTInductor codegen.
It adds a number of AOTInductor C interfaces that can be used by an inference runtime. Under the hood of the interfaces, the model code generated by the AOTInductor's codegen is wrapped into a class, AOTInductorModel, which manages tensors and run the model inference.
On top of AOTInductorModel, we provide one more abstract layer, AOTInductorModelContainer, which allows the user to have multiple inference runs concurrently for the same model.
This PR also adjusts the compilation options for AOT codegen, particularly some fbcode-related changes such as libs to be linked and header-file search paths.
Note that this is the very first version of the AOTInductor model and interface, so many features (e.g. dynamic shape) are incomplete. We will support those missing features in in future PRs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104202
Approved by: https://github.com/desertfire
Now, when you do an inplace mutation and the view is naughty, you get this message:
```
RuntimeError: A view was created in no_grad mode and is being modified inplace with grad mode enabled. Given that this use case is ambiguous and error-prone, it is forbidden. You can clarify your code by moving both the view and the inplace either both inside the no_grad block (if you don't want the inplace to be tracked) or both outside (if you want the inplace to be tracked). To find out where this view was allocated, run your entire forward region under anomaly mode (torch.autograd.detect_anomaly(check_nan=False)).
```
When you run under anomaly mode, you get:
```
RuntimeError: A view was created in no_grad mode and is being modified inplace with grad mode enabled. Given that this use case is ambiguous and error-prone, it is forbidden. You can clarify your code by moving both the view and the inplace either both inside the no_grad block (if you don't want the inplace to be tracked) or both outside (if you want the inplace to be tracked). This view was allocated at:
File "/data/users/ezyang/c/pytorch/test/test_autograd.py", line 4299, in arglebargle
File "/data/users/ezyang/c/pytorch/test/test_autograd.py", line 4306, in test_anomaly_gives_view_stack
File "/home/ezyang/local/c/pytorch-env/lib/python3.10/unittest/case.py", line 549, in _callTestMethod
File "/home/ezyang/local/c/pytorch-env/lib/python3.10/unittest/case.py", line 591, in run
File "/data/users/ezyang/c/pytorch/torch/testing/_internal/common_utils.py", line 2266, in _run_with_retry
File "/data/users/ezyang/c/pytorch/torch/testing/_internal/common_utils.py", line 2337, in run
File "/home/ezyang/local/c/pytorch-env/lib/python3.10/unittest/case.py", line 650, in __call__
File "/home/ezyang/local/c/pytorch-env/lib/python3.10/unittest/suite.py", line 122, in run
File "/home/ezyang/local/c/pytorch-env/lib/python3.10/unittest/suite.py", line 84, in __call__
File "/home/ezyang/local/c/pytorch-env/lib/python3.10/unittest/suite.py", line 122, in run
File "/home/ezyang/local/c/pytorch-env/lib/python3.10/unittest/suite.py", line 84, in __call__
File "/home/ezyang/local/c/pytorch-env/lib/python3.10/unittest/runner.py", line 184, in run
File "/home/ezyang/local/c/pytorch-env/lib/python3.10/unittest/main.py", line 271, in runTests
File "/home/ezyang/local/c/pytorch-env/lib/python3.10/unittest/main.py", line 101, in __init__
File "/data/users/ezyang/c/pytorch/torch/testing/_internal/common_utils.py", line 894, in run_tests
File "/data/users/ezyang/c/pytorch/test/test_autograd.py", line 11209, in <module>
```
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103185
Approved by: https://github.com/zdevito
Updating the pin to the same hash as https://github.com/pytorch/pytorch/pull/100922
On the XLA side, build have switch from CMake to bazel, which requires number of changes on PyTorch side:
- Copy installed headers back to the `torch/` folder before starting the build
- Install `torch/csrc/lazy/python/python_utils.h`
- Define `LD_LIBRARY_PATH`
TODO:
- Enable bazel caching
- Pass CXX11_ABI flag to `//test/cpp:all` to reuse build artifacts from `//:_XLAC.so`
<!--
copilot:poem
-->
### <samp>🤖 Generated by Copilot at cd4768b</samp>
> _To fix the XLA tests that were failing_
> _We updated the submodule and scaling_
> _We added `python_util.h`_
> _And copied `torch` as well_
> _And set `LD_LIBRARY_PATH` for linking_
Pull Request resolved: https://github.com/pytorch/pytorch/pull/102446
Approved by: https://github.com/huydhn
Failing mechanism on #95424 :
In dynamo mode, when passing numpy.int_ to 'shape' like param (Sequence[Union[int, symint]]) is wrapped as list with FakeTensor. However, in python_arg_parser, parser expect int in symint_list but got FakeTensor.
Following #85759, this PR allow tensor element in symint_list when in dynamo mode
This PR also fix below test with similar failing mechanism
pytest ./generated/test_huggingface_diffusers.py -k test_016
pytest ./generated/test_ustcml_RecStudio.py -k test_036
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/97508
Approved by: https://github.com/yanboliang
implementation of DataPtr context for copy-on-write tensors
Summary:
Copy-on-write storage
=====================
This library adds support for copy-on-write storage, i.e. lazy copies,
to tensors. The design maintains the PyTorch invariant that tensors
alias if and only if they share a storage. Thus, tensors that are lazy
copies of one another will have distinct storages that share a data
allocation.
Thread-safety
-------------
The correctness of this design hinges on the pre-existing PyTorch user
requirement (and general default programming assumption) that users
are responsible for guaranteeing that writes do not take places
concurrently with reads and other writes.
Lazily copied tensors add a complication to this programming model
because users are not required to know if lazy copies exist and are
not required to serialize writes across lazy copies. For example: two
tensors with distinct storages that share a copy-on-write data context
may be given to different threads that may do whatever they wish to
them, and the runtime is required to guarantee its safety.
It turns out that this is not that difficult to protect because, due
to the copy-on-write requirement, we just need to materialize a tensor
upon writing. This could be done entirely without synchronization if
we materialized each copy, however, we have a common-sense
optimization to elide the copy for the last remaining reference. This
requires waiting for any pending copies.
### Thread-safety detailed design
There are two operations that affect the copy-on-write details of a
tensor:
1) lazy-clone (e.g. an explicit call or a hidden implementation detail
added through an operator like reshape)
2) materialization (i.e. any write to the tensor)
The key insight that we exploit is that lazy-clone is logically a read
operation and materialization is logically a write operation. This
means that, for a given set of tensors that share a storage, if
materialization is taking place, no other read operation, including
lazy-clone, can be concurrent with it.
However, this insight only applies within a set of tensors that share
a storage. We also have to be concerned with tensors with different
storages that share a copy-on-write context. In this world,
materialization can race with lazy-clone or even other
materializations. _However_, in order for this to be the case, there
must be _at least_ two references to the context. This means that the
context _can not_ vanish out from under you if you are performing a
lazy-clone, and hence, it only requires an atomic refcount bump.
The most complicated case is that all lazy-copies are concurrently
materializing. In this case, because a write is occurring, there are
no in-flight lazy-copies taking place. We must simply ensure that all
lazy-copies are able to materialize (read the data) concurrently. If
we didn't have the aforementioned optimization where the last copy
steals the data, we could get away with no locking whatsoever: each
makes a copy and decrements the refcount. However, because of the
optimization, we require the loser of the materializing race wait for
the pending copies to finish, and then steal the data without copying
it.
We implement this by taking a shared lock when copying the data and
taking an exclusive lock when stealing the data. The exclusive lock
acquisition ensures that all pending shared locks are finished before
we steal the data.
Test Plan: 100% code coverage.
---
Stack created with [Sapling](https://sapling-scm.com). Best reviewed with [ReviewStack](https://reviewstack.dev/pytorch/pytorch/pull/100818).
* #100821
* #100820
* #100819
* __->__ #100818
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100818
Approved by: https://github.com/ezyang
Follow up for https://github.com/pytorch/pytorch/pull/96532. Including this in setup.py so the package will be available for CI.
Fsspec package size:
```
du -h /fsx/users/irisz/conda/envs/pytorch/lib/python3.9/site-packages/fsspec-2023.3.0-py3.9.egg
264K /fsx/users/irisz/conda/envs/pytorch/lib/python3.9/site-packages/fsspec-2023.3.0-py3.9.egg/fsspec/__pycache__
58K /fsx/users/irisz/conda/envs/pytorch/lib/python3.9/site-packages/fsspec-2023.3.0-py3.9.egg/fsspec/implementations/__pycache__
377K /fsx/users/irisz/conda/envs/pytorch/lib/python3.9/site-packages/fsspec-2023.3.0-py3.9.egg/fsspec/implementations
1017K /fsx/users/irisz/conda/envs/pytorch/lib/python3.9/site-packages/fsspec-2023.3.0-py3.9.egg/fsspec
96K /fsx/users/irisz/conda/envs/pytorch/lib/python3.9/site-packages/fsspec-2023.3.0-py3.9.egg/EGG-INFO
1.2M /fsx/users/irisz/conda/envs/pytorch/lib/python3.9/site-packages/fsspec-2023.3.0-py3.9.egg
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99768
Approved by: https://github.com/kit1980
Add a PrivateUse1 folder to contain all the feature adaptations for PrivateUse1 under Aten,For example GetGeneratorPrivate which is used for the three-party backend to register his own Generator implementation.This makes it easier for us to centrally manage these features, and it will increase the convenience of adaptation for different back-end manufacturers. For more info: https://github.com/pytorch/pytorch/issues/98073
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98127
Approved by: https://github.com/bdhirsh
1. Packaging nvfuser header for support c++ build against nvfuser;
2. Moving `#include <torch/csrc/jit/codegen/fuser/interface.h>` from `torch/csrc/jit/runtime/register_ops_utils.h` to `torch/csrc/jit/runtime/register_prim_ops_fulljit.cpp` to avoid missing header, since pytorch doesn't package `interface.h`;
3. Patching DynamicLibrary load of nvfuser to leak the handle, this avoids double de-allocation of `libnvfuser_codegen.so`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/97404
Approved by: https://github.com/davidberard98
Summary:
Extra C binding module for flatbuffer was introduced because
not all dependencies of Pytorch want (or can) bundle in flatbuffer.
However, flatbuffer is in by default now so this separate binding is not longer needed.
Test Plan: existing unit tests
Differential Revision: D44352583
Pull Request resolved: https://github.com/pytorch/pytorch/pull/97476
Approved by: https://github.com/dbort
This PR do two things:
1. It moves some Windows warning suppression from various CMake files into the main CMakeList.txt, following the conventions of gcc and clang.
2. It fixes some Windows warnings in the source code. Most importantly, it fixes lots of dll warnings by adjusting C10_API to TORCH_API or TORCH_PYTHON_API. There are still some dll warnings because some TORCH_API functions are actually built as part of libtorch_python
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94927
Approved by: https://github.com/malfet
Add triton support for ROCm builds of PyTorch.
* Enables inductor and dynamo when rocm is detected
* Adds support for pytorch-triton-mlir backend
* Adds check_rocm support for verify_dynamo.py
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94660
Approved by: https://github.com/malfet
Changes:
1. `typing_extensions -> typing-extentions` in dependency. Use dash rather than underline to fit the [PEP 503: Normalized Names](https://peps.python.org/pep-0503/#normalized-names) convention.
```python
import re
def normalize(name):
return re.sub(r"[-_.]+", "-", name).lower()
```
2. Import `Literal`, `Protocal`, and `Final` from standard library as of Python 3.8+
3. Replace `Union[Literal[XXX], Literal[YYY]]` to `Literal[XXX, YYY]`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94490
Approved by: https://github.com/ezyang, https://github.com/albanD
This PR is the first step towards refactors the build for nvfuser in order to have the coegen being a standalone library.
Contents inside this PR:
1. nvfuser code base has been moved to `./nvfuser`, from `./torch/csrc/jit/codegen/cuda/`, except for registration code for integration (interface.h/interface.cpp)
2. splits the build system so nvfuser is generating its own `.so` files. Currently there are:
- `libnvfuser_codegen.so`, which contains the integration, codegen and runtime system of nvfuser
- `nvfuser.so`, which is nvfuser's python API via pybind. Python frontend is now exposed via `nvfuser._C.XXX` instead of `torch._C._nvfuser`
3. nvfuser cpp tests is currently being compiled into `nvfuser_tests`
4. cmake is refactored so that:
- nvfuser now has its own `CMakeLists.txt`, which is under `torch/csrc/jit/codegen/cuda/`.
- nvfuser backend code is not compiled inside `libtorch_cuda_xxx` any more
- nvfuser is added as a subdirectory under `./CMakeLists.txt` at the very end after torch is built.
- since nvfuser has dependency on torch, the registration of nvfuser at runtime is done via dlopen (`at::DynamicLibrary`). This avoids circular dependency in cmake, which will be a nightmare to handle. For details, look at `torch/csrc/jit/codegen/cuda/interface.cpp::LoadingNvfuserLibrary`
Future work that's scoped in following PR:
- Currently since nvfuser codegen has dependency on torch, we need to refactor that out so we can move nvfuser into a submodule and not rely on dlopen to load the library. @malfet
- Since we moved nvfuser into a cmake build, we effectively disabled bazel build for nvfuser. This could impact internal workload at Meta, so we need to put support back. cc'ing @vors
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89621
Approved by: https://github.com/davidberard98
setup.py clean now won't remove paths matching .gitignore patterns across the entire OS. Instead, now only files from the repository will be removed.
`/build_*` had to be removed from .gitignore because with the wildcard fixed, build_variables.bzl file was deleted on cleanup.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91503
Approved by: https://github.com/soumith