Summary:
When 0-sized dimension support is added, we expect an empty sparse tensor to be a 1-dimensional tensor of size `[0]`, with `sparseDims == 1` and `denseDims == 0`. Also, we expect the following invariants to be preserved at all times:
```
_sparseDims + _denseDims = len(shape)
_indices.shape: dimensionality: 2, shape: (_sparseDims, nnz)
_values.shape: dimensionality: 1 + _denseDims. shape: (nnz, shape[_sparseDims:])
```
This PR fixes various places where the invariants are not strictly enforced when 0-sized dimension support is enabled.
Tested and `test_sparse.py` passes locally on both CPU and CUDA with the `USE_TH_SIZE_ZERO_DIM` flag.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9279
Differential Revision: D8936683
Pulled By: yf225
fbshipit-source-id: 12f5cd7f52233d3b26af6edc20b4cdee045bcb5e
Summary:
1. Let `ModuleTest` raise when they fail on non-contiguous inputs. Fix legacy modules.
2. Fix BN (both THNN and cuDNN) not working on non-contiguous inputs.
3. Fix CUDA EmbeddingBag not working on non-contiguous inputs. To prevent calling `.contiguous()` on in both `forward` and `backward`,
a. prefix all current `embedding_bag*` functions with `_`, indicating that they require input to be contiguous (there is a check in each function).
b. create `embedding_bag`, which makes input arguments `.contiguous()`, and calls `_embedding_bag`
3. Make many ATen `embedding*` functions to work on non-contiguous inputs so we don't need to call `input = input.contiguous()` in Python `nn.functional.embedding`.
4. Fix dense-sparse addition when the sparse input is not coalesced and indices or values tensor is not contiguous. This came up in the test cases of Embedding modules with `sparse=True`. Added tests.
5. Update `TensorUtils.cpp` to use `AT_*` macros.
Request:
review from cpuhrsch on the `Embedding*` changes.
review from ezyang on ATen sparse & BN changes.
Closes https://github.com/pytorch/pytorch/pull/9114
Differential Revision: D8717299
Pulled By: SsnL
fbshipit-source-id: 0acc6f1c9522b5b605361e75112c16bbe1e98527
Summary:
- There were missing error messages for AT_CHECK in SparseTensorImpl::set_indices_and_values
- We have to check that the backends of all our inputs line up,
since native does not do it for us.
- Some math operations were missing shape tests.
Fixes#9110
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Closes https://github.com/pytorch/pytorch/pull/9140
Differential Revision: D8724349
Pulled By: ezyang
fbshipit-source-id: 3c75104187aca97cbe92bb0ec24f6ded07b2c3d6
Summary:
- fixes log1p at #8853
- added log1p of sparse tensor in ATen
- make log1p of sparse tensor non-differentiable and raise error, because local derivate of log1p for zero element is 1 / (0 + 1) = 1 and make tensor dense
Closes https://github.com/pytorch/pytorch/pull/8969
Reviewed By: ezyang
Differential Revision: D8677491
fbshipit-source-id: 8363a613519de4bc75eda087ccd20a3eb2d18126
* Created TensorOptions
Storing the type in TensorOptions to solve the Variable problem
Created convenience creation functions for TensorOptions and added tests
Converted zeros to TensorOptions
Converted rand to TensorOptions
Fix codegen for TensorOptions and multiple arguments
Put TensorOptions convenience functions into torch namespace too
All factory functions except *_like support TensorOptions
Integrated with recent JIT changes
Support *_like functions
Fix in place modification
Some cleanups and fixes
Support sparse_coo_tensor
Fix bug in Type.cpp
Fix .empty calls in C++ API
Fix bug in Type.cpp
Trying to fix device placement
Make AutoGPU CPU compatible
Remove some auto_gpu.h uses
Fixing some headers
Fix some remaining CUDA/AutoGPU issues
Fix some AutoGPU uses
Fixes to dispatch_tensor_conversion
Reset version of new variables to zero
Implemented parsing device strings
Random fixes to tests
Self review cleanups
flake8
Undo changes to variable.{h,cpp} because they fail on gcc7.2
Add [cuda] tag to tensor_options_cuda.cpp
Move AutoGPU::set_index_from into .cpp file because Windows is stupid and sucks
Fix linker error in AutoGPU.cpp
Fix bad merge conflict in native_functions.yaml
Fixed caffe2/contrib/aten
Fix new window functions added to TensorFactories.cpp
* Removed torch::TensorOptions
Added code to generate wrapper functions for factory methods
Add implicit constructor from Backend to TensorOptions
Remove Var() from C++ API and use torch:: functions
Use torch:: functions more subtly in C++ API
Make AutoGPU::set_device more exception safe
Check status directly in DynamicCUDAHooksInterface
Rename AutoGPU to DeviceGuard
Removed set_requires_grad from python_variables.h and warn appropriately in Variable::set_requires_grad
remove python_default_init: self.type()
Add back original factory functions, but with deprecation warnings
Disable DeviceGuard for a couple functions in ATen
Remove print statement
Fix DeviceGuard construction from undefined tensor
Fixing CUDA device compiler issues
Moved as many methods as possible into header files
Dont generate python functions for deprecated factories
Remove merge conflict artefact
Fix tensor_options_cuda.cpp
Fix set_requires_grad not being checked
Fix tensor_new.h
TEMPORARILY put some methods in .cpp files to see if it solves issues on windows and mac
Fix bug in DeviceGuard.h
Missing includes
TEMPORARILY moving a few more methods into .cpp to see if it fixes windows
Fixing linker errors
* Fix up SummaryOps to use new factories
Undo device agnostic behavior of DeviceGuard
Use -1 instead of optional for default device index
Also move DeviceGuard methods into header
Fixes around device index after optional -> int32_t switch
Fix use of DeviceGuard in new_with_tensor_copy
Fix tensor_options.cpp
* Fix Type::copy(
* Remove test_non_float_params from ONNX tests
* Set requires_grad=False in ONNX tests that use ints
* Put layout/dtype/device on Tensor
* Post merge fixes
* Change behavior of DeviceGuard to match AutoGPU
* Fix C++ API integration tests
* Fix flip functions
* Port THS to ATen.
The basic structure of the patch:
- All kernels in aten/src/THS got rewritten as native
functions in aten/src/ATen/native/sparse
I took the liberty to rename some of the kernels,
opting for a longer, more transparent names than
things like 'spaddcmul'.
- Instead of holding fields for sparse tensor in the TH
C struct THSTensor, they are now held in a C++ class
SparseTensorImpl (this explains why I had to do this
all in one go; I can't have *two* reps for sparse
tensors!)
Along the way, we change a key internal representation
invariant: an "empty" sparse tensor has dimI == 1 and
dimV == 0 (this is different from dimI == 0 and dimV == 0
we had before); this ensures that we maintain the invariant
that dim == dimI + dimV. "Scalar" sparse tensors are
made illegal, because there really is no way to properly
express them in COO format.
- Because we haven't ported THCS or any of the traditional
dense TH implementations, there is a new set of adapter
functions in native/LegacyBridge.cpp exclusively devoted
to deciding whether or not to go to the new native implementation
or back to the legacy TH binding (prefixed with th_).
The intent is that when everything gets ported, we can
delete this file.
- I've kept the stubs for all the THS functions, but they now all
error if you try to actually call them. Eventually, we should
replace these with calls to ATen so that everything keeps
working.
- I gobbled up SparseMM (SparseMM.cpp is no more). It was tasty.
There are some miscellaneous improvements which were needed for other
changes in this patch:
- There is now AT_FORALL_SCALAR_TYPES_EXCEPT_HALF, which does what
it says on the tin.
- axpy templated function moved to TH/BlasUtils.h, there's a new macro
which lets you easily forward to all of the TH functions. We also expose
THBlas_copy. I'm not terribly pleased with these functions but
they seem to serve a purpose they need.
- New method on Tensor to get TensorImpl*, unsafeGetTensorImpl
- accessor() is now this-const, since const-correctness on Tensor is a lie
- New toSparse()/toDense() methods on Type; now you can call these
directly without having to manually apply at::toSparse/toDense
on the Backend and then running toBackend yourself.
Changes to the kernels:
- Previously, the whole body of all kernels was compiled for
every supported scalar type. In our new implementation,
the scalar dispatch has been pushed into the smallest extent
which (1) is not in a type loop and (2) requires statically
knowing the scalar type. These sites all use
AT_DISPATCH_ALL_TYPES. I tried to use lambdas as much as
possible, but sometimes it was not possible when a OpenMP
pragma was used.
- Anywhere we tested if the nDimension of a tensor was zero,
we replaced with a test that numel is zero. Because, as we
known, nDimension of zero-size tensors in TH is zero, and
that's wrong wrong wrong (and not done this way in ATen).
Some subtleties:
- Places where previously fastget1d was used, I now use a
TensorAccessor. However, you have to be careful about grabbing
the accessor, because sometimes you will be accessor'ing
indices/values and they are empty, which means they will
be *1D* ("oh, aren't indices always 2D?" Nope. Nyet.)
So, essentially, it is only safe to grab an accessor *after*
you have checked that nnz != 0. All of these shenanigans
will go away when we properly support zero-size dimensions.
A few places, we test for this case just by wrapping the loop
in a conditional on nnz. Some other places this is not so easy,
so we instead short-circuit the function with a special case for
when nnz == 0 (usually, these implementations are degenerate).
- There is a very subtle but important difference between
_sparse_get_impl(self)->indices() and self._indices();
the latter may return a view! This is because nnz is
not guaranteed to match the dimensions of indices/values;
you can "truncate" a sparse tensor by setting the nnz.
Actually, I think this is not a good idea and we should
enforce a stronger invariant, but for this patch I slavishly
adhere to the old ways, and as such I have to be very
careful if I want to resize something, I had better use
the former and not the latter.
- I had to reimplement broadcasting by hand (thus the s_
and non-s_ functions in the sparse native files). There
is a very important distinction between foo_out and foo_,
so it is important that the LegacyBridge function always
call to the lower layer, and not try to avoid boilerplate
by calling to another LegacyBridge function first.
I did NOT put broadcasting in LegacyBridge (even though,
ultimately, that's where it must live), because the th_
functions which are invoked from LegacyBridge handle
broadcasting themselves, and I don't want to broadcast
twice.
- Sparse function MUST explicitly specify the Type they
dispatch from, otherwise Variable wrapping/unwrapping will
not work correctly. If you use _get_sparse_impl, that is
sufficient to levy this requirement.
- The "has native" tests in LegacyBridge.cpp are not 100%,
because some of the functions are mixed dense-sparse functions,
and so you can't just say, "Oh, if it's sparse and CPU, call
the native sparse implementation." This is handled on a
case by case basis. There is some especially complex
logic for add(), which has dense-dense, sparse-sparse
and dense-sparse implementations.
- I added some uses of SparseTensorRef in native_functions.yaml,
but you will notice that these are all on native_* functions,
and not the actual, top-level functions. So the SparseTensorRef
is purely documentary (helping you not call the wrong overload)
but there is no magic; we do the wrapping ourselves the hard
way. (This is in constrast to the TH binding code which is magical.)
Except for _sparse_mask; _sparse_mask is magical.
- There is a raw_copy_sparse_ method, which is really my way of
getting around the fact that copy_ has never been implemented
for sparse tensors (even before this patch), but there IS a
super secret, internal way of doing these copies that the THS
code used, and which I needed to get my hands on when I did this
port. We should refactor so that either (a) copy_ does support
sparse-sparse copy natively, or (b) we do this other ways.
- Irritatingly, I must explicitly resize_as_ before copy_ into
a tensor. This was not the case with THTensor_(copy) but I don't
have any direct binding that doesn't have this requirement.
- For some reason, the sparse tensor constructor accepts a scalar
tensor for the values tensor. This is kind of weird because
you always need an nnz-dimension. However, the old code supported
this and just expanded it into a 1D size 0 tensor; so we need some
explicit code to do this.
There are maybe a bit more AT_ASSERTs in some of the kernels
than is wise. I added them all when I was debugging and was
loathe to remove them.
Some last mile fixes after this commit went into PR
- Move expand outside of dispatch so autograd works (it used to be inside and then we lost all of the recorded broadcasts).
- Hack to duplicate the derivatives for our now two definitions TH and native. Mercifully the derivatives are short.
- Apparently, TH has a special case to make foo_ functions method only, and if you don't do this the Python arg parsing is wrong. We carefully work around this in the native bindings
- Apply DCE to a test_jit case, fixes wobbling due to DCE trick in tracing
- Update test_function's output
- Some last mile fixes for dispatch confusion in sparse_coo_tensor functions.
- New simplified regression test based on failures I saw in ONNX
- Increase tolerance on super resolution test
- More robust dynamic_type normalization, fixes ONNX bug.
The dynamic_type situation is very delicate; probably need
to stop having both Scalar and real.
- Make new_with_tensor_sparse more CUDA safe
- Note about CUDA-safety in SparseTensorImpl
- Rename dimI/dimV to sparseDims/denseDims.
- Make localScalar on SparseTensorImpl work.
- Make numel uniformly supported on all types, not just dense
types
- Add tests for is_nonzero() method (which exercises localScalar)
- Disable constant JIT autogenerated tests, which are fragile and broken
by this change, but being fixed in a parallel track.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Fix scalar check for sparse tensors.
As discovered in #8152
If `t` is a scalar sparse tensor, `t._indices` used to return a sparse
empty tensor because the scalar check was incorrect. This PR modifies
the scalar check to return a dense tensor instead of a sparse tensor.
i.e.
```
tensor = torch.sparse_coo_tensor([], [], torch.Size([]), device=device)
out = tensor._indices() # was a sparse tensor, now is dense.
```
* Fix typos
* Add memory leak check in CUDA tests
* Tracking multi-GPU too
* fix run_test.py not running __name__ == '__main__' content; add test for make_cuda_memory_checked_test
* add a comment
* skip if cuda
* 1. Change the wrapper to a method in common.py:TestCase
2. Refactor common constants/method that initialize CUDA context into common_cuda.py
3. Update some test files to use TEST_CUDA and TEST_MULTIGPU
* Fix MaxUnpool3d forward memory leak
* Fix MultiLabelMarginCriterion forward memory leak
* Fix MultiMarginLoss backward memory leak
* default doCUDAMemoryCheck to False
* make the wrapper skip-able
* use TEST_MULTIGPU
* add align_corners=True/False tests for Upsample; fix TEST_CUDNN
* finalize interface
* VolumetricMaxUnpooling_updateOutput
* fix test_nccl
* rename THC caching allocator methods to be clearer
* make the wrapped function a method
* address comments; revert changes to aten/src/THC/THCCachingAllocator.cpp
* fix renamed var
* Fix various sparse transpose issues; remove dead code from Declarations.yaml.
1) Fixes some checks in t_, transpose_ that don't allow transposing empty sparse tensors.
2) Remove out= variants from docs since they don't exist (and haven't since at least v0.3.1).
3) Unify implementations of t_, transpose_, t, transpose.
4) Move dead checking code from Declarations.cwrap to actual implementations.
5) Fix test which never tested transpose_.
* Add test for error with t, t_.
* Address review comments.
* Fix jit tests.
* Fix test_jit.
Right now, if we add a zero-filled sparse tensor with another sparse
tensor, both tensors must have the same "density" (dimI, dimV) and size
(tensor.size()) for them to be added successfully. This relaxes that
constraint so that if both tensors have the same tensor.size() and at
least one is zero-filled, they can be added successfully.
Before:
```
i = torch.LongTensor([[0, 1, 1], [2, 0, 2]])
v = torch.FloatTensor([3, 4, 5]).unsqueeze(1)
sparse_mat = torch.sparse.FloatTensor(i, v, torch.Size([2,3,1]))
zeros = torch.zeros(sparse_mat.size(), layout=torch.sparse_coo)
sparse_mat + zeros
RuntimeError: cadd operands have
incompatible sizes or dimension types
at
../src/THS/generic/THSTensorMath.c:126
```
After: no error.
* Fix torch.tensor(...) device-type calculation when used with numpy and type inference.
* Fix tensor device type inference as well.
* Better variable type inference: infer cuda-ness only if device is not specified.
Fixes#5748.
Added an unsafe version so embedding isn't slowed.
* Create safe and unsafe versions of sparse_coo_tensor
* rename sparse_coo_tensor_unsafe to _sparse_coo_tensor_unsafe
* refactor
* make helper static inline
* add sparse size check test
* fix lint
* Separate cuda-ness from dtype.
There are no longer torch.cuda.int64, etc; only torch.int64 that correspond to at::ScalarType.
At the python arg parser level, the corresponding ATen type is selected from the combination of (ScalarType, Layout, Device).
There is also currently unused code in here for support ScalarType in native_functions; this will be used for specifying aggregate types
on reduction functions.
* Fix test_autograd.
* Add defaults to randint_like.
* Track is_cuda in py tensor types.
* Fix test_sparse.
* Fix multiprocessing.
* Fix rnn.
* Fix test_nn.
* Fix flake8.
* Introduce torch.layout and split layout from dtypes.
Tensors (and tensor types) now have a 'layout' attribute that returns either 'torch.strided' or 'torch.sparse_coo'.
Previously, dtypes were 1-to-1 with ATen types/PyTensorTypes; the impetus behind this decision was to make things easy in the common case
(i.e. specifying a type in a factory function). But this doesn't really follow for sparity, which isn't a common case.
It also doesn't properly represent the concept or a dtype, which in numpy are proper scalar types (i.e. roughly the type returned from indexing the
last dimension of an n-d array). But this should be the same whether or not the tensor is represented via strides, sparsity, etc.
This is accomplished by:
1) having the dtype of tensor return the (device-type, scalar-type) combination, i.e. torch.cuda.float32, so both
torch.cuda.FloatTensor and torch.cuda.sparse.FloatTensor have the same dtype
2) Adding a layout parameter to python functions, where the combination of (dtype, layout) maps to an ATen type that is used for dispatch.
* Formatting, make init throw python_error.
* Fix cuda not enabled error message.
* Fix test.
This is in preparation for splitting out sparsity (layout) from dtypes; it's complex to maintain these
and tensor.new(...) is a legacy API in any case.
* Add numpy.array-like type inference to torch.tensor.
* Temporary fix for int/double types.
* Treat python floats as the default (scalar) dtype.
* Also make 0-length sequences the default scalar type and add more tests.
* Add type inference to sparse_coo_tensor.
* Fix sparse test.
* Remove allow_variables.
* Check numpy platform bits.
* Address review comments.
* Make suggested changes to constraints.
* More checking windows builds.
* Fix test for windows.
* Add torch.sparse_coo_tensor factory.
Notes:
1) I didn't add Tensor.new_sparse_coo_tensor; it didn't seem particularly useful, but it's easy to add
2) This doesn't do the type inference, i.e. torch.sparse_coo_tensor(indices=LongTensor, values=IntTensor)
will return a sparse tensor corresponding to the default type rather than a sparse IntTensor. We can add
type inference later when we add it to other factories.
* Fix merge.
* Use type_conversion function from python_variable_methods.
Notes:
1) I didn't add Tensor.new_sparse_coo_tensor; it didn't seem particularly useful, but it's easy to add
2) This doesn't do the type inference, i.e. torch.sparse_coo_tensor(indices=LongTensor, values=IntTensor)
will return a sparse tensor corresponding to the default type rather than a sparse IntTensor. We can add
type inference later when we add it to other factories.
* Add torch.empty, torch.full and new_ size Tensor factory methods.
This adds torch.full, torch.empty equivalents of np.full, np.empty.
In addition, this adds size-based Tensor factory methods new_empty, new_ones, new_full, new_zeros,
which is meant to complete the separation of the legacy "new" method into data-based and size-based
functions.
This also fixes an issue in sparse zeros_like when the dtype didn't match the argument dtype.
* Get rid of unnecessary zero in sparse tensor zeros_like.
* Fix test if only 1 cuda device.
* Support dtypes in legacy new constructors.
* Add comment about why we don't have dtype for sparse (indices, values).
* separate legacy tensor ctor vs new (new includes dtypes).
* Use TypeError.
* Handle copying empty sparse tensors to/from CPU, GPU.
This is likely not a robust fix because it special cases the case where both the indices and values are empty
rather than handling each one separately. But this is currently blocking a change introducing devices to constructors.
* Guard sizes being NULL.
* Add numpy-style dtypes to Variable factories.
1) Add numpy-style dtypes corresponding to torch tensor types. These are:
torch.float16, torch.float32, torch.float64, torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64
as well as torch.cuda, torch.sparse, and torch.cuda.sparse equivalents.
2) Adds "legacy" names for the above dtypes that correspond more closely to existing tensor names. These are:
torch.half, torch.float, torch.double, torch.short, torch.int, torch.long.
torch.byte and torch.char don't exist because they either don't match numpy semantics or differ on different architectures.
3) Adds a "dtype" parameter to Variable factories (e.g. zeros, ones) that allows the user to specify the type without changing the default tensor type.
4) Adds a "dtype" getter to Variables that return the canonical dtype from 1)
This PR is missing the following useful features that should be added in the future:
A) We only add the "dtype" parameter to auto-generated factories; hand-written factories like in tensor_new.cpp don't support this yet.
B) We don't allow type conversions to use dtypes; that should be added to type(param) or a new function.
C) We don't yet have a "device" parameter for these factories; right now, they will only create Variables on the default device.
* backend_to_string can be private.
* Define python binding argument indexes in a more simple way.
* add all_declared_types, still need to hook it up to THPDType.
* Fix all_declared_types for missing types (it's Sparse + Half).
* Ensure cuda dtypes are created even if compiled with NO_CUDA=1.
* Fix case where dtype is provided but dispatch is via namespace.
This happens in ones_like, empty_like, randn_like.
There is some question if we should do:
1) at::ones_like(tensor).toType(dtype)
2) at::ones_like(tensor.toType(dtype))
I did the former because this matches with the numpy documentation, i.e.:
"Overrides the data type of the result." and it's easier to implement.
Note that the above causes an extra copy, either of the input or output.
Here's a better implementation:
1) Make zeros_like, ones_like native functions that take an optional type (named dtype?).
2) Match the type argument with the dtype, so we don't have two different parameters.
3) Call at::zeros_like(input, type) -> at::native::zeros_like(input, type) -> type.zeros(input.sizes())
* Don't return from maybe_initialize_cuda.
* Don't leak DType name.
* Address cpp review comments.
* Share code between sparse and non-sparse test_dtypes.
* Rewrite _like functions as native function with explicit type parameter.
* Use type 'Type' instead of 'dtype' for consistency.
* Address review comments.
* Handle arg_idx when there is requires_grad but no dtype in python_binding_arguments.
torch.mm(sparse, dense) -> dense works for tensors. This PR makes it work for variables as well.
I renamed mm to _mm in Declarations.cwrap and wrote a native mm function that wraps _mm for the dense case and addmm for the sparse case.
* Remove setting coalesce to 0 in sparse transpose_
* Remove setting coalesced to 0 in THCSTensor transpose_
* Add test for transpose's coalesce invariant
This adds more heavy sanity checking when we run to_dense(); in particular,
we make sure that if it claims to be coalesced, it truly is coalesced, and if
it is not, that the coalesced version also to_dense() to the same thing.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Apparently, the algorithm only guarantees the output is coalesced if
the inputs are coalesced.
I'm planning to do another PR that does much more stringent correctness
testing for the 'coalesced' bit shortly, but y'all should merge
this one first.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Fixes#1783.
There is an undocumented invariant in PyTorch that we should
try to avoid having storage == NULL as much as possible (even
though Torch supports it.) This commit properly documents the
invariant, and fixes a bug in sparse where the invariant was
not respected. This now means that sparse tensors now correctly
remember what GPU they are associated with.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Fixes#1782.
The default operation should be cheap: user can always choose to
explicitly make a copy on the way in. Note that this is a
BACKWARDS COMPATIBILITY BREAKING change. However, we DO create
a new tensor wrapper (so we are not affected by subsequent
size changes, etc.)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>