Commit Graph

65 Commits

Author SHA1 Message Date
Tugsbayasgalan (Tugsuu) Manlaibaatar
b0c27b44cf Enable backward/forward compatibility for TS runtime (#57498)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/57498

Test Plan: Imported from OSS

Reviewed By: albanD

Differential Revision: D28162448

Pulled By: tugsbayasgalan

fbshipit-source-id: 5c21ced42a22aca7cee089e876e9d98d32f68955
2021-05-07 15:41:45 -07:00
Luca Wehrstedt
36e47af58b Pass reference to parent future in callbacks (#57635)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57635

Note: this PR looks massive, but it's just one simple change, codemodded many times.

In many cases, a callback needs to access the value/error produced by the parent future. In Python this was easy because the callback was invoked with the parent future as argument, and could thus inspect it. In C++ the callbacks didn't take any arguments, thus in many cases we worked around this by capturing the future in its own callback. This is risky (leads to reference cycle and thus memory leak) and must be done carefully (spoiler: sometimes we weren't).
ghstack-source-id: 128296580

Test Plan: CI

Reviewed By: wanchaol

Differential Revision: D28178783

fbshipit-source-id: 6de02c4568be42123372edc008f630d5ddae0081
2021-05-07 03:59:18 -07:00
Zhengxu Chen
8b38458011 [jit] Break interpreter.cpp into smaller files. (#56546)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56546

A code move for CodeImpl and Frame to a subdirectory runtime/interpreter, so
that it's easier to reuse them and navigate the interpreter code.

Test Plan: Imported from OSS

Reviewed By: nikithamalgifb

Differential Revision: D28133580

fbshipit-source-id: 8de89a4e8e637836625e1ac1db95f0a3353da670
2021-05-06 16:43:57 -07:00
Nikita Shulga
4cb534f92e Make PyTorch code-base clang-tidy compliant (#56892)
Summary:
This is an automatic change generated by the following script:
```
#!/usr/bin/env python3
from subprocess import check_output, check_call
import os

def get_compiled_files_list():
    import json
    with open("build/compile_commands.json") as f:
        data = json.load(f)
    files = [os.path.relpath(node['file']) for node in data]
    for idx, fname in enumerate(files):
        if fname.startswith('build/') and fname.endswith('.DEFAULT.cpp'):
            files[idx] = fname[len('build/'):-len('.DEFAULT.cpp')]
    return files

def run_clang_tidy(fname):
    check_call(["python3", "tools/clang_tidy.py", "-c", "build", "-x", fname,"-s"])
    changes = check_output(["git", "ls-files", "-m"])
    if len(changes) == 0:
        return
    check_call(["git", "commit","--all", "-m", f"NOLINT stubs for {fname}"])

def main():
    git_files = check_output(["git", "ls-files"]).decode("ascii").split("\n")
    compiled_files = get_compiled_files_list()
    for idx, fname in enumerate(git_files):
        if fname not in compiled_files:
            continue
        if fname.startswith("caffe2/contrib/aten/"):
            continue
        print(f"[{idx}/{len(git_files)}] Processing {fname}")
        run_clang_tidy(fname)

if __name__ == "__main__":
    main()
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/56892

Reviewed By: H-Huang

Differential Revision: D27991944

Pulled By: malfet

fbshipit-source-id: 5415e1eb2c1b34319a4f03024bfaa087007d7179
2021-04-28 14:10:25 -07:00
Tugsbayasgalan Manlaibaatar
2041cd6707 Enable forward/backward compatibility in TS mobile (#56079)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/56079

Test Plan: Imported from OSS

Reviewed By: iseeyuan

Differential Revision: D27828149

Pulled By: tugsbayasgalan

fbshipit-source-id: 9291ddbf01853354fca0fa0a58b8115d5d2294da
2021-04-23 16:55:18 -07:00
Tugsbayasgalan Manlaibaatar
6de1d9b2d0 Fix bug in emitUse to drop all values that are marked as drop (#56652)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56652

Previous code doesn't drop prim::Constant values even when they are marked as drop.

Test Plan: Imported from OSS

Reviewed By: iseeyuan

Differential Revision: D27927413

fbshipit-source-id: 67cd52cf292e111be2830ccf93b0e7b089e49001
2021-04-23 12:42:51 -07:00
Mike Ruberry
c0ac0fef4e Revert D27448156: irange for size_t
Test Plan: revert-hammer

Differential Revision:
D27448156 (041b4431b2)

Original commit changeset: 585da57d4de9

fbshipit-source-id: 8e047c29f391c0166e0a1a87c3fb2a0854377365
2021-04-03 19:14:00 -07:00
Richard Barnes
041b4431b2 irange for size_t (#55163)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/55163

Test Plan: Sandcastle

Reviewed By: ngimel

Differential Revision: D27448156

fbshipit-source-id: 585da57d4de91c692b6360d65f7b8a66deb0f8c1
2021-04-02 23:22:29 -07:00
Edward Yang
e70f3d1189 Nasty little hack to preserve NotImplementedError raised in interpreter (#54627)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54627

This is the simplest little fix to get interpreter to preserve
NotImplementedError, so that the test suite doesn't start choking
on meta tensors not working in interpreter.  It is sound and correct
but doesn't work for other c10::Error subclasses with special handling.
A more proper fix is requested at
https://github.com/pytorch/pytorch/issues/54612

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: wenleix, ngimel

Differential Revision: D27328666

Pulled By: ezyang

fbshipit-source-id: 483bef062de5a907d20e2d9e25eafe2d5197cf8d
2021-03-27 11:53:06 -07:00
Scott Wolchok
3959d393b8 [PyTorch][JIT] Less shared_ptr use in dictConstruct (#54110)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54110

dictConstruct doesn't need to make its caller have a `shared_ptr<DictType>`. It also doesn't need to do extra `shared_ptr` copies into the `key_type` and `value_type` locals.
ghstack-source-id: 124150642

Test Plan: fitsships

Reviewed By: ezyang

Differential Revision: D27101782

fbshipit-source-id: 3c632ad9d8f1bd7bdf37f517a86aca27bd41548a
2021-03-22 18:31:27 -07:00
Scott Wolchok
4a24c552cc [PyTorch] Fix string copy in WARN path for both interpreters (#54076)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54076

If we don't constrain ourselves to use `torch::jit::pop`, we can avoid copying a string or moving IValues around.
ghstack-source-id: 124040891

Test Plan:
existing tests

spot-checked regular interpreter assembly; seems better

Reviewed By: dhruvbird, walterddr

Differential Revision: D27087204

fbshipit-source-id: 7cf355dbcec31409bdb37afa09d7df85cf2a7e4b
2021-03-17 08:44:08 -07:00
Scott Wolchok
665d5e2a4f [PyTorch][JIT] Audit interpreter for extra copies (#54029)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54029

I found what appear to be some missed moves and/or extra copies in the JIT interpreter.
ghstack-source-id: 123958682

Test Plan:
Existing CI for correctness

Ran AdIndexer inline_cvr local_ro model benchmark with static_runtime off via
`env bin=/tmp/ptvsc2_predictor_bench.StaticDispatchModeFile static_runtime=0 caffe2=0 scripts/swolchok/static_runtime/inline_cvr/run_local_ro.sh`

before:
```
I0315 14:25:23.916893 3075680 PyTorchPredictorBenchLib.cpp:215] PyTorch run finished. Milliseconds per iter: 1.01635. Iters per second: 983.914
I0315 14:26:05.536207 3080560 PyTorchPredictorBenchLib.cpp:215] PyTorch run finished. Milliseconds per iter: 1.01689. Iters per second: 983.395
I0315 14:26:47.510561 3083335 PyTorchPredictorBenchLib.cpp:215] PyTorch run finished. Milliseconds per iter: 1.02697. Iters per second: 973.737
I0315 14:27:29.024830 3086767 PyTorchPredictorBenchLib.cpp:215] PyTorch run finished. Milliseconds per iter: 1.01326. Iters per second: 986.918
I0315 14:28:10.849496 3091323 PyTorchPredictorBenchLib.cpp:215] PyTorch run finished. Milliseconds per iter: 1.023. Iters per second: 977.517
```

after:
```
I0315 14:17:43.280469 3046242 PyTorchPredictorBenchLib.cpp:215] PyTorch run finished. Milliseconds per iter: 0.997838. Iters per second: 1002.17
I0315 14:18:24.244606 3046861 PyTorchPredictorBenchLib.cpp:215] PyTorch run finished. Milliseconds per iter: 1.00173. Iters per second: 998.269
I0315 14:19:05.208899 3051998 PyTorchPredictorBenchLib.cpp:215] PyTorch run finished. Milliseconds per iter: 1.00187. Iters per second: 998.136
I0315 14:19:46.103854 3055392 PyTorchPredictorBenchLib.cpp:215] PyTorch run finished. Milliseconds per iter: 1.00073. Iters per second: 999.27
I0315 14:20:27.011411 3056062 PyTorchPredictorBenchLib.cpp:215] PyTorch run finished. Milliseconds per iter: 0.999121. Iters per second: 1000.88
```

(This was just a convenient workload I had handy; the plan of record is to use static runtime for inline_cvr inference AIUI.)

Reviewed By: dhruvbird, walterddr

Differential Revision: D27060762

fbshipit-source-id: 5567206d7c2d9ae99776ce5524caf09ec2035e87
2021-03-16 15:09:09 -07:00
jiej
4d94ee566e Ge v1 (#52136)
Summary:
This is a second attempt to use graph executor to run forward on a gradient. This allows a secondary chance to profile intermediate tensor introduced by autodiff.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/52136

Reviewed By: pbelevich

Differential Revision: D26693978

Pulled By: Krovatkin

fbshipit-source-id: 91dde8009a210950af8e5173668ada241e16dd52
2021-02-28 00:53:13 -08:00
jiej
dd1c2a06b7 refactor profiling optional (#47667)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/47667

Test Plan: Imported from OSS

Reviewed By: anjali411, ngimel

Differential Revision: D25255572

Pulled By: Krovatkin

fbshipit-source-id: d0152c9ef5b1994e27be9888bcb123dca3ecd88f
2021-01-22 14:45:28 -08:00
Scott Wolchok
4a0d17ba2d [PyTorch][codemod] Replace immediately-dereferenced expect calls w/expectRef (#50228)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50228

`fastmod -m 'expect(<((at|c10)::)?\w+Type>\(\)\s*)->'
'expectRef${1}.'`
Presuming it builds, this is a safe change: the result of `expect()`
wasn't being saved anywhere, so we didn't need it, so we can take a
reference instead of a new `shared_ptr`.
ghstack-source-id: 119782961

Test Plan: CI

Reviewed By: SplitInfinity

Differential Revision: D25837374

fbshipit-source-id: 86757b70b1520e3dbaa141001e7976400cdd3b08
2021-01-13 16:13:55 -08:00
Thomas Viehmann
ea087e2d92 JIT: guard DifferentiableGraph node (#49433)
Summary:
This adds guarding for DifferentiableGraph nodes in order to not depend on
Also bailing out on required gradients for the CUDA fuser.

Fixes https://github.com/pytorch/pytorch/issues/49299

I still need to look into a handful of failing tests, but maybe it can be a discussion basis.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/49433

Reviewed By: ngimel

Differential Revision: D25681374

Pulled By: Krovatkin

fbshipit-source-id: 8e7be53a335c845560436c0cceeb5e154c9cf296
2021-01-08 20:01:27 -08:00
Scott Wolchok
ef1fa547ba [PyTorch] Use expectRef() when calling listConstruct (#50062)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50062

Avoids creating an extra shared_ptr.
ghstack-source-id: 119325645

Test Plan: CI

Reviewed By: ezyang

Differential Revision: D25766631

fbshipit-source-id: f2ab8349dfea325054820fa2c1055180c740574e
2021-01-06 18:13:38 -08:00
Scott Wolchok
480a756194 [PyTorch] IValue::toTensor can now return const Tensor& (#48868)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48868

Building on the previous diff, we can make `toTensor()` return a
`const Tensor&`, which should make it easier to avoid reference
counting.
ghstack-source-id: 119327372

Test Plan: internal benchmarks.

Reviewed By: bwasti

Differential Revision: D25325379

fbshipit-source-id: ca699632901691bcee432f595f75b0a4416d55dd
2021-01-06 08:40:50 -08:00
Yanan Cao
7518f54611 Add flag torch_jit_disable_warning_prints to allow disabling all warnings.warn (#49313)
Summary:
Adding a flag torch_jit_disable_warning_prints to optimize interpreter performance by suppressing (potentially large amount) of warnings.warn.

This is to work around TorchScript's warning behavior mismatch with Python. Python by default triggers a warning once per location but TorchScript doesn't support it. This causes same warning to trigger and print once per inference run, hurting performance.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/49313

Reviewed By: SplitInfinity

Differential Revision: D25534274

Pulled By: gmagogsfm

fbshipit-source-id: eaeb57a335c3e6c7eb259671645db05d781e80a2
2020-12-15 15:22:41 -08:00
Ilia Cherniavskii
db5e5b439c Extra sampling of record function events [resend] (#49114)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49114

resend of https://github.com/pytorch/pytorch/pull/48289

Test Plan: see 48289

Reviewed By: robieta

Differential Revision: D25443365

Pulled By: ilia-cher

fbshipit-source-id: c15ac312222bb4d744e10199ed79801cccae8227
2020-12-11 12:53:37 -08:00
Bram Wasti
f4226b5c90 [static runtime] add static subgraph fusion pass (#49185)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49185

This diff adds a fusion feature that will let us use static runtime for *parts* of the graph.  This will prove useful in cases where fully eliminating control flow is hard etc.

TODO:
[x] factor out into separate fusion file
[x] add python test case
[x] add graph that isn't fully lowered test case
[x] add graph that has weird list/tuple outputs test case

the loop example looks quite good:
```
graph(%a.1 : Tensor,
      %b.1 : Tensor,
      %iters.1 : int):
  %12 : bool = prim::Constant[value=1]() # /data/users/bwasti/fbsource/fbcode/buck-out/dev/gen/caffe2/test/static_runtime#binary,link-tree/test_static_runtime.py:110:4
  %c.2 : Tensor = prim::StaticSubgraph_0(%a.1, %b.1)
  %c : Tensor = prim::Loop(%iters.1, %12, %c.2) # /data/users/bwasti/fbsource/fbcode/buck-out/dev/gen/caffe2/test/static_runtime#binary,link-tree/test_static_runtime.py:110:4
    block0(%i : int, %c.12 : Tensor):
      %c.10 : Tensor = prim::StaticSubgraph_1(%a.1, %c.12, %b.1)
      -> (%12, %c.10)
  return (%c)
with prim::StaticSubgraph_0 = graph(%0 : Tensor,
      %4 : Tensor):
  %5 : int = prim::Constant[value=2]()
  %6 : Tensor = aten::mul(%4, %5) # /data/users/bwasti/fbsource/fbcode/buck-out/dev/gen/caffe2/test/static_runtime#binary,link-tree/test_static_runtime.py:109:12
  %2 : int = prim::Constant[value=1]()
  %c.2 : Tensor = aten::add(%0, %6, %2) # /data/users/bwasti/fbsource/fbcode/buck-out/dev/gen/caffe2/test/static_runtime#binary,link-tree/test_static_runtime.py:109:8
  return (%c.2)
with prim::StaticSubgraph_1 = graph(%1 : Tensor,
      %7 : Tensor,
      %8 : Tensor):
  %9 : int = prim::Constant[value=1]()
  %c.4 : Tensor = aten::add(%7, %8, %9) # /data/users/bwasti/fbsource/fbcode/buck-out/dev/gen/caffe2/test/static_runtime#binary,link-tree/test_static_runtime.py:111:12
  %5 : int = prim::Constant[value=2]()
  %c.7 : Tensor = aten::mul_(%c.4, %5) # /data/users/bwasti/fbsource/fbcode/buck-out/dev/gen/caffe2/test/static_runtime#binary,link-tree/test_static_runtime.py:112:8
  %2 : int = prim::Constant[value=1]()
  %c.10 : Tensor = aten::sub_(%c.7, %1, %2) # /data/users/bwasti/fbsource/fbcode/buck-out/dev/gen/caffe2/test/static_runtime#binary,link-tree/test_static_runtime.py:113:8
  return (%c.10)
```

(Note: this ignores all push blocking failures!)

Test Plan:
buck test mode/no-gpu //caffe2/benchmarks/static_runtime:static_runtime_cpptest

buck test mode/no-gpu caffe2/test:static_runtime

Reviewed By: bertmaher

Differential Revision: D25385702

fbshipit-source-id: 2f24af4f11d92a959167facd03fbd24f464a6098
2020-12-10 14:03:11 -08:00
Elias Ellison
70853c5021 Dont use symbolic shapes check (#47810)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47810

`bindSymbolicShapes` wasn't checking device or dtype at all, so it wasn't correct. It also isn't being used anywhere (num_profiles is always 1 and we don't use symbolic shapes). We shouldn't have it on until we are actually using symoblic shapes.

Test Plan: Imported from OSS

Reviewed By: bertmaher

Differential Revision: D25286214

Pulled By: eellison

fbshipit-source-id: 10fb175d0c75bd0159fb63aafc3b59cc5fd6c5af
2020-12-10 12:14:58 -08:00
jiej
a6fa3b2682 adding profile_ivalue (#47666)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/47666

Test Plan: Imported from OSS

Reviewed By: ZolotukhinM

Differential Revision: D25255573

Pulled By: Krovatkin

fbshipit-source-id: 5d8753e4040a3d96105d28d26728125947c7a638
2020-12-09 15:29:15 -08:00
Mike Ruberry
9f7fb54693 Revert D25111515: Extra sampling of record function events
Test Plan: revert-hammer

Differential Revision:
D25111515 (09b974c2d5)

Original commit changeset: 0d572a3636fe

fbshipit-source-id: d558d8052924d937d86db7dd40dc6388e6d28823
2020-12-09 08:37:17 -08:00
Ilia Cherniavskii
09b974c2d5 Extra sampling of record function events (#48289)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48289

Adding extra sampling step when dispatching RecordFunction.

(Note: this ignores all push blocking failures!)

Reviewed By: swolchok

Differential Revision: D25111515

Pulled By: ilia-cher

fbshipit-source-id: 0d572a3636fe649a47ec47901826bbfc08368937
2020-12-09 02:29:13 -08:00
Chen Lai
416dc68341 [Pytorch][Annotation] Update inlined callstack with module instance info (#47416)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/47416

Test Plan: Imported from OSS

Reviewed By: kimishpatel

Differential Revision: D24752846

Pulled By: cccclai

fbshipit-source-id: 94d3c18c56161d1de3a16bb7c93502fedf71644c
2020-12-03 10:44:46 -08:00
Meghan Lele
fc1153a8be [JIT] Fix clang-tidy warnings in jit/runtime (#47992)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/47992

Test Plan: Imported from OSS

Reviewed By: ZolotukhinM

Differential Revision: D25258645

Pulled By: SplitInfinity

fbshipit-source-id: b3e4576400c101b247e80cb4044fc04471f39a47
2020-12-02 12:35:42 -08:00
Scott Wolchok
3ceec73db9 [PyTorch] Lazily construct guts of RecordFunction (#47550)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47550

I saw over 5% time spent in RecordFunction's ctor during one
of our framework overhead benchmarks in `perf`. Inspecting assembly,
it looks like we just create a lot of RecordFunctions and the
constructor has to initialize a relatively large number of member
variables.

This diff takes advantage of the observation that RecordFunction does
nothing most of the time by moving its state onto the heap and only
allocating it if needed. It does add the requirement that profiling is
actually active to use RecordFunction accessors, which I hope won't be
a problem.
ghstack-source-id: 117498489

Test Plan: Run framework overhead benchmarks. Savings ranging from 3% (InPlace_ndim_1) to 7.5% (empty_ndim_3) wall time.

Reviewed By: ilia-cher

Differential Revision: D24812213

fbshipit-source-id: 823a1e2ca573d9a8d7c5b7bb3972987faaacd11a
2020-12-01 13:07:17 -08:00
Scott Wolchok
383abf1f0c [PyTorch] Make RecordFunction::active private (#47549)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47549

In preparation for moving state onto the heap.
ghstack-source-id: 117027862

Test Plan: CI

Reviewed By: ilia-cher

Differential Revision: D24812214

fbshipit-source-id: 1455c2782b66f6a59c4d45ba58e1c4c92402a323
2020-11-18 17:58:54 -08:00
Gaoxiang Liu
735f8cc6c2 [DI] Allow explicit taskLauncher for torchscript interpreter (#46865)
Summary:
By default, TorchScript execution is single threaded and uses the caller's thread pool. For the use case of distributed inference, we hope there is a way to customize the behavior where the  interpreter in torch script can be executed in other places. This diff allows an explicit taskLauncher for torchscript interpreter.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/46865

Test Plan:
unit test is passed.

fbshipit-source-id: 1d7b003926c0d1f8facc53206efb960cff8897ac

Fixes #{issue number}

Reviewed By: houseroad

Differential Revision: D24616102

Pulled By: garroud

fbshipit-source-id: 79202b62f92d0b0baf72e4bf7aa3f05e0da91d59
2020-11-04 17:07:55 -08:00
Yanan Cao
86abc8cd48 [JIT] Make InsertInstruction overflow check a warning instead of fatal (#46369)
Summary:
This diff restores previous behavior of silently allow overflowing when inserting instructions. The behavior was changed recently in https://github.com/pytorch/pytorch/issues/45382. But it started to break some existing use cases that haver overflow problems.

Restoring original behavior but throw a warning to to unblock existing use cases where overflowing happens.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/46369

Reviewed By: kwanmacher, wanchaol, fbhuba

Differential Revision: D24324345

Pulled By: gmagogsfm

fbshipit-source-id: 1c0fac421d4de38f070e21059bbdc1b788575bdf
2020-10-14 23:09:53 -07:00
Yanan Cao
d150d3e276 Make sure each warnings.warn only executes once inside TorchScript. (#45382)
Summary:
* Add a pass at end of runCleanupPasses to annotate `aten::warn` so that each has its unique id
* Enhanced interpreter so that it tracks which `aten::warn` has been executed before and skip them
* Improved insertInstruction so that it correctly checks for overflow

Fixes https://github.com/pytorch/pytorch/issues/45108

Pull Request resolved: https://github.com/pytorch/pytorch/pull/45382

Reviewed By: mrshenli

Differential Revision: D24060677

Pulled By: gmagogsfm

fbshipit-source-id: 9221bc55b9ce36b374bdf614da3fe47496b481c1
2020-10-02 14:55:10 -07:00
Ilia Cherniavskii
f5c95d5cf1 Source code level attribution in profiler (#43898)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43898

Adding with_source parameter to enable tracking source code
(filename and line) in profiler for eager, torchscript and autograd
modes

Test Plan:
python test/test_profiler.py
```
Name                                 Self CPU total %  Self CPU total   CPU total %      CPU total        CPU time avg     Number of Calls  Source Location
-----------------------------------  ---------------  ---------------  ---------------  ---------------  ---------------  ---------------  --------------------------------------------
ts_method_1                          10.43%           235.364us        36.46%           822.920us        822.920us        1                test/test_profiler.py(70): test_source
aten::add                            7.52%            169.833us        8.88%            200.439us        200.439us        1                test/test_profiler.py(69): test_source
aten::normal_                        6.26%            141.380us        6.26%            141.380us        141.380us        1                test/test_profiler.py(67): test_source
aten::add                            5.80%            130.830us        8.41%            189.800us        63.267us         3                test/test_profiler.py(72): test_source
aten::sum                            5.02%            113.340us        8.39%            189.475us        189.475us        1                test/test_profiler.py(64): ts_method_1
aten::add                            4.58%            103.346us        6.33%            142.847us        142.847us        1                test/test_profiler.py(62): ts_method_1
aten::mul                            4.05%            91.498us         9.62%            217.113us        217.113us        1                test/test_profiler.py(71): test_source
aten::add                            4.03%            90.880us         5.60%            126.405us        126.405us        1                test/test_profiler.py(58): ts_method_2
aten::empty                          3.49%            78.735us         3.49%            78.735us         19.684us         4                test/test_profiler.py(72): test_source
```

Reviewed By: ngimel

Differential Revision: D23432664

Pulled By: ilia-cher

fbshipit-source-id: 83ad7ebe0c2502494d3b48c4e687802db9c77615
2020-09-30 00:57:35 -07:00
gunandrose4u
f07ac6a004 Fix Windows build failure after DDP PR merged (#45335)
Summary:
Fixes #{issue number}
This is resubmit for PR https://github.com/pytorch/pytorch/issues/42897 . Together with fix for Windows build issue introduced by PR https://github.com/pytorch/pytorch/issues/44344 .

Pull Request resolved: https://github.com/pytorch/pytorch/pull/45335

Reviewed By: zou3519

Differential Revision: D23931471

Pulled By: mrshenli

fbshipit-source-id: f49b5a114944c1450b32934b3292170be064f494
2020-09-25 12:37:50 -07:00
Mike Ruberry
103fa3894a Revert D23841786: [pytorch][PR] Enable distributed package on windows, Gloo backend supported only
Test Plan: revert-hammer

Differential Revision:
D23841786 (0122299f9b)

Original commit changeset: 334ba1ed73ef

fbshipit-source-id: ec95432f9957df56a5a04e52661f5db920b7f57f
2020-09-24 22:44:33 -07:00
gunandrose4u
0122299f9b Enable distributed package on windows, Gloo backend supported only (#42897)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/42095

For test case part will be committed to this PR later

mrshenli, please help to review

Pull Request resolved: https://github.com/pytorch/pytorch/pull/42897

Reviewed By: osalpekar

Differential Revision: D23841786

Pulled By: mrshenli

fbshipit-source-id: 334ba1ed73eff2f668857390fc32d1bc7f08e5f3
2020-09-24 21:13:55 -07:00
Pritam Damania
f1624b82b5 Preserve python backtrace in autograd engine errors. (#43684)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43684

This PR attempts to address #42560 by capturing the appropriate
exception_ptr in the autograd engine and passing it over to the Future.

As part of this change, there is a significant change the Future API where we
now only accept an exception_ptr as part of setError.

For the example in #42560, the exception trace would now look like:

```
> Traceback (most recent call last):
>   File "test_autograd.py", line 6914, in test_preserve_backtrace
>     Foo.apply(t).sum().backward()
>   File "torch/tensor.py", line 214, in backward
>     torch.autograd.backward(self, gradient, retain_graph, create_graph)
>   File "torch/autograd/__init__.py", line 127, in backward
>     allow_unreachable=True)  # allow_unreachable flag
>   File "torch/autograd/function.py", line 87, in apply
>     return self._forward_cls.backward(self, *args)
>   File "test_autograd.py", line 6910, in backward
>     raise ValueError("something")
> ValueError: something
```
ghstack-source-id: 111109637

Test Plan: waitforbuildbot

Reviewed By: albanD

Differential Revision: D23365408

fbshipit-source-id: 1470c4776ec8053ea92a6ee1663460a3bae6edc5
2020-09-01 01:28:47 -07:00
Elias Ellison
3c8b1d73c9 Update aliasing in tensorexpr fuser (#43743)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/43743

Test Plan: Imported from OSS

Reviewed By: Krovatkin

Differential Revision: D23385205

Pulled By: eellison

fbshipit-source-id: 097a15d5bcf216453e1dd144d6117108b3deae4d
2020-08-31 11:52:26 -07:00
Elias Ellison
a7e7981c0b Use prim::TensorExprGroup interned symbol (#43635)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43635

Intern the symbol, no functional changes. Aliasing need to be looked at but this should be done in a separate PR; this PR is just changing the symbol.

Test Plan: Imported from OSS

Reviewed By: bertmaher

Differential Revision: D23358806

Pulled By: eellison

fbshipit-source-id: f18bcd142a0daf514136f019ae607e4c3f45d9f8
2020-08-31 11:52:16 -07:00
Elias Ellison
01f974eb1e Specialize optionals for grad_sum_to_size (#43633)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43633

In the backward graph, _grad_sum_to_size is inserted whenever a possibly broadcasting op is called:"
`"aten::_grad_sum_to_size(Tensor(a) self, int[]? size) -> Tensor(a)"`
 If a broadcast occurred, a sum is called, otherwise the second input is None and it is a no-op. Most of the time, it's a no-op (in the fast RNNs benchmark > 90% of the time).

We can get rid of this op by profiling the optionality of the second input. I added `prim::profile_optional` to do this, which counts the number of times it saw a None value and the number of times it saw a value present. When specializing the backward graph, we insert checks for values we profiled as None, and in the optimized block can remove the grad_sum_to_size calls that use those values.

In the future we may revisit this when NNC supports reductions and we want to replace grad_sum_to_size with sums as well, but I think this is worth landing now.

Test Plan: Imported from OSS

Reviewed By: bwasti, ZolotukhinM

Differential Revision: D23358809

Pulled By: eellison

fbshipit-source-id: a30a148ca581370789d57ba082d23cbf7ef2cd4d
2020-08-27 14:35:37 -07:00
Zino Benaissa
40c77f926c Add prim::TypeCheck operation (#43026)
Summary:
TypeCheck is a new operation to check the shape of tensors against
 expectd shapes. TypeCheck is a variadic operation. An example,

 %t0 : Tensor = ...
 %t1 : Tensor = ...
 %2 : FLOAT(20, 20), %3 : FLOAT(30, 30), %1 : bool =
 prim::TypeCheck(%t1, %t2)
 prim::If(%1)

Fixes #{issue number}

Pull Request resolved: https://github.com/pytorch/pytorch/pull/43026

Reviewed By: ZolotukhinM

Differential Revision: D23115830

Pulled By: bzinodev

fbshipit-source-id: fbf142126002173d2d865cf4b932dea3864466b4
2020-08-21 20:03:24 -07:00
Sebastian Messmer
53af9df557 Unify boxed function signature between jit and c10 (#37034)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37034

c10 takes a Stack* in boxed functions while JIT took Stack&.
c10 doesn't return anything while JIT returns an int which is always zero.

This changes JIT to follow the c10 behavior.
ghstack-source-id: 106834069

Test Plan: unit tests

Differential Revision: D20567950

fbshipit-source-id: 1a7aea291023afc52ae706957e9a5ca576fbb53b
2020-06-29 19:24:26 -07:00
Meghan Lele
d58b8222b7 [JIT] Add support for with statements (#34705)
Summary:
**Summary**
This commit adds support for with statements to PyTorch JIT. Each
of the with items in a with statement is represented in the JIT IR
as a pair of `prim::Enter` and `prim::Exit` nodes that call the
`__enter__` and `__exit__` methods defined on the context manager objects
returned by the expressions in the with item.

**Testing**
This commit adds unit tests for with statements with named with items,
nameless with items, and with statements that encounter exceptions.
```
$ python test/test_jit.py TestWith.test_with_as
Fail to import hypothesis in common_utils, tests are not derandomized
.
----------------------------------------------------------------------
Ran 1 test in 0.430s

OK
```

```
$ python test/test_jit.py TestWith.test_with_no_as
Fail to import hypothesis in common_utils, tests are not derandomized
.
----------------------------------------------------------------------
Ran 1 test in 0.264s

OK
```

```
$ python test/test_jit.py TestWith.test_with_exceptions
Fail to import hypothesis in common_utils, tests are not derandomized
Couldn't download test skip set, leaving all tests enabled...
.
----------------------------------------------------------------------
Ran 1 test in 1.053s

OK
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34705

Differential Revision: D22095945

Pulled By: SplitInfinity

fbshipit-source-id: f661565a834786725259b8ea014b4d7532f9419d
2020-06-18 16:57:18 -07:00
Ailing Zhang
b861daf098 Reduce time spent per guard by comparing TensorType with Tensor (#39098)
Summary:
It mainly reduces the time spent on allocating new TensorType object for Tensor, but comparing them directly.
benchmark result before and after this PR: https://gist.github.com/ailzhang/db44d0a1911cae62e0bb794bff33f40a
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39098

Differential Revision: D21786678

Pulled By: ailzhang

fbshipit-source-id: 2f61f0ac1dc8c529c45bef4e149be431ff1608b0
2020-06-04 13:50:18 -07:00
Nikolay Korovaiko
42870ddf24 Generate Dynamic Shapes (#37693)
Summary:
Yay!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37693

Differential Revision: D21641663

Pulled By: Krovatkin

fbshipit-source-id: 64e70138b31800371887d24ceb1c5d18945b4412
2020-05-19 23:17:54 -07:00
Ilia Cherniavskii
235f62417d Fixes for profiling JIT code (#38453)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38453

Two fixes:
 - RecordFunction in JIT interpreter should exist during the execution
   of the frame, and not just when we enter the frame
 - When creating a JIT continuation in wait instruction, we'd want to
   preserve the original thread local context, right now when we resume
   execution in continuation we preserve the thread local state of the
   thread that set future value (i.e. executed a forked task)

Test Plan: unittest, CI

Reviewed By: ngimel

Differential Revision: D21565959

Pulled By: ilia-cher

fbshipit-source-id: 206b98e3bfb0052fc8e4031da778e372cc71afc1
2020-05-19 15:50:42 -07:00
Ilia Cherniavskii
2d708cefcc Move RecordFunction into ATen (#37548)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37548

Moving RecordFunction from torch::autograd::profiler into at namespace

Test Plan:
CI

Imported from OSS

Differential Revision: D21315852

fbshipit-source-id: 4a4dbabf116c162f9aef0da8606590ec3f3847aa
2020-05-07 14:52:39 -07:00
Michael Suo
b53e6bfd49 [jit] normalize getMethod (#37472)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37472

Our convention is for `findX` to return an optional version and `getX`
to assert that the X is there. Fix up `getMethod` to be consistent with
this convention.

Test Plan: Imported from OSS

Differential Revision: D21297543

Pulled By: suo

fbshipit-source-id: b40f56231cc8183e61bbb01fe5c0c113bcb6464d
2020-05-06 15:22:25 -07:00
Nikolay Korovaiko
4ed790d742 Adding symbolic sizes, contiguity, stride indices (#36101)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/36101

Reviewed By: jamesr66a

Differential Revision: D20908711

Pulled By: Krovatkin

fbshipit-source-id: f90ce74acffeb645d7d906d07e293164d65ed7e6
2020-05-01 02:01:25 -07:00
Mike Ruberry
b64fc3c4b5 Changes warnings generated in cpp to show point of Python origination (#36052)
Summary:
Today in PyTorch, warnings triggered in C++ are printed to Python users like this:

`../aten/src/ATen/native/BinaryOps.cpp:81: UserWarning: Integer division of tensors using div or / is deprecated, and in a future release div will perform true division as in Python 3. Use true_divide or floor_divide (// in Python) instead.`

This may be unhelpful to Python users, who have complained it's difficult to relate these messages back to their programs. After this PR, warnings that go through the PyWarningHandler and allow it to add context print like this:

```
test/test_torch.py:16463: UserWarning: Integer division of tensors using div or / is deprecated, and in a future release div will perform true division as in Python 3. Use true_divide or floor_divide (// in Python) instead. (Triggered internally at  ../aten/src/ATen/native/BinaryOps.cpp:81.)
  cpu_result = getattr(cpu_tensor, op_str)(*cpu_args)
```

This relates the warning back to the user's program. The information about the cpp file and line number is preserved in the body of the warning message.

Some warnings, like those generated in the JIT, already account for a user's Python context, and so they specify that they should be printed verbatim and are unaffected by this change. Warnings originating in Python and warnings that go through c10's warning handler, which prints to cerr, are also unaffected.

A test is added to test_torch.py for this behavior. The test relies on uint8 indexing being deprecated and its warning originating from its current header file, which is an unfortunate dependency. We could implement a `torch.warn` function, instead.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36052

Differential Revision: D20887740

Pulled By: mruberry

fbshipit-source-id: d3515c6658a387acb7fccaf83f23dbb452f02847
2020-04-25 21:18:58 -07:00