Commit Graph

604 Commits

Author SHA1 Message Date
Jason Ansel
b040dc3a53 Reland: [inductor] Simplify grid handling (#148305)
Summary:
Relands D69965761 / https://github.com/pytorch/pytorch/pull/147583

Before this PR, calling a triton kernel would look like:
```py
kernel.run(a, b, xnumel, grid=grid(xnumel), stream=stream0)
```
where the `grid=` was passed as a callable (function closure) arg.  This PR removes the grid arg:
```py
kernel.run(a, b, xnumel, stream=stream0)
```
instead now the grid computation is included in the kernel launcher, with something like:
```py
def launcher(in_ptr0, out_ptr0, xnumel, stream):
    grid_0 = ((xnumel + 1023) >> 10)
    grid_1 = 1
    grid_2 = 1
    runner(grid_0, grid_1, grid_2, stream, function, metadata, None, launch_enter_hook, launch_exit_hook, in_ptr0, out_ptr0, xnumel)
```

This should be faster, since we remove multiple function/dict calls and are able to specialize the grid computation for each `triton.Config`.

It also allows us to unify the handling of grids between the Python and C++ wrapper code.  Before this, C++ wrapper code didn't actually support dynamic grid sizes and instead burned in a static grid.

This unification allows this PR to be a net deletion of code.

Differential [disconnected] Revision: D70471332

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148305
Approved by: https://github.com/shunting314, https://github.com/eellison
2025-03-12 15:52:16 +00:00
PyTorch MergeBot
5ada4e6a53 Revert "Reland: [inductor] Simplify grid handling (#148305)"
This reverts commit 8d08b49015.

Reverted https://github.com/pytorch/pytorch/pull/148305 on behalf of https://github.com/jithunnair-amd due to Broke ROCm CI ([comment](https://github.com/pytorch/pytorch/pull/148305#issuecomment-2718177044))
2025-03-12 14:58:43 +00:00
Jason Ansel
8d08b49015 Reland: [inductor] Simplify grid handling (#148305)
Summary:
Relands D69965761 / https://github.com/pytorch/pytorch/pull/147583

Before this PR, calling a triton kernel would look like:
```py
kernel.run(a, b, xnumel, grid=grid(xnumel), stream=stream0)
```
where the `grid=` was passed as a callable (function closure) arg.  This PR removes the grid arg:
```py
kernel.run(a, b, xnumel, stream=stream0)
```
instead now the grid computation is included in the kernel launcher, with something like:
```py
def launcher(in_ptr0, out_ptr0, xnumel, stream):
    grid_0 = ((xnumel + 1023) >> 10)
    grid_1 = 1
    grid_2 = 1
    runner(grid_0, grid_1, grid_2, stream, function, metadata, None, launch_enter_hook, launch_exit_hook, in_ptr0, out_ptr0, xnumel)
```

This should be faster, since we remove multiple function/dict calls and are able to specialize the grid computation for each `triton.Config`.

It also allows us to unify the handling of grids between the Python and C++ wrapper code.  Before this, C++ wrapper code didn't actually support dynamic grid sizes and instead burned in a static grid.

This unification allows this PR to be a net deletion of code.

Differential Revision: D70471332

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148305
Approved by: https://github.com/shunting314, https://github.com/eellison
2025-03-11 18:51:06 +00:00
PyTorch MergeBot
c916a8efc5 Revert "Use the device interface for detecting Triton availability (#139171)"
This reverts commit 940b60db97.

Reverted https://github.com/pytorch/pytorch/pull/139171 on behalf of https://github.com/ZainRizvi due to Sorry but this is breaking internally. @jansel can you please help get these changes working? See D70946254 for more details. To validate the fixes internally, you can follow the instructions here: https://fburl.com/fixing-ghfirst-reverts ([comment](https://github.com/pytorch/pytorch/pull/139171#issuecomment-2715392451))
2025-03-11 18:49:21 +00:00
eellison
2bcc3acb90 Update low prec codegen for div/mod (#142350)
Div/mod in fp16/bf16 requires a downcast to preserve its inputs' dtypes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142350
Approved by: https://github.com/blaine-rister
2025-03-11 08:02:30 +00:00
George White
940b60db97 Use the device interface for detecting Triton availability (#139171)
This allows for each device type to check current devices for Triton compatibility and ensure their Triton backend is present.

This PR replaces the `has_triton()` global method which was previously used for this task, and moves the initial check for each Inductor backend on to their associated `BaseScheduler` subclass. This means that other backends, such as Halide, can also implement their own availability checks.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139171
Approved by: https://github.com/jansel
2025-03-11 03:56:11 +00:00
David Berard
755965d2e4 [inductor] fix matmul w/ torch.bucketize epilogue (#148769)
See https://github.com/pytorch/pytorch/issues/148764.

Inductor was codegen-ing wrong shapes for bucketize when it was fused as an epilogue: the binary search helper function requested the shape of the input tensor, and Inductor was generating `[XBLOCK]`, when `XBLOCK` doesn't exist.

As a workaround, this PR removes the `BLOCK_SHAPE` parameter from the helper function (and just uses `values.shape`) so that we don't even have to generate the shape.

This PR also introduces `torch._inductor.config.triton.disallow_failing_autotune_kernels_TESTING_ONLY` to test this behavior. This config is needed to enforce that _all_ autotune kernel candidates pass - otherwise, the fused-bucketize exception just gets caught and an `inf` latency is assigned to it.

Differential Revision: [D70794563](https://our.internmc.facebook.com/intern/diff/D70794563)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148769
Approved by: https://github.com/benjaminglass1, https://github.com/aaronenyeshi
2025-03-07 22:34:13 +00:00
Shunting Zhang
262411e48b [inductor] online softmax (#127011)
Softmax need do some preparation work that access the input tensor in two passes
- compute amax of each row
- compute (x - amax).exp.sum for each row

When the row size is large, cache can not hold all the active data and accessing the input multiple passes increases execution time since the kernel is membw bounded.

Online softmax uses a customized reduction to compute max and sum at the same time by accessing the data in one pass. Check this paper for more details ( https://arxiv.org/abs/1805.02867 ).

Also here is an online softmax kernel generated by inductor as a reference: https://gist.github.com/shunting314/67ae4fffd45d4f2753c781780332fa54

## Microbenchmark

- `TORCHINDUCTOR_COORDINATE_DESCENT_TUNING=1 TORCHINDUCTOR_ONLINE_SOFTMAX=0 DO_PERF_TEST=1 python test/inductor/test_online_softmax.py -k test_softmax` : without online softmax
  - eager_ms=6.671296119689941
  - opt_ms=8.06931209564209
- `TORCHINDUCTOR_COORDINATE_DESCENT_TUNING=1 TORCHINDUCTOR_ONLINE_SOFTMAX=1 DO_PERF_TEST=1 python test/inductor/test_online_softmax.py -k test_softmax`: with online softmax
  - eager_ms=6.634047985076904
  - opt_ms=6.230591773986816

Ideally, online softmax should save about 2ms here. We saves about 1.84ms in practice.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127011
Approved by: https://github.com/jansel
2025-03-06 21:07:18 +00:00
PyTorch MergeBot
608377d341 Revert "[import][inductor] Simplify grid handling (#147583)"
This reverts commit b59776d857.

Reverted https://github.com/pytorch/pytorch/pull/147583 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/147583#issuecomment-2693016036))
2025-03-03 00:49:32 +00:00
Jason Ansel
b59776d857 [import][inductor] Simplify grid handling (#147583)
Before this PR, calling a triton kernel would look like:
```py
kernel.run(a, b, xnumel, grid=grid(xnumel), stream=stream0)
```
where the `grid=` was passed as a callable (function closure) arg.  This PR removes the grid arg:
```py
kernel.run(a, b, xnumel, stream=stream0)
```
instead now the grid computation is included in the kernel launcher, with something like:
```py
def launcher(in_ptr0, out_ptr0, xnumel, stream):
    grid_0 = ((xnumel + 1023) >> 10)
    grid_1 = 1
    grid_2 = 1
    runner(grid_0, grid_1, grid_2, stream, function, metadata, None, launch_enter_hook, launch_exit_hook, in_ptr0, out_ptr0, xnumel)
```

This should be faster, since we remove multiple function/dict calls and are able to specialize the grid computation for each `triton.Config`.

It also allows us to unify the handling of grids between the Python and C++ wrapper code.  Before this, C++ wrapper code didn't actually support dynamic grid sizes and instead burned in a static grid.

This unification allows this PR to be a net deletion of code.

Note the attached diff contains some minor fbcode-only changes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147583
Approved by: https://github.com/eellison, https://github.com/shunting314
2025-03-02 07:31:07 +00:00
Mwiza Kunda
e74fdbe6d0 [inductor] ignore block ptr advancements for removed buffers (#148087)
Follow up to https://github.com/pytorch/pytorch/pull/147193. Some buffers are removed only when the kernel context is exited so defer the lines instead.

Added `use_block_ptr` as a parameter to test case that fails if run with block ptrs enabled.

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148087
Approved by: https://github.com/jansel, https://github.com/eellison
2025-02-28 21:31:15 +00:00
Xuehai Pan
1cb4e2df65 [BE][PYFMT] migrate PYFMT for torch._inductor to ruff format (#144550)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144550
Approved by: https://github.com/jansel
2025-02-28 13:33:19 +00:00
Mwiza Kunda
8cb8722979 [inductor][triton] Ignore block ptr advances for removed buffers (#147193)
block ptr advancements should also be deferrered conditional on the associated buffer not being removed. For example, if `FusedSchedulerNode(op0-op1)` has a store in `SchedulerNode` `op0` that is read in `op1`, the store and associated block ptr that would be created for `op0` in isolation is no longer needed.

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147193
Approved by: https://github.com/jansel

Co-authored-by: Aaron Gokaslan <aaronGokaslan@gmail.com>
2025-02-27 03:37:33 +00:00
PyTorch MergeBot
0d31c621a3 Revert "[inductor][triton] Ignore block ptr advances for removed buffers (#147193)"
This reverts commit 17766b7aad.

Reverted https://github.com/pytorch/pytorch/pull/147193 on behalf of https://github.com/wdvr due to failing tests on trunk - see below ([comment](https://github.com/pytorch/pytorch/pull/147193#issuecomment-2683286358))
2025-02-25 21:04:04 +00:00
Mwiza
17766b7aad [inductor][triton] Ignore block ptr advances for removed buffers (#147193)
block ptr advancements should also be deferrered conditional on the associated buffer not being removed. For example, if `FusedSchedulerNode(op0-op1)` has a store in `SchedulerNode` `op0` that is read in `op1`, the store and associated block ptr that would be created for `op0` in isolation is no longer needed.

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147193
Approved by: https://github.com/jansel

Co-authored-by: Aaron Gokaslan <aaronGokaslan@gmail.com>
2025-02-25 19:14:55 +00:00
Yang Chen
eb892cd768 [codegen] enable SORT and TUPLE_REDUCTION for AMD Triton (#147340)
Looks like Triton's AMD backend supports multiple inputs already.
Let's enable SORT and TUPLE_REDUCTION for it.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147340
Approved by: https://github.com/Skylion007, https://github.com/jansel, https://github.com/eellison
2025-02-18 21:15:23 +00:00
Isuru Fernando
a9ae3340ca Fix triton masked loading for non-block tl.loads (#144782)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144782
Approved by: https://github.com/eellison
2025-02-15 00:07:33 +00:00
James Wu
23524699d5 Only call triton in worker process, kick off worker processes earlier, during inductor codegen (#146417)
### Big idea
This PR extends https://github.com/pytorch/pytorch/pull/144288 by combining calling triton in worker processes with the future cache: we kick off triton compilation in the worker processes earlier, during inductor codegen. Basically instead of calling async_compile.triton for the first time only after the entire code has been generated, we start compiling as soon as we know we'll need to compile the kernel. Then, when loading the generated inductor code, we can simply read from our in memory future cache, considerably increasing the parallelism.
### Implementation Overview
In total, the diff does the following:
- Converts TritonFuture to LambdaFuture, only calling triton.compile on worker processes
- Now that triton.compile() isn't called on the main process, we call TritonBundler on all compiled kernels when we get them back from workers
- Extend @eellison's future cache to a class, mostly as a refactor
- Finally, call async_compile.triton ahead of time in Scheduler.codegen if workers are warmed up. This causes the subsequent
async_compile.triton call that occurs after codegen to cache hit on cold start.
In the diffs after this, I will add more to CompiledTritonKernels so that TritonBundler, on a warm start, automatically populates the in memory cache on warm start with the existing triton kernels, avoiding calling triton altogether on warm starts.
Because LambdaFutures are much faster to kick off than TritonFutures, due to not needing to load from TritonCodeCache at all, the time spent kicking off these worker jobs is pretty minimal for inductor codegen.

Differential Revision: [D69123174](https://our.internmc.facebook.com/intern/diff/D69123174/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146417
Approved by: https://github.com/jansel
2025-02-11 03:46:16 +00:00
Jason Ansel
c2bf3be011 [inductor] Remove _get_grid_fn_str (#146800)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146800
Approved by: https://github.com/yanboliang
2025-02-10 23:14:30 +00:00
eellison
a36c22f2ed futher scheduler changes for invoke_quant: prologue low prec, (slightly) more aggressive fusion (#145104)
Respect invoke_quant low precision options, also, be more aggressive in attepmting fusion.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145104
Approved by: https://github.com/shunting314, https://github.com/jansel
ghstack dependencies: #139102
2025-02-10 15:50:19 +00:00
Blaine Burton Rister
a1bfb39a31 [Inductor] Expand Identity ops prior to block pattern matching (#146000)
# Feature

Inductor sometimes uses `Identity` functions to group various terms of an expression. While this is convenient in some scenarios, it can frustrate pattern matching. For example, when we're matching an indexing expression to tell if it can be represented as a block pointer, that analysis should be invariant to `Identity`'s.

This PR adds a few features to achieve this invariance.
 - Create a new expansion mode `expr.expand(identity=True)`, which removes all `Identity` functions from the expression.
 -  Preprocess the expression with this expansion prior to pattern matching.
 - Bonus: create a new test utility function called `dummy_graph()`, which creates a simple `GraphLowering`. This is useful for testing the pattern matcher, as we need to initialize `V.graph` before we can access `V.graph.sizevars`.

# Test plan
This PR adds a few new unit tests:
 - Added a unit test specifically for `expr.expand(identity=True)`.
 - Added a new unit test module for the block pattern matcher. Tested that we can correctly match some example patterns containing Identity ops.

I originally intended to add an end to end test compiling pointwise cat, and mapping the corresponding memory accesses to block pointers. However, it looks like that will take more work, since the [relevant code path](https://github.com/pytorch/pytorch/blob/main/torch/_inductor/codegen/triton.py#L1306) disables block pointer analysis. It might be better to defer that to a future PR.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146000
Approved by: https://github.com/eellison, https://github.com/jansel
2025-02-08 18:11:53 +00:00
Jason Ansel
06604c4ec1 [inductor] Refactor op handlers part 5 (#146257)
This makes OpHandler just a normal class using inheritance, and removes typing workarounds needed because it wasn't

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146257
Approved by: https://github.com/shunting314
ghstack dependencies: #146252, #146254, #146255
2025-02-08 18:00:30 +00:00
Jason Ansel
403db2faee [inductor] Refactor op handlers part 4 (#146255)
This replaces the `__getattr__()` pattern used in remaining OpHandlers with a `DefaultHandler` class defined in part 2.

Some compile time wins from this as well:
```
2025-02-02T19:46:32.2033010Z
2025-02-02T19:46:32.2036607Z WIN: benchmark ('add_loop_inductor', 'compile_time_instruction_count') failed, actual result 29633182927 is -1.71% lower than expected 30150000000 ±1.50% please update the expected results.
2025-02-02T19:46:32.2037575Z
2025-02-02T19:46:32.2037907Z please update all results that changed significantly, and not only the failed ones
2025-02-02T19:46:32.2039291Z PASS: benchmark ('add_loop_inductor_dynamic_gpu', 'compile_time_instruction_count') pass, actual result 43986879172 -1.02% is within expected 44440000000 ±2.50%
2025-02-02T19:46:32.2040131Z
2025-02-02T19:46:32.2041180Z WIN: benchmark ('add_loop_inductor_gpu', 'compile_time_instruction_count') failed, actual result 26246225695 is -1.85% lower than expected 26740000000 ±1.50% please update the expected results.
2025-02-02T19:46:32.2042188Z
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146255
Approved by: https://github.com/shunting314
ghstack dependencies: #146252, #146254
2025-02-08 18:00:17 +00:00
Jason Ansel
04ce02182b [inductor] Use index_dtype (int32/int64 depending on size) for argmax accumulators (#146651)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146651
Approved by: https://github.com/shunting314, https://github.com/eellison
2025-02-07 21:21:21 +00:00
eellison
71e8a2bda4 Expand inductor codegen dtype asserts, fix scan (#146067)
We were codegening intermediary dtype asserts in some places but not all. expands assertions, fixes newly failing assertion in

`TORCHINDUCTOR_COMPILE_THREADS=1 TORCH_LOGS="output_code" PYTORCH_OPINFO_SAMPLE_INPUT_INDEX=1 python test/inductor/test_torchinductor_opinfo.py TestInductorOpInfoCUDA.test_comprehensive_logcumsumexp_cuda_float16` for scan.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146067
Approved by: https://github.com/shunting314, https://github.com/jansel
2025-02-07 06:35:47 +00:00
Shunting Zhang
992388c100 [inductor] use ftz variant of exp (#146216)
Inductor generated exp op is compiled as the following ptx snippet by Triton.

```
        mul.f32         %f74, %f83, 0f3FB8AA3B;
        ex2.approx.f32 %f73, %f74;
```

But if we enable --use_fast_math in nvcc, exp in CUDA is compiled as
```
	mul.ftz.f32 	%f2, %f1, 0f3FB8AA3B;
	ex2.approx.ftz.f32 	%f3, %f2;
```
which uses the FTZ variant.

Let Inductor able to generate the FTZ variant if use_fast_math config is true.

I see 4% speedup for the two pass prepare_softmax kernel, online softmax should be affected more since it does more computation per seconds (>10% in my testing).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146216
Approved by: https://github.com/jansel, https://github.com/eellison
2025-02-06 19:12:35 +00:00
PyTorch MergeBot
68304dba7a Revert "[inductor] Refactor op handlers part 4 (#146255)"
This reverts commit 7aced455c5.

Reverted https://github.com/pytorch/pytorch/pull/146255 on behalf of https://github.com/atalman due to Sorry need to revert https://github.com/pytorch/pytorch/pull/146252 ([comment](https://github.com/pytorch/pytorch/pull/146255#issuecomment-2638258089))
2025-02-05 23:24:20 +00:00
PyTorch MergeBot
49effa0deb Revert "[inductor] Refactor op handlers part 5 (#146257)"
This reverts commit d3dd3eeb7f.

Reverted https://github.com/pytorch/pytorch/pull/146257 on behalf of https://github.com/atalman due to Sorry need to revert https://github.com/pytorch/pytorch/pull/146252 ([comment](https://github.com/pytorch/pytorch/pull/146257#issuecomment-2638251994))
2025-02-05 23:20:38 +00:00
Jason Ansel
f55c0af37f [inductor] Support non-power-of-2 cooperative RSPLIT (#145689)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145689
Approved by: https://github.com/eellison
2025-02-05 16:36:53 +00:00
PyTorch MergeBot
282d185ec1 Revert "[inductor] use ftz variant of exp (#146216)"
This reverts commit b0b3fe8bcf.

Reverted https://github.com/pytorch/pytorch/pull/146216 on behalf of https://github.com/atalman due to inductor/test_op_completeness.py::TestOpCompleteness::test_triton_overrides [GH job link](https://github.com/pytorch/pytorch/actions/runs/13152430750/job/36702812599) [HUD commit link](b0b3fe8bcf) ([comment](https://github.com/pytorch/pytorch/pull/146216#issuecomment-2636961317))
2025-02-05 14:13:45 +00:00
Shunting Zhang
b0b3fe8bcf [inductor] use ftz variant of exp (#146216)
Inductor generated exp op is compiled as the following ptx snippet by Triton.

```
        mul.f32         %f74, %f83, 0f3FB8AA3B;
        ex2.approx.f32 %f73, %f74;
```

But if we enable --use_fast_math in nvcc, exp in CUDA is compiled as
```
	mul.ftz.f32 	%f2, %f1, 0f3FB8AA3B;
	ex2.approx.ftz.f32 	%f3, %f2;
```
which uses the FTZ variant.

Let Inductor able to generate the FTZ variant if use_fast_math config is true.

I see 4% speedup for the two pass prepare_softmax kernel, online softmax should be affected more since it does more computation per seconds (>10% in my testing).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146216
Approved by: https://github.com/jansel
2025-02-05 07:35:43 +00:00
Jason Ansel
d3dd3eeb7f [inductor] Refactor op handlers part 5 (#146257)
This makes OpHandler just a normal class using inheritance, and removes typing workarounds needed because it wasn't

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146257
Approved by: https://github.com/shunting314
ghstack dependencies: #146225, #146226, #146235, #146252, #146254, #146255
2025-02-04 23:36:25 +00:00
Jason Ansel
7aced455c5 [inductor] Refactor op handlers part 4 (#146255)
This replaces the `__getattr__()` pattern used in remaining OpHandlers with a `DefaultHandler` class defined in part 2.

Some compile time wins from this as well:
```
2025-02-02T19:46:32.2033010Z
2025-02-02T19:46:32.2036607Z WIN: benchmark ('add_loop_inductor', 'compile_time_instruction_count') failed, actual result 29633182927 is -1.71% lower than expected 30150000000 ±1.50% please update the expected results.
2025-02-02T19:46:32.2037575Z
2025-02-02T19:46:32.2037907Z please update all results that changed significantly, and not only the failed ones
2025-02-02T19:46:32.2039291Z PASS: benchmark ('add_loop_inductor_dynamic_gpu', 'compile_time_instruction_count') pass, actual result 43986879172 -1.02% is within expected 44440000000 ±2.50%
2025-02-02T19:46:32.2040131Z
2025-02-02T19:46:32.2041180Z WIN: benchmark ('add_loop_inductor_gpu', 'compile_time_instruction_count') failed, actual result 26246225695 is -1.85% lower than expected 26740000000 ±1.50% please update the expected results.
2025-02-02T19:46:32.2042188Z
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146255
Approved by: https://github.com/shunting314
ghstack dependencies: #146225, #146226, #146235, #146252, #146254
2025-02-04 23:36:17 +00:00
Jason Ansel
67be5953fe [inductor] Refactor op handlers part 1 (#146235)
This enforces the invariant that every backend implements the same set of ops and removes a layer of indirection for BasicMathOps.

Interestingly this is a small compile time win:
```
...
WIN: benchmark ('add_loop_inductor', 'compile_time_instruction_count') failed, actual result 30151159301 is -6.13% lower than expected 32120000000 ±1.50% please update the expected results.

please update all results that changed significantly, and not only the failed ones
PASS: benchmark ('add_loop_inductor_dynamic_gpu', 'compile_time_instruction_count') pass, actual result 44447549162 -1.69% is within expected 45210000000 ±2.50%

WIN: benchmark ('add_loop_inductor_gpu', 'compile_time_instruction_count') failed, actual result 26743557195 is -2.25% lower than expected 27360000000 ±1.50% please update the expected results.

please update all results that changed significantly, and not only the failed ones
PASS: benchmark ('basic_modules_ListOfLinears_eager', 'compile_time_instruction_count') pass, actual result 945129734 +0.93% is within expected 936400000 ±1.50%

WIN: benchmark ('basic_modules_ListOfLinears_inductor', 'compile_time_instruction_count') failed, actual result 18984384503 is -3.19% lower than expected 19610000000 ±1.50% please update the expected results.

please update all results that changed significantly, and not only the failed ones
WIN: benchmark ('basic_modules_ListOfLinears_inductor_gpu_force_shape_pad', 'compile_time_instruction_count') failed, actual result 17258025389 is -1.94% lower than expected 17600000000 ±1.50% please update the expected results.
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146235
Approved by: https://github.com/shunting314
ghstack dependencies: #146225, #146226
2025-02-04 23:35:53 +00:00
Jason Ansel
e9f6e273e7 [inductor] Add typing to common.CSE (#145993)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145993
Approved by: https://github.com/yanboliang
ghstack dependencies: #145916
2025-02-04 16:05:39 +00:00
Jason Ansel
7a5239afd7 [inductor] Add typing to common.KernelArgs (#145916)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145916
Approved by: https://github.com/yanboliang
2025-02-04 16:05:39 +00:00
PyTorch MergeBot
7f796eb8b7 Revert "[inductor] Add typing to common.KernelArgs (#145916)"
This reverts commit 68cf36d5ab.

Reverted https://github.com/pytorch/pytorch/pull/145916 on behalf of https://github.com/atalman due to Failing internally, please see associated diff ([comment](https://github.com/pytorch/pytorch/pull/145916#issuecomment-2632715678))
2025-02-04 03:07:12 +00:00
PyTorch MergeBot
d3c7e4bb9c Revert "[inductor] Add typing to common.CSE (#145993)"
This reverts commit 8c657ae4be.

Reverted https://github.com/pytorch/pytorch/pull/145993 on behalf of https://github.com/atalman due to Sorry need to revert https://github.com/pytorch/pytorch/pull/145916 ([comment](https://github.com/pytorch/pytorch/pull/145993#issuecomment-2632712384))
2025-02-04 03:04:01 +00:00
PyTorch MergeBot
2f40f789da Revert "[inductor] Refactor op handlers part 1 (#146235)"
This reverts commit 204be4e0a2.

Reverted https://github.com/pytorch/pytorch/pull/146235 on behalf of https://github.com/atalman due to Breaks lint, sorry: Definition of polygamma in base class MetalOverrides is incompatible with definition in base class OpsHandler. Please rebase fix lint and reland ([comment](https://github.com/pytorch/pytorch/pull/146235#issuecomment-2632444514))
2025-02-04 00:00:08 +00:00
Jason Ansel
204be4e0a2 [inductor] Refactor op handlers part 1 (#146235)
This enforces the invariant that every backend implements the same set of ops and removes a layer of indirection for BasicMathOps.

Interestingly this is a small compile time win:
```
...
WIN: benchmark ('add_loop_inductor', 'compile_time_instruction_count') failed, actual result 30151159301 is -6.13% lower than expected 32120000000 ±1.50% please update the expected results.

please update all results that changed significantly, and not only the failed ones
PASS: benchmark ('add_loop_inductor_dynamic_gpu', 'compile_time_instruction_count') pass, actual result 44447549162 -1.69% is within expected 45210000000 ±2.50%

WIN: benchmark ('add_loop_inductor_gpu', 'compile_time_instruction_count') failed, actual result 26743557195 is -2.25% lower than expected 27360000000 ±1.50% please update the expected results.

please update all results that changed significantly, and not only the failed ones
PASS: benchmark ('basic_modules_ListOfLinears_eager', 'compile_time_instruction_count') pass, actual result 945129734 +0.93% is within expected 936400000 ±1.50%

WIN: benchmark ('basic_modules_ListOfLinears_inductor', 'compile_time_instruction_count') failed, actual result 18984384503 is -3.19% lower than expected 19610000000 ±1.50% please update the expected results.

please update all results that changed significantly, and not only the failed ones
WIN: benchmark ('basic_modules_ListOfLinears_inductor_gpu_force_shape_pad', 'compile_time_instruction_count') failed, actual result 17258025389 is -1.94% lower than expected 17600000000 ±1.50% please update the expected results.
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146235
Approved by: https://github.com/shunting314
ghstack dependencies: #146225, #146226
2025-02-03 23:15:13 +00:00
Jason Ansel
8c657ae4be [inductor] Add typing to common.CSE (#145993)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145993
Approved by: https://github.com/yanboliang
ghstack dependencies: #145913, #145914, #145915, #145916
2025-02-01 16:34:18 +00:00
Jason Ansel
68cf36d5ab [inductor] Add typing to common.KernelArgs (#145916)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145916
Approved by: https://github.com/yanboliang
ghstack dependencies: #145913, #145914, #145915
2025-02-01 16:34:18 +00:00
David Berard
8326d27093 [inductor][5/N] triton support post-#5512, fix 1 and None handling (#145515)
This fixes handling for "1" and "None" args with new Triton versions. TL;DR: triton_meta["constants"] (which is passed to ASTSource) should be a map of {"kwarg_name": constant_value} for values which are tl.constexpr, or have a value of 1 or None (i.e. "specialized" constants). For constant args, triton_meta["signature"][arg_name] should be "constexpr" (even for specialized constants).

Note: This adds support for Triton versions after 5512; but not for versions in between 5220 and 5512 (i.e. `TritonAttrsDescriptorVersion.V3_BACKENDS_TUPLE`). There's a completely different format for constants/signature in the commit range in between.

To test: I ran `test_torchinductor.py` and `test_triton_kernels.py` with the main branch of triton (~jan 27). The only failing tests are aoti-related tests (which need to be fixed as a follow-up), and test_mutable_custom_op_fixed_layout2_cuda (which is failing with or without the new triton version on my machine); additionally, the split-scan/split-reduction kernels rely on https://github.com/triton-lang/triton/pull/5723.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145515
Approved by: https://github.com/SamGinzburg
2025-02-01 02:11:48 +00:00
Boyuan Feng
58cc6693cb [BE] Type annotate wrapper_benchmark.py and cuda_combined_scheduling.py (#145542)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145542
Approved by: https://github.com/eellison
2025-01-30 03:53:52 +00:00
Jason Ansel
793dfc27e0 [inductor] Add some typing to triton.py (#145688)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145688
Approved by: https://github.com/Skylion007, https://github.com/eellison
ghstack dependencies: #145671, #145695
2025-01-29 21:56:40 +00:00
Jason Ansel
5db0ad92e3 [inductor] Remove mask_str from IndexingOptions (#145695)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145695
Approved by: https://github.com/eellison
ghstack dependencies: #145671
2025-01-29 21:56:40 +00:00
Jason Ansel
23ff899164 [inductor] Fix handling of fixed XBLOCK larger than xnumel=1 (#145671)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145671
Approved by: https://github.com/eellison
2025-01-29 21:56:32 +00:00
David Berard
2e8c080ab1 [inductor][4/N] triton support post-#5512, fix constexpr signatures (#145583)
Prior to this PR, constexprs were appearing in signatures as `{.. "XBLOCK : tl.constexpr": "constexpr"}` when they really should appear as `{.. "XBLOCK": "constexpr"}`.

This PR represents the argument names as ArgName objects, which can optionally be marked as constexpr.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145583
Approved by: https://github.com/jansel
2025-01-29 05:46:05 +00:00
Mwiza Kunda
9036a22c83 [Inductor][Triton] Change propagated dtype for fp16/bf16 unwrapped 0d tensors (#145613)
Fixes TestInductorOpInfoCPU.test_comprehensive_max_binary_cpu_float16 and related tests for Triton CPU. TestInductorOpInfoCPU is currently not run in the CI. See https://github.com/pytorch/pytorch/pull/144389#issuecomment-2608050755 for some additional context.

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145613
Approved by: https://github.com/davidberard98, https://github.com/eellison, https://github.com/jansel
2025-01-29 00:23:44 +00:00
eellison
8e258e2ecd Parallelize epilogue/prologue benchmarking (#143408)
When we attempt prologue or epilogue fusion with a TritonTemplate, we benchmark it at compile time in order to determine profitability. This avoids slowdowns/register spilling, and allows us to pick fusion when a base triton template is slower than cublas but faster when considering an epilogue. However, that fused benchmarking does not do the same async compilation as we do for the base TritonTemplate. The Base TritonTemplate is async compiled during lowering, then later waited on and benchmarked.

This PR extends a similar process to benchmarking fused TritonTemplates in the scheduler. We keep a list of pending fusions which have async compilations. And we resolve any pending fusions a node is in prior to attempting to fuse it with any other node.

Initially, I saw some slowdowns with this because we kick off async compilations of identical fusions in parallel. To address this I added source code caching at the `async_compile` level (we also already cache benchmark runs, but that would not happen in parallel).

Compilation speedups:

<img width="717" alt="image" src="https://github.com/user-attachments/assets/8e8f7d6c-7824-4210-83f9-a2a0f6db5ac9" />

This also should let us be a bit more aggressive with either configs, or benchmarking other fusions which are hard to determine profitability of.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143408
Approved by: https://github.com/jansel, https://github.com/shunting314
2025-01-28 18:18:24 +00:00