Summary:
#### Reason for relanding
Line 1607 of `torch/testing/_internal/common_methods_invocations.py` of https://github.com/pytorch/pytorch/issues/50999 had `dtype` instead of `dtype=torch.bool`, so 4 of the 9 sample inputs for `bool` had incorrect dtype. This bug was caught by https://github.com/pytorch/pytorch/issues/54949.
1. Added support for pow() on CPU for `float16` (`Half`) and `bfloat16` types.
Both `pow(Tensor, Scalar)` and `pow(Tensor, Tensor)` are now supported for the aforementioned types.
However autograd isn't supported for `Float16` on CPU yet, as `log_vml_cpu` can't be enabled for it.
2. heitorschueroff added `pow_tensor_scalar_optimized_kernel` to refactor & simplify `PowKernel.cpp`.
It provides a common path for all the complex types & floating point types (except Float16, due to lack of complete AVX2 vectorization support for it). It replaced code that had previously been duplicated for (float, double) and complex types,
so PowKernel.cpp looks a lot cleaner now.
3. Enabled (unskipped) some tests for `erf`, `erfc`,`erfinv`, `tan` and `linalg.vector.norm` which were being skipped earlier due to `pow()` not having been implemented for `float16` & `bfloat16`.
4. Added an OpInfo for `pow()` & enabled some test cases for `pow()`.
5. Extended the coverage of existing tests for `pow` in `test_binary_ufuncs.py` in order to enable comparison with `numpy`, even with discontiguous tensors, and added a test to ensure that a runtime error is raised for `pow`'s inplace variant if resizing the base tensor is required during its invocation.
6. Added `float16` & `bfloat16` to `square`'s dtype lists in its `UnaryUfuncInfo`.
7. Removed redundant `dtypesIfCPU` and `dtypesIfCUDA` from `OpInfo`s where they are equal to `dtypes`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/55280
Reviewed By: jbschlosser
Differential Revision: D27591772
Pulled By: heitorschueroff
fbshipit-source-id: c7420811b32595bb3353149a61e54a73f2eb352b
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/55150
Somehow I forgot to add these checks. Now they're in here. Thanks
ngimel for noticing.
This is probably a slight efficiency hit on TensorIterator, which is
probably already doing all these checks. Would be good to follow up
on this, though it may not be easily fixable with the TI rewrite.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: zhangguanheng66
Differential Revision: D27523879
Pulled By: ezyang
fbshipit-source-id: 458e617dbc6de6fcfa9e5841148b30b99f52e001
Summary:
Added the functionality desired in https://github.com/pytorch/pytorch/issues/50789.
1. Added support for pow() on CPU for `float16` (`Half`) and `bfloat16` types.
Both `pow(Tensor, Scalar)` and `pow(Tensor, Tensor)` are now supported for the aforementioned types.
However autograd isn't supported for `Float16` on CPU yet, as `log_vml_cpu` can't be enabled for it.
2. heitorschueroff added `pow_tensor_scalar_optimized_kernel` to refactor & simplify `PowKernel.cpp`.
It provides a common path for all the complex types & floating point types (except Float16, due to lack of complete AVX2 vectorization support for it). It replaced code that had previously been duplicated for (float, double) and complex types,
so PowKernel.cpp looks a lot cleaner now.
3. Enabled (unskipped) some tests for `erf`, `erfc`,`erfinv`, `linalg.norm` and `linalg.vector.norm` which were being skipped earlier due to `pow()` not having been implemented for `float16` & `bfloat16`.
4. Added an OpInfo for `pow()` & enabled some test cases for `pow()`.
5. Extended the coverage of existing tests for `pow` in `test_binary_ufuncs.py` in order to enable comparison with `numpy`, even with discontiguous tensors, and added a test to ensure that a runtime error is raised for `pow`'s inplace variant if resizing the base tensor is required during its invocation.
6. Added `float16` & `bfloat16` to `square`'s dtype lists in its `UnaryUfuncInfo`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50999
Reviewed By: zou3519
Differential Revision: D27478225
Pulled By: heitorschueroff
fbshipit-source-id: d309dd98d5a96d0cb9b08281757bb1c65266d011
Summary:
- Corrected a few errata in the SVD docs
- Made the notation more uniform (refer to `Vh` in `linalg.svd`, always use double tilts...)
- Wrote a better explanation about why the gradients of `U` and `V` are not well-defined when the input is complex or real but has repeated singular values. The previous one pointed to a somewhat obscure post on gauge theory.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54002
Reviewed By: malfet
Differential Revision: D27459502
Pulled By: mruberry
fbshipit-source-id: f5c35eca02d35dadd2fc0eeadfacc8824f409400
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54901
Some subtleties:
- Need to make sure not to clobber composite definitions when
deciding when to generate
- I was lazy and so I didn't make inplace on TensorList work,
nor did I make inplace functions that returned void work
- A few tests started complaining that these noop meta functions
weren't raising the errors they needed. This is tracked
in https://github.com/pytorch/pytorch/issues/54897
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: jbschlosser
Differential Revision: D27407232
Pulled By: ezyang
fbshipit-source-id: 5e706a267496368acdafd128942c310954e43d29
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53973
Two parts to this PR; I had to put them together because adding support for X causes more test code to be exercised, which in turn may require a fix for Y.
The first part is restoring the concept of storage to meta tensors. Previously, meta tensors had a nullptr storage (e.g., `meta_tensor.storage()` is an error.) As I was increasing the coverage of meta tensors, I started running into test cases (specifically memory overlap tests) that were failing because not having storage meant I couldn't check for memory overlap. After some discussion, we decided that it would make sense for meta tensors to model this as well (we already model strides, so getting accurate view information also seems useful). This PR does that by:
* Rewrite all of the factory functions in MetaTensor.cpp to use the generic versions (which are very carefully written to not actually poke at the data pointer, so everything works out). The key idea here is we give meta tensors a special allocator, MetaAllocator, which always returns a nullptr even if you ask for a nonzero number of bytes. resize_ is also made generic; the normal variant can be used directly rather than having to instruct it to avoid resizing storage
* Turn on memory overlap checking in TensorIterator even for meta tensors
* Although meta tensors now have storage, the concept of meta storage is NOT exposed to Python land (as it would imply I would have to codegen MetaFloatStorage, MetaDoubleStorage, etc. classes). So `x.storage()` still raises an error and I have a cludge in `__deepcopy__` to break storage sharing upon deep copy (this is wrong, but no tests exercise this at the moment).
The second part is adding more support for the most used functions in the test suite.
* Inplace operations have very simple meta functions. I added `fill_`, `zero_`, `random_`, `uniform_` and `normal_`. In the case of random, I take advantage of pbelevich's templates for defining random kernels, so that I can reuse the common scaffolding, and then just register a noop stub that actually does the RNG. (Look, another structured kernels tiny variant!)
* `copy_` is now implemented. Copying into a meta tensor is always OK, but copying out of a meta tensor raises an error (as we don't know what the "correct" data to copy out is in this case)
* `empty_strided` usage from structured kernels now is implemented (TBH, this could have been done as soon as `empty_strided` was added)
* Meta was missing in a few places in TensorOptions/DispatchKey utility functions, so I added them
* Autograd engine now correctly homes meta tensors with CPU tensors (they have -1 device index so CUDA queues wouldn't work anyway)
* `apply_`, `map_` and `map2_` are special cased to no-op on meta tensor self. These count as inplace operations too but they are implemented a little differently.
Getting more meta function support triggers a number of bugs in the test suite, which I then fix:
- Linear algebra functions sometimes don't report NotImplementedError because they get swallowed by catch all try blocks. This is tracked in https://github.com/pytorch/pytorch/issues/53739
- dlpack obviously doesn't work with meta tensors, I just disabled the test
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Differential Revision: D27036572
Test Plan: Imported from OSS
Reviewed By: agolynski, bdhirsh
Pulled By: ezyang
fbshipit-source-id: 7005ecf4feb92a643c37389fdfbd852dbf00ac78
Summary:
```
index_add(Tensor self, int dim, Tensor index, Tensor source) -> Tensor
```
now becomes
```
index_add(Tensor self, int dim, Tensor index, Tensor source, Scalar alpha=1) -> Tensor
```
Generally, this sounds useful and harmless, and inside PyTorch, we are already needing this feature in `add_out_dense_sparse_cuda`, see the `SparseCUDATensorMath.cu` change in this PR.
**Test not added yet. Will add if after discussion we believe this is a good idea.**
- [ ] TODO: add test
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54176
Reviewed By: ngimel
Differential Revision: D27319198
Pulled By: mruberry
fbshipit-source-id: fe43be082d1230c87c5313458213d5252be2ff23
Summary:
Added the support for half / bfloat / bool for `index_select`, as suggested by ngimel in
https://github.com/pytorch/pytorch/issues/49707#issuecomment-788140578
For the tests to pass, I also added the support for `index_add`.
I added `OpInfo` tests for `index_add` and more thorough forward tests for `index_select` to test these changes.
While doing so, I found that the support for scalar types in the derivative of `index_add` was not correct, so I corrected it.
Resolves https://github.com/pytorch/pytorch/issues/49707
It should also resolve similar issues that I encountered when porting `index_copy`, `take` and `put`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53898
Reviewed By: mruberry
Differential Revision: D27193294
Pulled By: ngimel
fbshipit-source-id: 5a0af2c62a0cf24f3cc9c74f230ab4f3712bbb7a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54079
Fixes https://github.com/pytorch/pytorch/issues/53815
Instead of testing if something is CUDA, we instead test if something
is not CPU. This in the general theming of "Don't be so darn CUDA
centric".
Intruigingly, we didn't have a is_cpu() method on Tensor. Which seems
like a big oversight and one of the reasons how we ended up in this
mess. So in it goes. Maybe we should also get this for Python bindings
as well (but in that case, should probably look into redoing all of the
is_X bindings so they aren't done manually).
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: ngimel
Differential Revision: D27109507
Pulled By: ezyang
fbshipit-source-id: abbe72c2e688c452ffe098d206cb79938b5824b1
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53759Fixes#53587, see issue for in-depth explanation of the bug.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: albanD
Differential Revision: D26971342
Pulled By: ezyang
fbshipit-source-id: 805983fed2658e27fb033f36a71fd30950a29328
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53665
ngimel pointed out to me where we already test the behavior of the `Upsample` ops in `test_nn.py`. This PR deleting my bespoke tests in `test_torch.py` and updates those in `test_nn.py` to test memory format properly.
There were two reasons the original test didn't pick up on a memory format regression:
- They didn't test the memory format of the output tensor explicitly, i.e. `output.is_contiguous(memory_format=...)`
- Even with that change, the test tensors were to simple to fail the tests. From some trial and error, it looks like one of the first two dimensions in the inputs needs to be > 1 in order for the `channels_last` memory format to actually re-order the strides.
Test Plan: Imported from OSS
Reviewed By: ngimel
Differential Revision: D26929683
Pulled By: bdhirsh
fbshipit-source-id: d17bc660ff031e9b3e2c93c60a9e9308e56ea612
Summary:
Fixes https://github.com/pytorch/pytorch/issues/48841 for half datatype (it was fixed for other datatypes before).
The reason for https://github.com/pytorch/pytorch/issues/48841 happening for half was that `exponential_` for half was producing 0s.
Exponential distribution implementation on cuda is here e08aae2613/aten/src/ATen/native/cuda/DistributionTemplates.h (L535-L545)
with `transformation::exponential` defined here
e08aae2613/aten/src/ATen/core/TransformationHelper.h (L113-L123)
It takes a uniformly distributed random number and takes `log` of it. If necessary, the result is then converted to low precision datatype (half). To avoid 0's, before applying `log`, ones are replaced with std::nextafter(1,0). This seems fine, because log(1-eps) is still representable in half precision (`torch.tensor([1.], device="cuda").nextafter(torch.tensor([0.], device="cuda")).log().half()` produces 5.96e-8) , so casting to `scalar_t` should work. However, since fast log approximation is used (`__logf`), the log result is ~3e-9 instead of more accurate 5.96e-8, and underflows when casting to half. Using `::log` instead of fast approximation fixes it, however, it comes with ~20% perf penalty on exponential kernel for fp32 datatype, probably more for half.
Edit: alternative approach used now is to filter all small values returned by transformation. The result is equivalent to squashing of 1's to 1-eps that was used before, and computing correct log of 1-eps (which is -eps, exactly equal even for doubles). This doesn't incur noticeable performance hit.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53480
Reviewed By: mruberry
Differential Revision: D26924622
Pulled By: ngimel
fbshipit-source-id: dc1329e4773bf91f26af23c8afa0ae845cfb0937
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53535
During the port to structured kernels for upsample kernels, I missed that a subset of them explicitly pass `memory_format` information from the input to the output tensors.
Note 1:
I added the logic into the `meta` function of each op, which feels morally correct since this logic affects the output shape/metadata. One consequence is that all backend implementations will get the logic. I synced with fmassa that this seems reasonable.
Note 2:
This logic used to happen in the following operators, which this PR fixes:
- upsample_nearest3d
- upsample_trilinear3d
- upsample_nearest2d
- upsample_bilinear2d
I explicitly didn't patch the other upsample kernels, which look like they never forwarded memory_format information:
- `upsample_bicubic2d` (maybe this should though? `UpSampleBicubic2d.cpp` isn't currently written to do anything different for `channels_last` tensors)
- All of the `upsample_{mode}1d` operators. Probably because, afaik, channels_last isn't supported for 3d tensors
- The corresponding backwards operator for every upsample op.
Note 3:
I'm also wondering why memory_format isn't just directly a part of the `tensor::options()` method, which would cause all ops to universally forward memory_format information from input to output tensors, rather than just the upsample ops. My guess is:
- BC-breakage. I'm not sure whether this would really *break* people, but it's an API change
- performance. `tensor::options()` is called everywhere, and adding a call to `suggest_memory_format()` would probably noticeably hit microbenchmarks. We could probably deal with that by making `memory_format` a precomputed field on the tensor?
Test Plan: Imported from OSS
Reviewed By: H-Huang
Differential Revision: D26891540
Pulled By: bdhirsh
fbshipit-source-id: b3845f4dd5646b88bf738b9e41fe829be6b0e5cf
Summary:
Helps make master green by removing this hefty memory allocating from CPU test.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53561
Reviewed By: malfet, albanD
Differential Revision: D26897941
Pulled By: janeyx99
fbshipit-source-id: 9f6c2d55f4eea1ab48665f7819fc113f21991036
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53276
- One of the tests had a syntax error (but the test
wasn't fine grained enough to catch this; any error
was a pass)
- Doesn't work on ROCm
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Differential Revision: D26820048
Test Plan: Imported from OSS
Reviewed By: mruberry
Pulled By: ezyang
fbshipit-source-id: b02c4252d10191c3b1b78f141d008084dc860c45
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53143
Meta is now an honest to goodness device type, like cpu, so you can use
device='meta' to trigger allocation of meta tensors. This way better
than empty_meta since we now have working API for most factory functions
(they don't necessarily work yet, though, because need to register Meta
versions of those functions.)
Some subtleties:
- I decided to drop the concept of CPU versus CUDA meta tensors; meta
tensors are device agnostic. It's hard to say exactly what the
correct level of abstraction here is, but in this particular case
implementation considerations trump semantic considerations: it
is way easier to have just a meta device, than to have a meta device
AND a cpu device AND a cuda device. This may limit the applicability
of meta tensors for tracing models that do explicit cpu()/cuda()
conversions (unless, perhaps, we make those operations no-ops on meta
tensors).
- I noticed that the DeviceType uppercase strings are kind of weird.
Are they really supposed to be all caps? That's weird.
- I moved the Meta dispatch key to live with the rest of the "device"
dispatch keys.
- I intentionally did NOT add a Backend for Meta. For now, I'm going to
hope meta tensors never exercise any of the Backend conversion code;
even if it does, better to fix the code to just stop converting to and
from Backend.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: samestep
Differential Revision: D26763552
Pulled By: ezyang
fbshipit-source-id: 14633b6ca738e60b921db66a763155d01795480d
Summary:
Fixes https://github.com/pytorch/pytorch/issues/52213
Nans were previously inconsistently propagated due to std::min always returning first argument if one of the args in nan
when reduction functor was called on 2 `-inf` arguments, `std::min(x,y) - std::max(x,y)` resulted in `-inf - (-inf)` = nan, even though logcumsumexp is well defined for `-inf, -inf` pair.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/52947
Reviewed By: H-Huang
Differential Revision: D26718456
Pulled By: ngimel
fbshipit-source-id: a44433889da352cc959786dd15b6361a68fcfed7
Summary:
This PR adds functionality to skip a test based on CUDA version.
This way, we can be more specific when skipping a test, such as when the test only fails for a particular CUDA version.
This allows us to add back the skipped tests for CUDA 11.2 for other CUDA versions, such as 10.1 and 11.1.
I tested this locally (by using 11.0 instead of 11.2), but will run all the CI to make sure it works.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/52359
Reviewed By: walterddr
Differential Revision: D26487951
Pulled By: janeyx99
fbshipit-source-id: 45c71cc6105ffd9985054880009cf68ea5ef3f6a
Summary:
Fixes https://github.com/pytorch/pytorch/issues/51719, https://github.com/pytorch/pytorch/issues/28142
**Change**
- Update `torch.Tensor.unflatten` to support users pass`-1` as the inferred size for both tensors and named tensors.
- Examples of using `-1` in the `unflatten` function are added to the docs.
- Fix the rendered issue of original `unflatten` docs by removing a blank line between its example section.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51955
Reviewed By: agolynski
Differential Revision: D26467198
Pulled By: zou3519
fbshipit-source-id: 6a3ede25561223187273796427ad0cb63f125364
Summary:
Reference: https://github.com/pytorch/pytorch/issues/50006
We should probably add aliases for these operators to be consistent with NumPy names i.e. `np.degrees` and `np.radians`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51283
Reviewed By: ngimel
Differential Revision: D26171163
Pulled By: mruberry
fbshipit-source-id: 1869604ed400820d95f6ff50a0e3cba1de1ffa84
Summary:
Adding CUDA 11.2 to Windows CI.
Disabled tests:
The following ran into `CUDA error: misaligned address` for CUDA 11.2: (issue linked below)
`test_where_scalar_valid_combination_cuda_complex128` in test_torch.py
`test_sgn_complex_cuda` in test_autograd.py
The following ran into `CUDA error: too many resources requested for launch` for CUDA 11.2: (https://github.com/pytorch/pytorch/issues/52002)
test_EmbeddingBag_per_sample_weights_and_new_offsets_cuda_int64_float64
test_EmbeddingBag_per_sample_weights_and_offsets_cuda_int64_float64
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51598
Reviewed By: mrshenli
Differential Revision: D26344965
Pulled By: janeyx99
fbshipit-source-id: 3c9a4ed16d748969e96593220ec0a9f33e1ffcef
Summary:
Toward fixing https://github.com/pytorch/pytorch/issues/47624
~Step 1: add `TORCH_WARN_MAYBE` which can either warn once or every time in c++, and add a c++ function to toggle the value.
Step 2 will be to expose this to python for tests. Should I continue in this PR or should we take a different approach: add the python level exposure without changing any c++ code and then over a series of PRs change each call site to use the new macro and change the tests to make sure it is being checked?~
Step 1: add a python and c++ toggle to convert TORCH_WARN_ONCE into TORCH_WARN so the warnings can be caught in tests
Step 2: add a python-level decorator to use this toggle in tests
Step 3: (in future PRs): use the decorator to catch the warnings instead of `maybeWarnsRegex`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48560
Reviewed By: ngimel
Differential Revision: D26171175
Pulled By: mruberry
fbshipit-source-id: d83c18f131d282474a24c50f70a6eee82687158f
Summary:
Implements `np.diff` for single order differences only:
- method and function variants for `diff` and function variant for `diff_out`
- supports out variant, but not in-place since shape changes
- adds OpInfo entry, and test in `test_torch`
- automatic autograd because we are using the `Math` dispatch
_Update: we only support Tensors for prepend and append in this PR. See discussion below and comments for more details._
Currently there is a quirk in the c++ API based on how this is implemented: it is not possible to specify scalar prepend and appends without also specifying all 4 arguments.
That is because the goal is to match NumPy's diff signature of `diff(int n=1, int dim=-1, Union[Scalar, Tensor] prepend=None, Union[Scalar, Tensor] append)=None` where all arguments are optional, positional and in the correct order.
There are a couple blockers. One is c++ ambiguity. This prevents us from simply doing `diff(int n=1, int dim=-1, Scalar? prepend=None, Tensor? append=None)` etc for all combinations of {Tensor, Scalar} x {Tensor, Scalar}.
Why not have append, prepend not have default args and then write out the whole power set of {Tensor, Scalar, omitted} x {Tensor, Scalar, omitted} you might ask. Aside from having to write 18 overloads, this is actually illegal because arguments with defaults must come after arguments without defaults. This would mean having to write `diff(prepend, append, n, dim)` which is not desired. Finally writing out the entire power set of all arguments n, dim, prepend, append is out of the question because that would actually involve 2 * 2 * 3 * 3 = 36 combinations. And if we include the out variant, that would be 72 overloads!
With this in mind, the current way this is implemented is actually to still do `diff(int n=1, int dim=-1, Scalar? prepend=None, Tensor? append=None)`. But also make use of `cpp_no_default_args`. The idea is to only have one of the 4 {Tensor, Scalar} x {Tensor, Scalar} provide default arguments for the c++ api, and add `cpp_no_default_args` for the remaining 3 overloads. With this, Python api works as expected, but some calls such as `diff(prepend=1)` won't work on c++ api.
We can optionally add 18 more overloads that cover the {dim, n, no-args} x {scalar-tensor, tensor-scalar, scalar-scalar} x {out, non-out} cases for c++ api. _[edit: counting is hard - just realized this number is still wrong. We should try to count the cases we do cover instead and subtract that from the total: (2 * 2 * 3 * 3) - (3 + 2^4) = 17. 3 comes from the 3 of 4 combinations of {tensor, scalar}^2 that we declare to be `cpp_no_default_args`, and the one remaining case that has default arguments has covers 2^4 cases. So actual count is 34 additional overloads to support all possible calls]_
_[edit: thanks to https://github.com/pytorch/pytorch/issues/50767 hacky_wrapper is no longer necessary; it is removed in the latest commit]_
hacky_wrapper was also necessary here because `Tensor?` will cause dispatch to look for the `const optional<Tensor>&` schema but also generate a `const Tensor&` declaration in Functions.h. hacky_wrapper allows us to define our function as `const Tensor&` but wraps it in optional for us, so this avoids both the errors while linking and loading.
_[edit: rewrote the above to improve clarity and correct the fact that we actually need 18 more overloads (26 total), not 18 in total to complete the c++ api]_
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50569
Reviewed By: H-Huang
Differential Revision: D26176105
Pulled By: soulitzer
fbshipit-source-id: cd8e77cc2de1117c876cd71c29b312887daca33f
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51578https://github.com/pytorch/pytorch/pull/49710 introduced an edge case in which
drawing a single sample resulted in ignoring the `dtype` arg to `draw`. This
fixes this and adds a unit test to cover this behavior.
Test Plan: Unit tests
Reviewed By: danielrjiang
Differential Revision: D26204393
fbshipit-source-id: 441a44dc035002e7bbe6b662bf6d1af0e2cd88f4
Summary:
Performs the update that was suggested in https://github.com/pytorch/pytorch/issues/41489
Adjust the functionality to largely match that pf the scipy companion PR https://github.com/scipy/scipy/pull/10844/, including
- a new `draw_base2` method
- include zero as the first point in the (unscrambled) Sobol sequence
The scipy PR is also quite opinionated if the `draw` method doesn't get called with a base 2 number (for which the resulting sequence has nice properties, see the scipy PR for a comprehensive discussion of this).
Note that this update is a **breaking change** in the sense that sequences generated with the same parameters after as before will not be identical! They will have the same (better, arguably) distributional properties, but calling the engine with the same seed will result in different numbers in the sequence.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49710
Test Plan:
```
from torch.quasirandom import SobolEngine
sobol = SobolEngine(3)
sobol.draw(4)
sobol = SobolEngine(4, scramble=True)
sobol.draw(5)
sobol = SobolEngine(4, scramble=True)
sobol.draw_base2(2)
```
Reviewed By: malfet
Differential Revision: D25657233
Pulled By: Balandat
fbshipit-source-id: 9df50a14631092b176cc692b6024aa62a639ef61
Summary:
Reference: https://github.com/pytorch/pytorch/issues/33152
Changes
* Enable complex support for masked_scatter
* Enable half support for masked_scatter CPU
* Enable complex autograd support for masked_scatter CPU and masked_select (both CPU and CUDA).
**Note**:
Complex Support for masked_scatter CUDA is disabled as it depends on `masked_fill` which is yet to be ported to ATen.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51281
Reviewed By: ailzhang
Differential Revision: D26127561
Pulled By: anjali411
fbshipit-source-id: 6284926b934942213c5dfc24b5bcc8538d0231af
Summary:
Fixes https://github.com/pytorch/pytorch/issues/3307
Previously, `self.grad` was not ~cloned~ deepcopied to the returned tensor in `deepcopy`. Added a test and an implementation.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50663
Reviewed By: heitorschueroff
Differential Revision: D26074811
Pulled By: albanD
fbshipit-source-id: 536dad36415f1d03714b4ce57453f406ad802b8c
Summary:
All these Unary operators have been an entry in OpInfo DB.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50096
Reviewed By: zhangguanheng66
Differential Revision: D25870048
Pulled By: mruberry
fbshipit-source-id: b64e06d5b9ab5a03a202cda8c22fdb7e4ae8adf8
Summary:
Based on ngimel's (Thank you!) feedback, cpu half was only accidental, so I'm removing it.
This lets us ditch the old codepath for without replacement in favour of the new, better one.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50063
Reviewed By: mruberry
Differential Revision: D25772449
Pulled By: ngimel
fbshipit-source-id: 608729c32237de4ee6d1acf7e316a6e878dac7f0
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49552
This PR:
1. Migrates independent autograd test for `hstack`, `dstack`, `vstack`, `movedim`, `moveaxis` from `test_autograd.py` to the new `OpInfo` based tests.
2. Migrates autograd test for `gather`, `index_select` from the method_tests to the new `OpInfo` based tests.
2. Enables complex backward for `stack, gather, index_select, index_add_` and adds tests for complex autograd for all the above mentioned ops.
Test Plan: Imported from OSS
Reviewed By: mruberry
Differential Revision: D25682511
Pulled By: anjali411
fbshipit-source-id: 5d8f89db4a9ec340ab99a6196987d44a23e2c6c6
Summary:
**BC-breaking Note:**
This PR updates PyTorch's digamma function to be consistent with SciPy's special.digamma function. This changes the result of the digamma function on the nonpositive integers, where the gamma function is not defined. Since the gamma function is undefined at these points, the (typical) derivative of the logarithm of the gamma function is also undefined at these points, and for negative integers this PR updates digamma to return NaN. For zero, however, it returns -inf to be consistent with SciPy.
Interestingly, SciPy made a similar change, which was noticed by at least one user: https://github.com/scipy/scipy/issues/9663#issue-396587679.
SciPy's returning of negative infinity at zero is intentional:
59347ae8b8/scipy/special/cephes/psi.c (L163)
This change is consistent with the C++ standard for the gamma function:
https://en.cppreference.com/w/cpp/numeric/math/tgamma
**PR Summary:**
Reference https://github.com/pytorch/pytorch/issues/42515
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48302
Reviewed By: ngimel
Differential Revision: D25664087
Pulled By: mruberry
fbshipit-source-id: 1168e81e218bf9fe5b849db0e07e7b22e590cf73
Summary:
**BC-Breaking Note:**
This PR updates PyTorch's angle operator to be consistent with NumPy's. Previously angle would return zero for all floating point values (including NaN). Now angle returns `pi` for negative floating point values, zero for non-negative floating point values, and propagates NaNs.
**PR Summary:**
Reference: https://github.com/pytorch/pytorch/issues/42515
TODO:
* [x] Add BC-Breaking Note (Prev all real numbers returned `0` (even `nan`)) -> Fixed to match the correct behavior of NumPy.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49163
Reviewed By: ngimel
Differential Revision: D25681758
Pulled By: mruberry
fbshipit-source-id: 54143fe6bccbae044427ff15d8daaed3596f9685
Summary:
This replaces the narrow character set APIs with the wide character set ones in `THAllocator.cpp`. This fixes the potential crashes caused by passing non-ASCII characters in `torch::from_file` on Windows.
See: https://github.com/pytorch/pytorch/issues/47422
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47905
Reviewed By: zhangguanheng66
Differential Revision: D25399146
Pulled By: ezyang
fbshipit-source-id: 0a183b65de171c48ed1718fa71e773224eaf196f
Summary:
Fixes https://github.com/pytorch/pytorch/issues/45964
Indexing operators e.g. `scatter`/`gather` use tensor restriding so the `TensorIterator` built in overlap checking needs to be disabled. This adds the missing overlap checks for these operators.
In addition, some indexing operators don't work will with `MemOverlapStatus::FULL` which is explicitly allowed by `assert_no_partial_overlap`. So, I've introduced `assert_no_overlap` that will raise an error on partial _or_ full overlap.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48651
Reviewed By: zhangguanheng66
Differential Revision: D25401047
Pulled By: ngimel
fbshipit-source-id: 53abb41ac63c4283f3f1b10a0abb037169f20b89
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48116
If you port kernels to be structured, you get Meta kernels automatically
generated for you. This is one payoff of structured kernels.
Code generation was mercifully really simple, although at risk of
"swiss cheese" syndrome: there's two new conditionals in the codegen
to tweak behavior when generating for meta keys. It's not too bad
right now but there's a risk of things getting out of hand. One
way to rationalize the logic here would be to transmit "TensorMeta-ness"
inside the TensorOptions (so tensor_from_meta can deal with it); then
the "Meta" kernel magic would literally just be generating empty
out_impls to call after all the scaffolding is done. But I didn't
do this because it seemed like it would be more annoying short term.
Also had to teach resize_ to work on meta tensors, since we use them
to implement the out kernels.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: bhosmer, ailzhang
Differential Revision: D25056640
Pulled By: ezyang
fbshipit-source-id: f8fcfa0dbb58a94d9b4196748f56e155f83b1521
Summary:
Creates multiple new test suites to have fewer tests in test_torch.py, consistent with previous test suite creation like test_unary_ufuncs.py and test_linalg.py.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47356
Reviewed By: ngimel
Differential Revision: D25202268
Pulled By: mruberry
fbshipit-source-id: 75fde3ca76545d1b32b86d432a5cb7a5ba8f5bb6
Summary:
Quiet errors from flake8. Only a couple of code changes for deprecated Python syntax from before 2.4. The rest is just adding noqa markers.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48453
Reviewed By: mruberry
Differential Revision: D25181871
Pulled By: ngimel
fbshipit-source-id: f8d7298aae783b1bce2a46827b088fc390970641
Summary:
Adding Unary Ufunc Test entry for `erf` variants.
We use scipy functions for reference implementation.
We can later update the tests once these functions will update integer input to float.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47155
Reviewed By: ngimel
Differential Revision: D25176654
Pulled By: mruberry
fbshipit-source-id: cb08efed1468b27650cec4f87a9a34e999ebd810
Summary:
The approach is to simply reuse `torch.repeat` but adding one more functionality to tile, which is to prepend 1's to reps arrays if there are more dimensions to the tensors than the reps given in input. Thus for a tensor of shape (64, 3, 24, 24) and reps of (2, 2) will become (1, 1, 2, 2), which is what NumPy does.
I've encountered some instability with the test on my end, where I could get a random failure of the test (due to, sometimes, random value of `self.dim()`, and sometimes, segfaults). I'd appreciate any feedback on the test or an explanation for this instability so I can this.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47974
Reviewed By: ngimel
Differential Revision: D25148963
Pulled By: mruberry
fbshipit-source-id: bf63b72c6fe3d3998a682822e669666f7cc97c58
Summary:
Adds ldexp operator for https://github.com/pytorch/pytorch/issues/38349
I'm not entirely sure the changes to `NamedRegistrations.cpp` were needed but I saw other operators in there so I added it.
Normally the ldexp operator is used along with the frexp to construct and deconstruct floating point values. This is useful for performing operations on either the mantissa and exponent portions of floating point values.
Sleef, std math.h, and cuda support both ldexp and frexp but not for all data types. I wasn't able to figure out how to get the iterators to play nicely with a vectorized kernel so I have left this with just the normal CPU kernel for now.
This is the first operator I'm adding so please review with an eye for errors.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45370
Reviewed By: mruberry
Differential Revision: D24333516
Pulled By: ranman
fbshipit-source-id: 2df78088f00aa9789aae1124eda399771e120d3f
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48113
Fix is simple: just treat Meta as a backend covered by AutogradOther.
This semantically makes sense, since meta kernels are just like regular
CPU/CUDA kernels, they just don't do any compute.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: zhangguanheng66
Differential Revision: D25056641
Pulled By: ezyang
fbshipit-source-id: 7b68911982352b3e0ee8616b38cd9c70bd58a740
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47023
DeviceType pretty clearly only needs 1 byte. DeviceIndex only needs 1 byte given that machines don't have anywhere near 255 GPUs in them as far as I know.
ghstack-source-id: 116901430
Test Plan: Existing tests, added assertion to catch if my assumption about DeviceIndex is incorrect
Reviewed By: dzhulgakov
Differential Revision: D24605460
fbshipit-source-id: 7c9a89027fcf8eebd623b7cdbf6302162c981cd2
Summary:
Reference https://github.com/pytorch/pytorch/issues/38349
Delegates to `torch.transpose` (not sure what is the best way to alias)
TODO:
* [x] Add test
* [x] Add documentation
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46041
Reviewed By: gchanan
Differential Revision: D25022816
Pulled By: mruberry
fbshipit-source-id: c80223d081cef84f523ef9b23fbedeb2f8c1efc5
Summary:
Now when https://github.com/pytorch/pytorch/pull/42553 is merged we can delete a bit of code from the tests and enable some of the skipped complex tests.
Unfortunately, `test_pinverse_complex_xfailed` and `test_symeig_complex_xfailed` had bugs and it wasn't caught automatically that these tests xpass. Need to be careful next time with `unittest.expectedFailure`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47910
Reviewed By: zhangguanheng66
Differential Revision: D25052130
Pulled By: mruberry
fbshipit-source-id: 29512995c024b882f9cb78b7bede77733d5762d0
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48042
Moving scalar test to a separate method so the XLA team can continue to test for the other cases without failing. Requested here https://github.com/pytorch/xla/issues/2620#issuecomment-725696108
Test Plan: Imported from OSS
Reviewed By: zhangguanheng66
Differential Revision: D25055677
Pulled By: heitorschueroff
fbshipit-source-id: 5da66bac78ea197821fee0b9b8a213ff2dc19c67
Summary:
`torch.lu_solve` now works for complex inputs both on CPU and GPU.
I moved the existing tests to `test_linalg.py` and modified them to test complex dtypes, but I didn't modify/improve the body of the tests.
Ref. https://github.com/pytorch/pytorch/issues/33152
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46862
Reviewed By: nikithamalgifb
Differential Revision: D24543682
Pulled By: anjali411
fbshipit-source-id: 165bde39ef95cafebf976c5ba4b487297efe8433
Summary:
Fixed test:
- `test_is_nonzero`, this is asserting exact match, which is flaky when `TORCH_SHOW_CPP_STACKTRACES=1`, I changed this to non-exact assert
- `test_pinverse` TF32
- `test_symeig` TF32
- `test_triangular_solve_batched_many_batches_cpu_float64` precision on CPU BLAS
- `test_qr` TF32, as well as the tensor factory forgets a `dtype=dtype`
- `test_lu` TF32
- `ConvTranspose2d` TF32
- `Conv3d_1x1x1_no_bias` TF32
- `Transformer*` TF32
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46941
Reviewed By: heitorschueroff
Differential Revision: D24852725
Pulled By: mruberry
fbshipit-source-id: ccd4740cc643476178d81059d1c78da34e5082ed
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42553
Ports `torch.bmm` and `torch.baddbmm` from TH to ATen, as well as adds support for complex dtypes. Also removes dead TH code for Level 2 functions.
Closes#24539
Test Plan: Imported from OSS
Reviewed By: ansley
Differential Revision: D24893511
Pulled By: anjali411
fbshipit-source-id: 0eba3f2aec99c48b3018a5264ee7789279cfab58
Summary:
`torch.triangular_solve` now works for complex inputs on GPU.
I moved the existing tests to `test_linalg.py` and modified them to test complex and float32 dtypes.
Ref. https://github.com/pytorch/pytorch/issues/33152
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46916
Reviewed By: navahgar, agolynski
Differential Revision: D24706647
Pulled By: anjali411
fbshipit-source-id: fe780eac93d2ae1b2549539bb385e5fac25213b3
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46398
This PR makes torch.einsum compatible with numpy.einsum except for the sublist input option as requested here https://github.com/pytorch/pytorch/issues/21412. It also fixed 2 performance issues linked below and adds a check for reducing to torch.dot instead of torch.bmm which is faster in some cases.
fixes#45854, #37628, #30194, #15671fixes#41467 with benchmark below
```python
import torch
from torch.utils.benchmark import Timer
a = torch.randn(10000, 100, 101, device='cuda')
b = torch.randn(10000, 101, 3, device='cuda')
c = torch.randn(10000, 100, 1, device='cuda')
d = torch.randn(10000, 100, 1, 3, device='cuda')
print(Timer(
stmt='torch.einsum("bij,bjf->bif", a, b)',
globals={'a': a, 'b': b}
).blocked_autorange())
print()
print(Timer(
stmt='torch.einsum("bic,bicf->bif", c, d)',
globals={'c': c, 'd': d}
).blocked_autorange())
```
```
<torch.utils.benchmark.utils.common.Measurement object at 0x7fa37c413850>
torch.einsum("bij,bjf->bif", a, b)
Median: 4.53 ms
IQR: 0.00 ms (4.53 to 4.53)
45 measurements, 1 runs per measurement, 1 thread
<torch.utils.benchmark.utils.common.Measurement object at 0x7fa37c413700>
torch.einsum("bic,bicf->bif", c, d)
Median: 63.86 us
IQR: 1.52 us (63.22 to 64.73)
4 measurements, 1000 runs per measurement, 1 thread
```
fixes#32591 with benchmark below
```python
import torch
from torch.utils.benchmark import Timer
a = torch.rand(1, 1, 16, 2, 16, 2, 16, 2, 2, 2, 2, device="cuda")
b = torch.rand(729, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, device="cuda")
print(Timer(
stmt='(a * b).sum(dim = (-3, -2, -1))',
globals={'a': a, 'b': b}
).blocked_autorange())
print()
print(Timer(
stmt='torch.einsum("...ijk, ...ijk -> ...", a, b)',
globals={'a': a, 'b': b}
).blocked_autorange())
```
```
<torch.utils.benchmark.utils.common.Measurement object at 0x7efe0de28850>
(a * b).sum(dim = (-3, -2, -1))
Median: 17.86 ms
2 measurements, 10 runs per measurement, 1 thread
<torch.utils.benchmark.utils.common.Measurement object at 0x7efe0de286a0>
torch.einsum("...ijk, ...ijk -> ...", a, b)
Median: 296.11 us
IQR: 1.38 us (295.42 to 296.81)
662 measurements, 1 runs per measurement, 1 thread
```
TODO
- [x] add support for ellipsis broadcasting
- [x] fix corner case issues with sumproduct_pair
- [x] update docs and add more comments
- [x] add tests for error cases
Test Plan: Imported from OSS
Reviewed By: malfet
Differential Revision: D24860367
Pulled By: heitorschueroff
fbshipit-source-id: 31110ee598fd598a43acccf07929b67daee160f9
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45092
Adding two operators
1. at::float_to_half -> Converts FP32 tensor to FP16 tensor
2. at::half_to_float -> Converts FP16 tensor to FP32 tensor.
These operators internally use the kernel provided by FBGeMM. Both C2 and PT will use the same FBGeMM kernel underneath.
Test Plan:
buck test //caffe2/test:torch -- .*test_half_tensor.*
Run benchmark locally using
```
buck run //caffe2/benchmarks/operator_benchmark/pt:tensor_to_test
```
AI Bench results are pending. I expect that not to finish as we have large queue with jobs pending for 2+ days.
Benchmark for 512x512 tensor with FbGeMM implementation
```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short
# Benchmarking PyTorch: FloatToHalfTensorConversionBenchmark
# Mode: Eager
# Name: FloatToHalfTensorConversionBenchmark_M512_N512_cpu
# Input: M: 512, N: 512, device: cpu
Forward Execution Time (us) : 1246.332
# Benchmarking PyTorch: HalfToFloatTensorConversionBenchmark
# Mode: Eager
# Name: HalfToFloatTensorConversionBenchmark_M512_N512_cpu
# Input: M: 512, N: 512, device: cpu
Forward Execution Time (us) : 1734.304
```
Benchmark for 512x512 tensor trunk with no FbGeMM integration.
```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short
# Benchmarking PyTorch: FloatToHalfTensorConversionBenchmark
# Mode: Eager
# Name: FloatToHalfTensorConversionBenchmark_M512_N512_cpu
# Input: M: 512, N: 512, device: cpu
Forward Execution Time (us) : 169045.724
# Benchmarking PyTorch: HalfToFloatTensorConversionBenchmark
# Mode: Eager
# Name: HalfToFloatTensorConversionBenchmark_M512_N512_cpu
# Input: M: 512, N: 512, device: cpu
Forward Execution Time (us) : 152382.494
```
Reviewed By: ngimel
Differential Revision: D23824869
fbshipit-source-id: ef044459b6c8c6e5ddded72080204c6a0ab4582c
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47305
Fixes https://github.com/pytorch/pytorch/issues/47127.
Ideally this would just use diag and sum (as the CUDA implementation does), but that seems to have performance problems, which I'll link in the github PR.
Test Plan: Imported from OSS
Reviewed By: zou3519
Differential Revision: D24729627
Pulled By: gchanan
fbshipit-source-id: 151b786b53e7b958f0929c803dbf8e95981c6884
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47474
After enabling GPU/Re, some issues were specific to those runs
Test Plan:
```
buck test -c test.external_runner=tpx mode/opt //caffe2/test:torch_cuda -- --use-remote-execution --force-tpx --run-disabled
```
Reviewed By: malfet, janeyx99
Differential Revision: D24771578
fbshipit-source-id: 1ada79dae12c8cb6f795a0d261c60f038eee2dfb
Summary:
`torch.inverse` now works for complex inputs on GPU.
Test cases with complex matrices are xfailed for now. For example, batched matmul does not work with complex yet.
Ref. https://github.com/pytorch/pytorch/issues/33152
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45034
Reviewed By: zou3519
Differential Revision: D24730264
Pulled By: anjali411
fbshipit-source-id: b9c94ec463012913c117278a884adeee96ea02aa
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46758
It's in general helpful to support int32 indices and offsets, especially when such tensors are large and need to be transferred to accelerator backends. Since it may not be very useful to support the combination of int32 indices and int64 offsets, here we enforce that these two must have the same type.
Test Plan: unit tests
Reviewed By: ngimel
Differential Revision: D24470808
fbshipit-source-id: 94b8a1d0b7fc9fe3d128247aa042c04d7c227f0b
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47126
Context
-------
This PR is a rebase of shihongzhi's https://github.com/pytorch/pytorch/pull/35360.
I forgot to merge it back when it was submitted so I rebased it and ran new benchmarks on it.
Benchmarks
----------
TL;DR: The op has more overhead than the TH version but for larger shapes the overhead disappears.
```
import torch
shapes = [
[1, 1],
[100, 100],
[1000, 1000],
[10000, 10000],
[100000, 100000],
]
for shape in shapes:
x = torch.ones(shape)
%timeit x.trace()
Before:
1.83 µs ± 42.4 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.98 µs ± 48.2 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
3.19 µs ± 10.7 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
85.2 µs ± 700 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
1.23 ms ± 4.34 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
After:
2.16 µs ± 325 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
2.08 µs ± 275 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
4.45 µs ± 19.2 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
81.8 µs ± 766 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
1.27 ms ± 6.75 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
```
Future work
-----------
Things that can be done after this PR:
- add complex tensor support
- Fix the type promotion discrepancy between CPU and CUDA
Test Plan: Imported from OSS
Reviewed By: mrshenli
Differential Revision: D24683259
Pulled By: zou3519
fbshipit-source-id: f92b566ad0d58b72663ab64899d209c96edb78eb
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47125
We didn't actually have any tests for torch.trace. The tests expose a
discrepancy between the behavior of torch.trace on CPU and CUDA that
I'll file an issue for.
Test Plan: Imported from OSS
Reviewed By: mruberry
Differential Revision: D24683260
Pulled By: zou3519
fbshipit-source-id: 71dd3af62bc98c6b9b0ba2bf2923cb6d44daa640
Summary:
Related https://github.com/pytorch/pytorch/issues/38349
This PR implements `column_stack` as the composite ops of `torch.reshape` and `torch.hstack`, and makes `row_stack` as the alias of `torch.vstack`.
Todo
- [x] docs
- [x] alias pattern for `row_stack`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46313
Reviewed By: ngimel
Differential Revision: D24585471
Pulled By: mruberry
fbshipit-source-id: 62fc0ffd43d051dc3ecf386a3e9c0b89086c1d1c
Summary:
Fixes https://github.com/pytorch/pytorch/issues/41768
The fault was that a NULL `tau` would get passed to LAPACK function. This PR fixes that by checking whether the `tau` contains 0 elements at the beginning of the function.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46700
Reviewed By: albanD
Differential Revision: D24616427
Pulled By: mruberry
fbshipit-source-id: 92e8f1489b113c0ceeca6e54dea8b810a51a63c3
Summary:
Looks like this op is never tested for the support of different dtypes?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45155
Reviewed By: zou3519
Differential Revision: D24438839
Pulled By: ngimel
fbshipit-source-id: 103ff609e11811a0705d04520c2b97c456b623ef
Summary:
Follow-up of https://github.com/pytorch/pytorch/issues/46461 with a similar goal
Makes them more readable and possibly faster. Care has to be taken because `map` applies the function immediately while `(x for x in xs)` is a generator expression which gets evaluated later. This is a benefit in some cases where it is not required to actually create the list of values in memory (e.g. when passing to `tuple` or `extend` or `join`)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46462
Reviewed By: zou3519
Differential Revision: D24422343
Pulled By: ezyang
fbshipit-source-id: 252e33499c92ac0b15238f2df32681dbbda2b237
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46046
*_like functions are used in pytorch to create a new tensor with the same shape of the input tensor. But we don’t always preserve the layout permutation of the tensor. Current behavior is that, for a dense and non-overlapping tensor, its layout permutation is preserved. For eg. passing a channel last contiguous tensor t with ‘shape/stride’ (2, 4, 3, 2)/(24, 1, 8, 4) to empty_like(t) function will create a new tensor with exactly the same ‘shape/stride’ as the input tensor t. However, if the input tensor is non-dense or has overlap, we simply create a contiguous tensor based on input tensor’s shape, so the tensor layout permutation is lost.
This PR preserves the layout permutation for non-dense or overlapping tensor. The strides propagation rule that used in this PR is exactly the same as what is being used in TensorIterator. The behavior changes are listed below:
| code | old | new |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|
| #strided tensors<br>a=torch.randn(2,3,8)[:,:,::2].permute(2,0,1)<br>print(a.stride())<br>print(a.exp().stride())<br>print((a+a).stride())<br>out = torch.empty(0)<br>torch.add(a,a,out=out)<br>print(out.stride()) | (2, 24, 8) <br>(6, 3, 1) <br>(1, 12, 4) <br>(6, 3, 1) | (2, 24, 8)<br>(1, 12, 4)<br>(1, 12, 4)<br>(1, 12, 4) |
| #memory dense tensors<br>a=torch.randn(3,1,1).as_strided((3,1,1), (1,3,3))<br>print(a.stride(), (a+torch.randn(1)).stride())<br>a=torch.randn(2,3,4).permute(2,0,1)<br>print(a.stride())<br>print(a.exp().stride())<br>print((a+a).stride())<br>out = torch.empty(0)<br>torch.add(a,a,out=out)<br>print(out.stride()) | (1, 3, 3) (1, 1, 1)<br>(1, 12, 4)<br>(6, 3, 1)<br>(1, 12, 4)<br>(6, 3, 1) | (1, 3, 3) (1, 3, 3)<br>(1, 12, 4)<br>(1, 12, 4)<br>(1, 12, 4)<br>(1, 12, 4) |
This is to solve the non-dense tensor layout problem in #45505
TODO:
- [x] Fix all the BC broken test cases in pytorch
- [ ] Investigate if any fb internal tests are broken
This change will cover all kinds of non-dense tensors.
Test Plan: Imported from OSS
Reviewed By: ezyang
Differential Revision: D24288970
Pulled By: glaringlee
fbshipit-source-id: 320fd4e0d1a810a12abfb1441472298c983a368d
Summary:
As per title. LU decomposition is used for computing determinants, and I need this functionality to implement the matrix square root. Next PR on my list is to enable `torch.det` on CUDA with complex input.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45898
Reviewed By: heitorschueroff
Differential Revision: D24306951
Pulled By: anjali411
fbshipit-source-id: 168f578fe65ae1b978617a66741aa27e72b2172b
Summary:
Fixes https://github.com/pytorch/pytorch/issues/46037
I now isolated the special case to be only between cuda tensor bases and cpu tensor exponents. My previous fix was not a complete fix--it fixed some stuff but broke others. The current fix is a more complete fix:
```
In [1]: import torch
In [2]: a=torch.randn(3)
In [3]: b=torch.tensor(2, device="cuda")
In [4]: torch.pow(a,b) #should not work and throws exception now!
In [5]: a=torch.tensor(3, device="cuda")
In [6]: b=torch.tensor(2)
In [7]: torch.pow(a,b) #should work, and now does
In [8]: a=torch.randn(3, device="cuda")
In [9]: torch.pow(a,b) # yeah, that one is fixed and still works
```
To add a test case to reflect the change, I had to modify the existing setup a little bit. I think it is an improvement but would appreciate any tips on how to make it better!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46320
Reviewed By: malfet
Differential Revision: D24306610
Pulled By: janeyx99
fbshipit-source-id: cc74c61373d1adc2892a7a31226f38895b83066a
Summary:
This PR adds support for complex-valued input for `torch.pinverse`.
Fixed cuda SVD implementation to return singular values with real dtype.
Fixes https://github.com/pytorch/pytorch/issues/45385.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45819
Reviewed By: heitorschueroff
Differential Revision: D24306539
Pulled By: anjali411
fbshipit-source-id: 2fe19bc630de528e0643132689e1bc5ffeaa162a
Summary:
Fixes https://github.com/pytorch/pytorch/issues/46037
I'm not sure this is the most performant solution, but this works:
torch.pow(cuda_tensor, 5) should work and worked before.
torch.pow(cuda_tensor, torch.tensor(5)), should work **and works now!**
torch.pow(cuda_tensor, torch.tensor((5,))), should NOT work and complain the tensors are on different devices and indeed continues to complain.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46185
Reviewed By: glaringlee, malfet
Differential Revision: D24257687
Pulled By: janeyx99
fbshipit-source-id: 2daf235d62ec5886d7c153da05445c2ec71dec98
Summary:
* Removes incorrect statement that "the vector norm will be applied to the last dimension".
* More clearly describe each different combination of `p`, `ord`, and input size.
* Moves norm tests from `test/test_torch.py` to `test/test_linalg.py`
* Adds test ensuring that `p='fro'` and `p=2` give same results for mutually valid inputs
Fixes https://github.com/pytorch/pytorch/issues/41388
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42696
Reviewed By: bwasti
Differential Revision: D23876862
Pulled By: mruberry
fbshipit-source-id: 36f33ccb6706d5fe13f6acf3de8ae14d7fbdff85
Summary:
`TCPStoreTest.test_numkeys_delkeys` takes 5+ min (mostly in idle wait for socket timeout)
`TestDataLoader.test_proper_exit` and `TestDataLoaderPersistentWorkers.test_proper_exit` take 2.5 min each
`TestXNNPACKConv1dTransformPass.test_conv1d_with_relu_fc` takes 2 min to finish
Add option to skip reporting test classes that run for less than a second to `print_test_stats.py` and speed up `TestTorchDeviceTypeCUDA.test_matmul_45724_cuda`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46068
Reviewed By: mruberry
Differential Revision: D24208660
Pulled By: malfet
fbshipit-source-id: 780e0d8be4f0cf69ea28de79e423291a1f3349b7
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45847
Original PR here https://github.com/pytorch/pytorch/pull/45084. Created this one because I was having problems with ghstack.
Test Plan: Imported from OSS
Reviewed By: mruberry
Differential Revision: D24136629
Pulled By: heitorschueroff
fbshipit-source-id: dd7c7540a33f6a19e1ad70ba2479d5de44abbdf9
Summary:
This test is changed one day before the landing of the tf32 tests PR, therefore the fix for this is not included in that PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45492
Reviewed By: ezyang
Differential Revision: D24101876
Pulled By: ngimel
fbshipit-source-id: cb3615b2fb8acf17abe54cd18b1faec26582d6b6
Summary:
**BC-breaking note**
For ease of exposition let a_min be the value of the "min" argument to clamp, and a_max be the value of the "max" argument to clamp.
This PR changes the behavior of torch.clamp to always compute min(max(a, a_min), a_max). torch.clamp currently computes this in its vectorized CPU specializations:
78b95b6204/aten/src/ATen/cpu/vec256/vec256_double.h (L304)
but in other places it clamps differently:
78b95b6204/aten/src/ATen/cpu/vec256/vec256_base.h (L624)78b95b6204/aten/src/ATen/native/cuda/UnaryOpsKernel.cu (L160)
These implementations are the same when a_min < a_max, but divergent when a_min > a_max. This divergence is easily triggered:
```
t = torch.arange(200).to(torch.float)
torch.clamp(t, 4, 2)[0]
: tensor(2.)
torch.clamp(t.cuda(), 4, 2)[0]
: tensor(4., device='cuda:0')
torch.clamp(torch.tensor(0), 4, 2)
: tensor(4)
```
This PR makes the behavior consistent with NumPy's clip. C++'s std::clamp's behavior is undefined when a_min > a_max, but Clang's std::clamp will return 10 in this case (although the program, per the above comment, is in error). Python has no standard clamp implementation.
**PR Summary**
Fixes discrepancy between AVX, CUDA, and base vector implementation for clamp, such that all implementations are consistent and use min(max_vec, max(min_vec, x) formula, thus making it equivalent to numpy.clip in all implementations.
The same fix as in https://github.com/pytorch/pytorch/issues/32587 but isolated to the kernel change only, so that the internal team can benchmark.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43288
Reviewed By: colesbury
Differential Revision: D24079453
Pulled By: mruberry
fbshipit-source-id: 67f30d2f2c86bbd3e87080b32f00e8fb131a53f7
Summary:
This PR adds support for complex-valued input for `torch.symeig`.
TODO:
- [ ] complex cuda tests raise `RuntimeError: _th_bmm_out not supported on CUDAType for ComplexFloat`
Update: Added xfailing tests for complex dtypes on CUDA. Once support for complex `bmm` is added these tests will work.
Fixes https://github.com/pytorch/pytorch/issues/45061.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45121
Reviewed By: mrshenli
Differential Revision: D24049649
Pulled By: anjali411
fbshipit-source-id: 2cd11f0e47d37c6ad96ec786762f2da57f25dac5
Summary:
Per feedback in the recent design review. Also tweaks the documentation to clarify what "deterministic" means and adds a test for the behavior.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45410
Reviewed By: ngimel
Differential Revision: D23974988
Pulled By: mruberry
fbshipit-source-id: e48307da9c90418fc6834fbd67b963ba2fe0ba9d
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45069
`torch.abs` is a `C -> R` function for complex input. Following the general semantics in torch, the in-place version of abs should be disabled for complex input.
Test Plan: Imported from OSS
Reviewed By: glaringlee, malfet
Differential Revision: D23818397
Pulled By: anjali411
fbshipit-source-id: b23b8d0981c53ba0557018824d42ed37ec13d4e2
Summary:
- The thresholds of some tests are bumped up. Depending on the random generator, sometimes these tests fail with things like 0.0059 is not smaller than 0.005. I ran `test_nn.py` and `test_torch.py` for 10+ times to check these are no longer flaky.
- Add `tf32_on_and_off` to new `matrix_exp` tests.
- Disable TF32 on test suites other than `test_nn.py` and `test_torch.py`
cc: ptrblck
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44240
Reviewed By: mruberry
Differential Revision: D23882498
Pulled By: ngimel
fbshipit-source-id: 44a9ec08802c93a2efaf4e01d7487222478b6df8
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39955
resolves https://github.com/pytorch/pytorch/issues/36323 by adding `torch.sgn` for complex tensors.
`torch.sgn` returns `x/abs(x)` for `x != 0` and returns `0 + 0j` for `x==0`
This PR doesn't test the correctness of the gradients. It will be done as a part of auditing all the ops in future once we decide the autograd behavior (JAX vs TF) and add gradchek.
Test Plan: Imported from OSS
Reviewed By: mruberry
Differential Revision: D23460526
Pulled By: anjali411
fbshipit-source-id: 70fc4e14e4d66196e27cf188e0422a335fc42f92
Summary:
This PR was originally authored by slayton58. I steal his implementation and added some tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44986
Reviewed By: mruberry
Differential Revision: D23806039
Pulled By: ngimel
fbshipit-source-id: 305d66029b426d8039fab3c3e011faf2bf87aead
Summary:
Fixes https://github.com/pytorch/pytorch/issues/43699
- Changed the order of `TORCH_CHECK` and `if (options.layout() == kSparse && self.is_sparse())`
inside `empty_like` method.
- [x] Added tests
EDIT:
More details on that and why we can not take zeros_like approach.
Python code :
```python
res = torch.zeros_like(input_coalesced, memory_format=torch.preserve_format)
```
is routed to
```c++
// TensorFactories.cpp
Tensor zeros_like(
const Tensor& self,
const TensorOptions& options,
c10::optional<c10::MemoryFormat> optional_memory_format) {
if (options.layout() == kSparse && self.is_sparse()) {
auto res = at::empty({0}, options); // to be resized
res.sparse_resize_and_clear_(
self.sizes(), self.sparse_dim(), self.dense_dim());
return res;
}
auto result = at::empty_like(self, options, optional_memory_format);
return result.zero_();
}
```
and passed to `if (options.layout() == kSparse && self.is_sparse())`
When we call in Python
```python
res = torch.empty_like(input_coalesced, memory_format=torch.preserve_format)
```
it is routed to
```c++
Tensor empty_like(
const Tensor& self,
const TensorOptions& options_,
c10::optional<c10::MemoryFormat> optional_memory_format) {
TORCH_CHECK(
!(options_.has_memory_format() && optional_memory_format.has_value()),
"Cannot set memory_format both in TensorOptions and explicit argument; please delete "
"the redundant setter.");
TensorOptions options =
self.options()
.merge_in(options_)
.merge_in(TensorOptions().memory_format(optional_memory_format));
TORCH_CHECK(
!(options.layout() != kStrided &&
optional_memory_format.has_value()),
"memory format option is only supported by strided tensors");
if (options.layout() == kSparse && self.is_sparse()) {
auto result = at::empty({0}, options); // to be resized
result.sparse_resize_and_clear_(
self.sizes(), self.sparse_dim(), self.dense_dim());
return result;
}
```
cc pearu
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44058
Reviewed By: albanD
Differential Revision: D23672494
Pulled By: mruberry
fbshipit-source-id: af232274dd2b516dd6e875fc986e3090fa285658
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44393
torch.quantile now correctly propagates nan and implemented torch.nanquantile similar to numpy.nanquantile.
Test Plan: Imported from OSS
Reviewed By: albanD
Differential Revision: D23649613
Pulled By: heitorschueroff
fbshipit-source-id: 5201d076745ae1237cedc7631c28cf446be99936
Summary:
Fixes https://github.com/pytorch/pytorch/issues/33394 .
This PR does two things:
1. Implement CUDA scatter reductions with revamped GPU atomic operations.
2. Remove support for divide and subtract for CPU reduction as was discussed with ngimel .
I've also updated the docs to reflect the existence of only multiply and add.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41977
Reviewed By: mruberry
Differential Revision: D23748888
Pulled By: ngimel
fbshipit-source-id: ea643c0da03c9058e433de96db02b503514c4e9c
Summary:
per title. If `beta=0` and slow path was taken, `nan` and `inf` in the result were not masked as is the case with other linear algebra functions. Similarly, since `mv` is implemented as `addmv` with `beta=0`, wrong results were sometimes produced for `mv` slow path.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44681
Reviewed By: mruberry
Differential Revision: D23708653
Pulled By: ngimel
fbshipit-source-id: e2d5d3e6f69b194eb29b327e1c6f70035f3b231c
Summary:
This PR:
- updates div to perform true division
- makes torch.true_divide an alias of torch.div
This follows on work in previous PyTorch releases that first deprecated div performing "integer" or "floor" division, then prevented it by throwing a runtime error.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42907
Reviewed By: ngimel
Differential Revision: D23622114
Pulled By: mruberry
fbshipit-source-id: 414c7e3c1a662a6c3c731ad99cc942507d843927
Summary:
Noticed this bug in `torch.movedim` (https://github.com/pytorch/pytorch/issues/41480). [`std::unique`](https://en.cppreference.com/w/cpp/algorithm/unique) only guarantees uniqueness for _sorted_ inputs. The current check lets through non-unique values when they aren't adjacent to each other in the list, e.g. `(0, 1, 0)` wouldn't raise an exception and instead the algorithm fails later with an internal assert.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44307
Reviewed By: mrshenli
Differential Revision: D23598311
Pulled By: zou3519
fbshipit-source-id: fd6cc43877c42bb243cfa85341c564b6c758a1bf
Summary:
This PR fixes three OpInfo-related bugs and moves some functions from TestTorchMathOps to be tested using the OpInfo pattern. The bugs are:
- A skip test path in test_ops.py incorrectly formatted its string argument
- Decorating the tests in common_device_type.py was incorrectly always applying decorators to the original test, not the op-specific variant of the test. This could cause the same decorator to be applied multiple times, overriding past applications.
- make_tensor was incorrectly constructing tensors in some cases
The functions moved are:
- asin
- asinh
- sinh
- acosh
- tan
- atan
- atanh
- tanh
- log
- log10
- log1p
- log2
In a follow-up PR more or all of the remaining functions in TestTorchMathOps will be refactored as OpInfo-based tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44277
Reviewed By: mrshenli, ngimel
Differential Revision: D23617361
Pulled By: mruberry
fbshipit-source-id: edb292947769967de9383f6a84eb327f027509e0
Summary:
This PR fixes three OpInfo-related bugs and moves some functions from TestTorchMathOps to be tested using the OpInfo pattern. The bugs are:
- A skip test path in test_ops.py incorrectly formatted its string argument
- Decorating the tests in common_device_type.py was incorrectly always applying decorators to the original test, not the op-specific variant of the test. This could cause the same decorator to be applied multiple times, overriding past applications.
- make_tensor was incorrectly constructing tensors in some cases
The functions moved are:
- asin
- asinh
- sinh
- acosh
- tan
- atan
- atanh
- tanh
- log
- log10
- log1p
- log2
In a follow-up PR more or all of the remaining functions in TestTorchMathOps will be refactored as OpInfo-based tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44277
Reviewed By: ngimel
Differential Revision: D23568330
Pulled By: mruberry
fbshipit-source-id: 03e69fccdbfd560217c34ce4e9a5f20e10d05a5e
Summary:
1) Ports nonzero from THC to ATen
2) replaces most thrust uses with cub, to avoid synchronization and to improve performance. There is still one necessary synchronization point, communicating number of nonzero elements from GPU to CPU
3) slightly changes algorithm, now we first compute the number of nonzeros, and then allocate correct-sized output, instead of allocating full-sized output as was done before, to account for possibly all elements being non-zero
4) unfortunately, since the last transforms are still done with thrust, 2) is slightly beside the point, however it is a step towards a future without thrust
4) hard limits the number of elements in the input tensor to MAX_INT. Previous implementation allocated a Long tensor with the size ndim*nelements, so that would be at least 16 GB for a tensor with MAX_INT elements. It is reasonable to say that larger tensors could not be used anyway.
Benchmarking is done for tensors with approximately half non-zeros
<details><summary>Benchmarking script</summary>
<p>
```
import torch
from torch.utils._benchmark import Timer
from torch.utils._benchmark import Compare
import sys
device = "cuda"
results = []
for numel in (1024 * 128,):#, 1024 * 1024, 1024 * 1024 * 128):
inp = torch.randint(2, (numel,), device="cuda", dtype=torch.float)
for ndim in range(2,3):#(1,4):
if ndim == 1:
shape = (numel,)
elif ndim == 2:
shape = (1024, numel // 1024)
else:
shape = (1024, 128, numel // 1024 // 128)
inp = inp.reshape(shape)
repeats = 3
timer = Timer(stmt="torch.nonzero(inp, as_tuple=False)", label="Nonzero", sub_label=f"number of elts {numel}",
description = f"ndim {ndim}", globals=globals())
for i in range(repeats):
results.append(timer.blocked_autorange())
print(f"\rnumel {numel} ndim {ndim}", end="")
sys.stdout.flush()
comparison = Compare(results)
comparison.print()
```
</p>
</details>
### Results
Before:
```
[--------------------------- Nonzero ---------------------------]
| ndim 1 | ndim 2 | ndim 3
1 threads: ------------------------------------------------------
number of elts 131072 | 55.2 | 71.7 | 90.5
number of elts 1048576 | 113.2 | 250.7 | 497.0
number of elts 134217728 | 8353.7 | 23809.2 | 54602.3
Times are in microseconds (us).
```
After:
```
[-------------------------- Nonzero --------------------------]
| ndim 1 | ndim 2 | ndim 3
1 threads: ----------------------------------------------------
number of elts 131072 | 48.6 | 79.1 | 90.2
number of elts 1048576 | 64.7 | 134.2 | 161.1
number of elts 134217728 | 3748.8 | 7881.3 | 9953.7
Times are in microseconds (us).
```
There's a real regression for smallish 2D tensor due to added work of computing number of nonzero elements, however, for other sizes there are significant gains, and there are drastically lower memory requirements. Perf gains would be even larger for tensors with fewer nonzeros.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44259
Reviewed By: izdeby
Differential Revision: D23581955
Pulled By: ngimel
fbshipit-source-id: 0b99a767fd60d674003d83f0848dc550d7a363dc
Summary:
When var and std are called without args (other than unbiased) they currently call into TH or THC. This PR:
- Removes the THC var_all and std_all functions and updates CUDA var and std to use the ATen reduction
- Fixes var's docs, which listed its arguments in the incorrect order
- Adds new tests comparing var and std with their NumPy counterparts
Performance appears to have improved as a result of this change. I ran experiments on 1D tensors, 1D tensors with every other element viewed ([::2]), 2D tensors and 2D transposed tensors. Some notable datapoints:
- torch.randn((8000, 8000))
- var measured 0.0022215843200683594s on CUDA before the change
- var measured 0.0020322799682617188s on CUDA after the change
- torch.randn((8000, 8000)).T
- var measured .015128850936889648 on CUDA before the change
- var measured 0.001912832260131836 on CUDA after the change
- torch.randn(8000 ** 2)
- std measured 0.11031460762023926 on CUDA before the change
- std measured 0.0017833709716796875 on CUDA after the change
Timings for var and std are, as expected, similar.
On the CPU, however, the performance change from making the analogous update was more complicated, and ngimel and I decided not to remove CPU var_all and std_all. ngimel wrote the following script that showcases how single-threaded CPU inference would suffer from this change:
```
import torch
import numpy as np
from torch.utils._benchmark import Timer
from torch.utils._benchmark import Compare
import sys
base = 8
multiplier = 1
def stdfn(a):
meanv = a.mean()
ac = a-meanv
return torch.sqrt(((ac*ac).sum())/a.numel())
results = []
num_threads=1
for _ in range(7):
size = base*multiplier
input = torch.randn(size)
tasks = [("torch.var(input)", "torch_var"),
("torch.var(input, dim=0)", "torch_var0"),
("stdfn(input)", "stdfn"),
("torch.sum(input, dim=0)", "torch_sum0")
]
timers = [Timer(stmt=stmt, num_threads=num_threads, label="Index", sub_label=f"{size}",
description=label, globals=globals()) for stmt, label in tasks]
repeats = 3
for i, timer in enumerate(timers * repeats):
results.append(
timer.blocked_autorange()
)
print(f"\r{i + 1} / {len(timers) * repeats}", end="")
sys.stdout.flush()
multiplier *=10
print()
comparison = Compare(results)
comparison.print()
```
The TH timings using this script on my devfair are:
```
[------------------------------ Index ------------------------------]
| torch_var | torch_var0 | stdfn | torch_sum0
1 threads: ----------------------------------------------------------
8 | 16.0 | 5.6 | 40.9 | 5.0
80 | 15.9 | 6.1 | 41.6 | 4.9
800 | 16.7 | 12.0 | 42.3 | 5.0
8000 | 27.2 | 72.7 | 51.5 | 6.2
80000 | 129.0 | 715.0 | 133.0 | 18.0
800000 | 1099.8 | 6961.2 | 842.0 | 112.6
8000000 | 11879.8 | 68948.5 | 20138.4 | 1750.3
```
and the ATen timings are:
```
[------------------------------ Index ------------------------------]
| torch_var | torch_var0 | stdfn | torch_sum0
1 threads: ----------------------------------------------------------
8 | 4.3 | 5.4 | 41.4 | 5.4
80 | 4.9 | 5.7 | 42.6 | 5.4
800 | 10.7 | 11.7 | 43.3 | 5.5
8000 | 69.3 | 72.2 | 52.8 | 6.6
80000 | 679.1 | 676.3 | 129.5 | 18.1
800000 | 6770.8 | 6728.8 | 819.8 | 109.7
8000000 | 65928.2 | 65538.7 | 19408.7 | 1699.4
```
which demonstrates that performance is analogous to calling the existing var and std with `dim=0` on a 1D tensor. This would be a significant performance hit. Another simple script shows the performance is mixed when using multiple threads, too:
```
import torch
import time
# Benchmarking var and std, 1D with varying sizes
base = 8
multiplier = 1
op = torch.var
reps = 1000
for _ in range(7):
size = base * multiplier
t = torch.randn(size)
elapsed = 0
for _ in range(reps):
start = time.time()
op(t)
end = time.time()
elapsed += end - start
multiplier *= 10
print("Size: ", size)
print("Avg. elapsed time: ", elapsed / reps)
```
```
var cpu TH vs ATen timings
Size: 8
Avg. elapsed time: 1.7853736877441406e-05 vs 4.9788951873779295e-06 (ATen wins)
Size: 80
Avg. elapsed time: 1.7803430557250977e-05 vs 6.156444549560547e-06 (ATen wins)
Size: 800
Avg. elapsed time: 1.8569469451904296e-05 vs 1.2302875518798827e-05 (ATen wins)
Size: 8000
Avg. elapsed time: 2.8756141662597655e-05 vs. 6.97789192199707e-05 (TH wins)
Size: 80000
Avg. elapsed time: 0.00026622867584228516 vs. 0.0002447957992553711 (ATen wins)
Size: 800000
Avg. elapsed time: 0.0010556647777557374 vs 0.00030616092681884767 (ATen wins)
Size: 8000000
Avg. elapsed time: 0.009990205764770508 vs 0.002938544034957886 (ATen wins)
std cpu TH vs ATen timings
Size: 8
Avg. elapsed time: 1.6681909561157225e-05 vs. 4.659652709960938e-06 (ATen wins)
Size: 80
Avg. elapsed time: 1.699185371398926e-05 vs. 5.431413650512695e-06 (ATen wins)
Size: 800
Avg. elapsed time: 1.768803596496582e-05 vs. 1.1279821395874023e-05 (ATen wins)
Size: 8000
Avg. elapsed time: 2.7791500091552735e-05 vs 7.031106948852539e-05 (TH wins)
Size: 80000
Avg. elapsed time: 0.00018650460243225096 vs 0.00024368906021118164 (TH wins)
Size: 800000
Avg. elapsed time: 0.0010522041320800782 vs 0.0003039860725402832 (ATen wins)
Size: 8000000
Avg. elapsed time: 0.009976618766784668 vs. 0.0029211788177490234 (ATen wins)
```
These results show the TH solution still performs better than the ATen solution with default threading for some sizes.
It seems like removing CPU var_all and std_all will require an improvement in ATen reductions. https://github.com/pytorch/pytorch/issues/40570 has been updated with this information.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43858
Reviewed By: zou3519
Differential Revision: D23498981
Pulled By: mruberry
fbshipit-source-id: 34bee046c4872d11c3f2ffa1b5beee8968b22050
Summary:
- test beta=0, self=nan
- test transposes
- fixes broadcasting of addmv
- not supporting tf32 yet, will do it in future PR together with other testing fixes
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43980
Reviewed By: mruberry
Differential Revision: D23507559
Pulled By: ngimel
fbshipit-source-id: 14ee39d1a0e13b9482932bede3fccb61fe6d086d
Summary:
- This test is very fast and very important, so it makes no sense in marking it as slowTest
- This test is should also run on CUDA
- This test should check alpha and beta support
- This test should check `out=` support
- manual computation should use list instead of index_put because list is much faster
- precision for TF32 needs to be fixed. Will do it in future PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43831
Reviewed By: ailzhang
Differential Revision: D23435032
Pulled By: ngimel
fbshipit-source-id: d1b8350addf1e2fe180fdf3df243f38d95aa3f5a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44001
This is to align with the naming in numpy and in
https://github.com/pytorch/pytorch/pull/43092
Test Plan:
```
python test/test_torch.py TestTorchDeviceTypeCPU.test_aminmax_cpu_float32
python test/test_torch.py TestTorchDeviceTypeCUDA.test_aminmax_cuda_float32
```
Imported from OSS
Reviewed By: jerryzh168
Differential Revision: D23465298
fbshipit-source-id: b599035507156cefa53942db05f93242a21c8d06
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42894
Continuing the min_max kernel implementation, this PR adds the
CPU path when a dim is specified. Next PR will replicate for CUDA.
Note: after a discussion with ngimel, we are taking the fast path
of calculating the values only and not the indices, since that is what
is needed for quantization, and calculating indices would require support
for reductions on 4 outputs which is additional work. So, the API
doesn't fully match `min.dim` and `max.dim`.
Flexible on the name, let me know if something else is better.
Test Plan:
correctness:
```
python test/test_torch.py TestTorchDeviceTypeCPU.test_minmax_cpu_float32
```
performance: seeing a 49% speedup on a min+max tensor with similar shapes
to what we care about for quantization observers (bench:
https://gist.github.com/vkuzo/b3f24d67060e916128a51777f9b89326). For
other shapes (more dims, different dim sizes, etc), I've noticed a
speedup as low as 20%, but we don't have a good use case to optimize
that so perhaps we can save that for a future PR.
Imported from OSS
Reviewed By: jerryzh168
Differential Revision: D23086798
fbshipit-source-id: b24ce827d179191c30eccf31ab0b2b76139b0ad5
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42868
Adds a CUDA kernel for the _min_max function.
Note: this is a re-submit of https://github.com/pytorch/pytorch/pull/41805,
was faster to resubmit than to ressurect that one. Thanks to durumu
for writing the original implementation!
Future PRs will add index support, docs, and hook this up to observers.
Test Plan:
```
python test/test_torch.py TestTorchDeviceTypeCUDA.test_minmax_cuda_float32
```
Basic benchmarking shows a 50% reduction in time to calculate min + max:
https://gist.github.com/vkuzo/b7dd91196345ad8bce77f2e700f10cf9
TODO
Imported from OSS
Reviewed By: jerryzh168
Differential Revision: D23057766
fbshipit-source-id: 70644d2471cf5dae0a69343fba614fb486bb0891
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43270
`torch.conj` is a very commonly used operator for complex tensors, but it's mathematically a no op for real tensors. Switching to tensorflow gradients for complex tensors (as discussed in #41857) would involve adding `torch.conj()` to the backward definitions for a lot of operators. In order to preserve autograd performance for real tensors and maintain numpy compatibility for `torch.conj`, this PR updates `torch.conj()` which behaves the same for complex tensors but performs a view/returns `self` tensor for tensors of non-complex dtypes. The documentation states that the returned tensor for a real input shouldn't be mutated. We could perhaps return an immutable tensor for this case in future when that functionality is available (zdevito ezyang ).
Test Plan: Imported from OSS
Reviewed By: mruberry
Differential Revision: D23460493
Pulled By: anjali411
fbshipit-source-id: 3b3bf0af55423b77ff2d0e29f5d2c160291ae3d9
Summary:
Add a max/min operator that only return values.
## Some important decision to discuss
| **Question** | **Current State** |
|---------------------------------------|-------------------|
| Expose torch.max_values to python? | No |
| Remove max_values and only keep amax? | Yes |
| Should amax support named tensors? | Not in this PR |
## Numpy compatibility
Reference: https://numpy.org/doc/stable/reference/generated/numpy.amax.html
| Parameter | PyTorch Behavior |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| `axis`: None or int or tuple of ints, optional. Axis or axes along which to operate. By default, flattened input is used. If this is a tuple of ints, the maximum is selected over multiple axes, instead of a single axis or all the axes as before. | Named `dim`, behavior same as `torch.sum` (https://github.com/pytorch/pytorch/issues/29137) |
| `out`: ndarray, optional. Alternative output array in which to place the result. Must be of the same shape and buffer length as the expected output. | Same |
| `keepdims`: bool, optional. If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. | implemented as `keepdim` |
| `initial`: scalar, optional. The minimum value of an output element. Must be present to allow computation on empty slice. | Not implemented in this PR. Better to implement for all reductions in the future. |
| `where`: array_like of bool, optional. Elements to compare for the maximum. | Not implemented in this PR. Better to implement for all reductions in the future. |
**Note from numpy:**
> NaN values are propagated, that is if at least one item is NaN, the corresponding max value will be NaN as well. To ignore NaN values (MATLAB behavior), please use nanmax.
PyTorch has the same behavior
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43092
Reviewed By: ngimel
Differential Revision: D23360705
Pulled By: mruberry
fbshipit-source-id: 5bdeb08a2465836764a5a6fc1a6cc370ae1ec09d
Summary:
Related to https://github.com/pytorch/pytorch/issues/38349
Implement NumPy-like functions `maximum` and `minimum`.
The `maximum` and `minimum` functions compute input tensors element-wise, returning a new array with the element-wise maxima/minima.
If one of the elements being compared is a NaN, then that element is returned, both `maximum` and `minimum` functions do not support complex inputs.
This PR also promotes the overloaded versions of torch.max and torch.min, by re-dispatching binary `torch.max` and `torch.min` to `torch.maximum` and `torch.minimum`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42579
Reviewed By: mrshenli
Differential Revision: D23153081
Pulled By: mruberry
fbshipit-source-id: 803506c912440326d06faa1b71964ec06775eac1
Summary:
These tests are failing on one of my system that does not have lapack
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43566
Reviewed By: ZolotukhinM
Differential Revision: D23325378
Pulled By: mruberry
fbshipit-source-id: 5d795e460df0a2a06b37182d3d4084d8c5c8e751
Summary:
As part of our continued refactoring of test_torch.py, this takes tests for tensor creation ops like torch.eye, torch.randint, and torch.ones_like and puts them in test_tensor_creation_ops.py. There hare three test classes in the new test suite: TestTensorCreation, TestRandomTensorCreation, TestLikeTensorCreation. TestViewOps and tests for construction of tensors from NumPy arrays have been left in test_torch.py. These might be refactored separately into test_view_ops.py and test_numpy_interop.py in the future.
Most of the tests ported from test_torch.py were left as is or received a signature change to make them nominally "device generic." Future work will need to review test coverage and update the tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43104
Reviewed By: ngimel
Differential Revision: D23280358
Pulled By: mruberry
fbshipit-source-id: 469325dd1a734509dd478cc7fe0413e276ffb192
Summary:
This PR:
- ports the tests in TestTorchMathOps to test_unary_ufuncs.py
- removes duplicative tests for the tested unary ufuncs from test_torch.py
- adds a new test, test_reference_numerics, that validates the behavior of our unary ufuncs vs. reference implementations on empty, scalar, 1D, and 2D tensors that are contiguous, discontiguous, and that contain extremal values, for every dtype the unary ufunc supports
- adds support for skipping tests by regex, this behavior is used to make the test suite pass on Windows, MacOS, and ROCm builds, which have a variety of issues, and on Linux builds (see https://github.com/pytorch/pytorch/issues/42952)
- adds a new OpInfo helper, `supports_dtype`, to facilitate test writing
- extends unary ufunc op info to include reference, domain, and extremal value handling information
- adds OpInfos for `torch.acos` and `torch.sin`
These improvements reveal that our testing has been incomplete on several systems, especially with larger float values and complex values, and several TODOs have been added for follow-up investigations. Luckily when writing tests that cover many ops we can afford to spend additional time crafting the tests and ensuring coverage.
Follow-up PRs will:
- refactor TestTorchMathOps into test_unary_ufuncs.py
- continue porting tests from test_torch.py to test_unary_ufuncs.py (where appropriate)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42965
Reviewed By: pbelevich
Differential Revision: D23238083
Pulled By: mruberry
fbshipit-source-id: c6be317551453aaebae9d144f4ef472f0b3d08eb
Summary:
Add ComplexHalf case to toValueType, which fixes the logic how view_as_real and view_as_complex slices complex tensor to the floating point one, as it is used to generate tensor of random complex values, see:
018b4d7abb/aten/src/ATen/native/DistributionTemplates.h (L200)
Also add ability to convert python complex object to `c10::complex<at::Half>`
Add `torch.half` and `torch.complex32` to the list of `test_randn` dtypes
Fixes https://github.com/pytorch/pytorch/issues/43143
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43279
Reviewed By: mrshenli
Differential Revision: D23230296
Pulled By: malfet
fbshipit-source-id: b4bb66c4c81dd867e72ab7c4563d73f6a4d80a44
Summary:
Fixes https://github.com/pytorch/pytorch/issues/41314 among other things.
This PR streamlines layout propagation logic in TensorIterator and removes almost all cases of channels-last hardcoding. The new rules and changes are as follows:
1) behavior of undefined `output` and defined output of the wrong (e.g. 0) size is always the same (before this PR the behavior was divergent)
2) in obvious cases (unary operation on memory-dense tensors, binary operations on memory-dense tensors with the same layout) strides are propagated (before propagation was inconsistent) (see footnote)
3) in other cases the output permutation is obtained as inverse permutation of sorting inputs by strides. Sorting is done with comparator obeying the following rules: strides of broadcasted dimensions are set to 0, and 0 compares equal to anything. Strides of not-broadcasted dimensions (including dimensions of size `1`) participate in sorting. Precedence is given to the first input, in case of a tie in the first input, first the corresponding dimensions are considered, and if that does not indicate that swap is needed, strides of the same dimension in subsequent inputs are considered. See changes in `reorder_dimensions` and `compute_strides`. Note that first inspecting dimensions of the first input allows us to better recover it's permutation (and we select this behavior because it more reliably propagates channels-last strides) but in some rare cases could result in worse traversal order for the second tensor.
These rules are enough to recover previously hard-coded behavior related to channels last, so all existing tests are passing.
In general, these rules will produce intuitive results, and in most cases permutation of the full size input (in case of broadcasted operation) will be recovered, or permutation of the first input (in case of same sized inputs) will be recovered, including cases with trivial (1) dimensions. As an example of the latter, the following tensor
```
x=torch.randn(2,1,3).permute(1,0,2)
```
will produce output with the same stride (3,3,1) in binary operations with 1d tensor. Another example is a tensor of size N1H1 that has strides `H,H,1,1` when contiguous and `H, 1, 1, 1` when channels-last. The output retains these strides in binary operations when another 1d tensor is broadcasted on this one.
Footnote: for ambiguous cases where all inputs are memory dense and have the same physical layout that nevertheless can correspond to different permutations, such as e.g. NC11-sized physically contiguous tensors, regular contiguous tensor is returned, and thus permutation information of the input is lost (so for NC11 channels-last input had the strides `C, 1, C, C`, but output will have the strides `C, 1, 1, 1`). This behavior is unchanged from before and consistent with numpy, but it still makes sense to change it. The blocker for doing it currently is performance of `empty_strided`. Once we make it on par with `empty` we should be able to propagate layouts in these cases. For now, to not slow down common contiguous case, we default to contiguous.
The table below shows how in some cases current behavior loses permutation/stride information, whereas new behavior propagates permutation.
| code | old | new |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|
| #strided tensors<br>a=torch.randn(2,3,8)[:,:,::2].permute(2,0,1)<br>print(a.stride())<br>print(a.exp().stride())<br>print((a+a).stride())<br>out = torch.empty(0)<br>torch.add(a,a,out=out)<br>print(out.stride()) | (2, 24, 8) <br>(6, 3, 1) <br>(1, 12, 4) <br>(6, 3, 1) | (2, 24, 8)<br>(1, 12, 4)<br>(1, 12, 4)<br>(1, 12, 4) |
| #memory dense tensors<br>a=torch.randn(3,1,1).as_strided((3,1,1), (1,3,3))<br>print(a.stride(), (a+torch.randn(1)).stride())<br>a=torch.randn(2,3,4).permute(2,0,1)<br>print(a.stride())<br>print(a.exp().stride())<br>print((a+a).stride())<br>out = torch.empty(0)<br>torch.add(a,a,out=out)<br>print(out.stride()) | (1, 3, 3) (1, 1, 1)<br>(1, 12, 4)<br>(6, 3, 1)<br>(1, 12, 4)<br>(6, 3, 1) | (1, 3, 3) (1, 3, 3)<br>(1, 12, 4)<br>(1, 12, 4)<br>(1, 12, 4)<br>(1, 12, 4) |
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42922
Reviewed By: ezyang
Differential Revision: D23148204
Pulled By: ngimel
fbshipit-source-id: 670fb6188c7288e506e5ee488a0e11efc8442d1f
Summary:
https://github.com/pytorch/pytorch/issues/40980
I have a few questions during implementing Polygamma function...
so, I made PR prior to complete it.
1. some code blocks brought from cephes library(and I did too)
```
/*
* The following function comes with the following copyright notice.
* It has been released under the BSD license.
*
* Cephes Math Library Release 2.8: June, 2000
* Copyright 1984, 1987, 1992, 2000 by Stephen L. Moshier
*/
```
is it okay for me to use cephes code with this same copyright notice(already in the Pytorch codebases)
2. There is no linting in internal Aten library. (as far as I know, I read https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md)
How do I'm sure my code will follow appropriate guidelines of this library..?
3. Actually, there's a digamma, trigamma function already
digamma is needed, however, trigamma function becomes redundant if polygamma function is added.
it is okay for trigamma to be there or should be removed?
btw, CPU version works fine with 3-rd order polygamma(it's what we need to play with variational inference with beta/gamma distribution) now and I'm going to finish GPU version soon.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42499
Reviewed By: gchanan
Differential Revision: D23110016
Pulled By: albanD
fbshipit-source-id: 246f4c2b755a99d9e18a15fcd1a24e3df5e0b53e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42563
Moved logic for non-named unflatten from python nn module to aten/native to be reused by the nn module later. Fixed some inconsistencies with doc and code logic.
Test Plan: Imported from OSS
Reviewed By: zou3519
Differential Revision: D23030301
Pulled By: heitorschueroff
fbshipit-source-id: 7c804ed0baa5fca960a990211b8994b3efa7c415
Summary:
Addresses some comments that were left unaddressed after PR https://github.com/pytorch/pytorch/issues/41377 was merged:
* Use `check_output` instead of `Popen` to run each subprocess sequentially
* Use f-strings rather than old python format string style
* Provide environment variables to subprocess through the `env` kwarg
* Check for correct error behavior inside the subprocess, and raise another error if incorrect. Then the main process fails the test if any error is raised
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42627
Reviewed By: malfet
Differential Revision: D22969231
Pulled By: ezyang
fbshipit-source-id: 38d5f3f0d641c1590a93541a5e14d90c2e20acec