So that NVLink SHARP comes with zero-copy on H100+ platforms, for DDP applications.
Less SM usage, less memory contention between NCCL kernel and compute kernels.
Added env `DDP_DISABLE_COMM_MEM` as a back-out option:
```
An environment variable to disable comm-optimized memory pool.
Default is 0, which means comm-optimized memory pool is enabled.
Users can set it to 1 in case of seeing regression or OOM (because this
comm MemPool may not share space with regular compute MemPool).
```
Differential Revision: [D69297766](https://our.internmc.facebook.com/intern/diff/D69297766)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146589
Approved by: https://github.com/syed-ahmed, https://github.com/c-p-i-o, https://github.com/fduwjj
Since the functional autograd + compiled autograd migration, we don't trace into nodes anymore, and everything is lifted. We can't support this flag which tries to inline make_fx style in CA initial pass. There's no more usage internally.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146720
Approved by: https://github.com/zou3519
Summary: D68801098 introduced this function signature mismatch issue for printNcclCommProxyTrace. Revert it so that trunk build can pass.
Test Plan:
With the change, build of APS model using rcclexp can now pass:
`sh scripts/ltian/run_jobs/fb_fm_v2/run_fb_fm_v2_job.sh -h T20_GTT_MI300X -n 16 -b 1024 -t [2024-12-06] -d ai_infra_ngs -e ai_infra_training_rnd_tc -x 0`
Reviewed By: c-p-i-o
Differential Revision: D69149588
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146453
Approved by: https://github.com/c-p-i-o
@fegin found an issue where torchft is not compatible with functional collectives.
Found in https://github.com/pytorch/torchtitan/pull/806
The root cause is because PyProcessGroup/PyWork are not compatible with functional collectives due to a nasty ownership bug.
PyWork relies on a pybind trampoline to propagate requests to Python unfortunately the way Pybind works is that the Python object owns the C++ object rather than some form of shared ownership. Thus what happens is that the PyWork Python object will collected when returned to C++ from the PyProcessGroup but the C++ PyWork object still exists. When the PyWork object is used, this causes a deadlock as the corresponding Python object no longer exists
To solve this, we introduce a new `PyWorkHolder` class which holds a reference to the `py::object` as well as the trampoline class. This resolves any dependency issues since we can now hold ownership in C++ to both the Python and C++ objects.
To make this cleaner we introduce a `WORK_OVERRIDE` macro which is a patched version of `PYBIND11_OVERRIDE` that returns a `PyWorkHolder` rather than just `PyWork` and use for all collectives in PyProcessGroup.
Test plan:
```
cd pytorch
pytest test/distributed/test_c10d_functional_native.py
```
```
cd torchft
pytest torchft/process_group_test.py -k functional -v -x -s
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146376
Approved by: https://github.com/yifuwang
Summary:
`c10::AttributeError` is not automatically converted to Python AttributeError, it needs some special macros (e.g. `HANDLE_TH_ERRORS`).
Some Python functions like `hasattr` rely on the type of the throw exception to be correct.
We don't need the fully generality of those macros, so just do a targeted error type conversion here.
Test Plan: added unit test
Differential Revision: D69197217
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146516
Approved by: https://github.com/zdevito
Fixing the following issue when compiling the following program:
```
window = torch.hann_window(N_FFT).to(x.device)
stft = torch.stft(
x, N_FFT, HOP_LENGTH, window=window, return_complex=True
)
magnitudes = stft[..., :-1].abs() ** 2
return magnitudes
```
```
Traceback (most recent call last):
File "/home/zhxchen17/miniconda3/envs/dev/lib/python3.11/unittest/case.py", line 57, in testPartExecutor
yield
File "/home/zhxchen17/miniconda3/envs/dev/lib/python3.11/unittest/case.py", line 623, in run
self._callTestMethod(testMethod)
File "/home/zhxchen17/miniconda3/envs/dev/lib/python3.11/unittest/case.py", line 579, in _callTestMethod
if method() is not None:
^^^^^^^^
File "/home/zhxchen17/pytorch/torch/testing/_internal/common_utils.py", line 3120, in wrapper
method(*args, **kwargs)
File "/home/zhxchen17/pytorch/test/inductor/test_torchinductor.py", line 12356, in new_test
return value(self)
^^^^^^^^^^^
File "/home/zhxchen17/pytorch/test/inductor/test_aot_inductor.py", line 4334, in test_stft
self.check_model(model, example_inputs)
File "/home/zhxchen17/pytorch/test/inductor/test_aot_inductor_utils.py", line 185, in check_model
actual = AOTIRunnerUtil.run(
^^^^^^^^^^^^^^^^^^^
File "/home/zhxchen17/pytorch/test/inductor/test_aot_inductor_utils.py", line 137, in run
optimized = AOTIRunnerUtil.load(device, so_path)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/zhxchen17/pytorch/test/inductor/test_aot_inductor_utils.py", line 119, in load
return torch._export.aot_load(so_path, device)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/zhxchen17/pytorch/torch/_export/__init__.py", line 165, in aot_load
runner = torch._C._aoti.AOTIModelContainerRunnerCuda(so_path, 1, device) # type: ignore[assignment, call-arg]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
RuntimeError: Expected extern kernel aten::hann_window to have serialized argument type as_scalar_type for argument 1 but got as_device
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146263
Approved by: https://github.com/angelayi
Adds a C-shim fallback for `set_.source_Tensor`, which is effectively required by `ir.SetSourceTensorKernel`. As a necessary prerequisite to use that IR node, updates `CppWrapperCpu` to handle in-place returns in C-shim ops (the arguments for those returns are silently dropped by `torchgen`).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145654
Approved by: https://github.com/desertfire
ghstack dependencies: #145095
See the comment [here](https://github.com/pytorch/pytorch/issues/132014#issuecomment-2379547400) (cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov @XilunWu @rec) - this PR updates `_unsafe_set_version_counter` to accept a list of tensors, for overhead-sensitive users (e.g. distributed) who need to hide VC bumps from autograd on a large list of tensors without wanting to suffer the overhead of going from python->C++ separately for every tensor in the list.
I left the binding in pybind, and used a `std::vector`. if we **really** need to optimize overhead even further, we could write a manual cpython binding.
I use this updated API in the next PR to fix FSDP2, so that it properly hides the VC of all `all_gather_buffer` tensors in its call to `split_with_sizes_copy.out(all_gather_buffers)`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137921
Approved by: https://github.com/awgu, https://github.com/albanD
Summary: PyPer saw random crashes when writing into ET file. This DIFF is to check if the output file is in condition before writing into it, and catch the exception if something bad happens, instead of crashing.
Test Plan: buck2 run mode/opt caffe2/test:test_profiler_cuda -- profiler.test_execution_trace.TestExecutionTraceCUDA
Differential Revision: D69065509
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146327
Approved by: https://github.com/sraikund16
If a user passes in a namedtuple as an input, currently the input TreeSpec looks like: `TreeSpec(type=namedtuple, context=”class_fqn”, children_spec=[*, *])`
The user then saves the program containing this input TreeSpec. But what happens if they load it in a new environment where `class_fqn` now contains an additional field?
This means that the exported program is now expected to take in another input. But since those fields were not used in the original program, users should be able just drop those additional fields and the program will run successfully. This is needed/used in APS where they use unflattener's adapter to adapt the inputs based on the previously saved treespecs.
There are a couple of [solutions](https://docs.google.com/document/d/1V4ZSdy-8PUISWc8RqvGu3DU01BVegJhHHPWqa1Io7Eg/edit?tab=t.0) for how we can address this, but eventually we settled on saving a side table mapping namedtuple types to their list of field names, which can then be accessed by the adapter.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145956
Approved by: https://github.com/zhxchen17
Fixing the following issue when compiling the following program:
```
window = torch.hann_window(N_FFT).to(x.device)
stft = torch.stft(
x, N_FFT, HOP_LENGTH, window=window, return_complex=True
)
magnitudes = stft[..., :-1].abs() ** 2
return magnitudes
```
```
Traceback (most recent call last):
File "/home/zhxchen17/miniconda3/envs/dev/lib/python3.11/unittest/case.py", line 57, in testPartExecutor
yield
File "/home/zhxchen17/miniconda3/envs/dev/lib/python3.11/unittest/case.py", line 623, in run
self._callTestMethod(testMethod)
File "/home/zhxchen17/miniconda3/envs/dev/lib/python3.11/unittest/case.py", line 579, in _callTestMethod
if method() is not None:
^^^^^^^^
File "/home/zhxchen17/pytorch/torch/testing/_internal/common_utils.py", line 3120, in wrapper
method(*args, **kwargs)
File "/home/zhxchen17/pytorch/test/inductor/test_torchinductor.py", line 12356, in new_test
return value(self)
^^^^^^^^^^^
File "/home/zhxchen17/pytorch/test/inductor/test_aot_inductor.py", line 4334, in test_stft
self.check_model(model, example_inputs)
File "/home/zhxchen17/pytorch/test/inductor/test_aot_inductor_utils.py", line 185, in check_model
actual = AOTIRunnerUtil.run(
^^^^^^^^^^^^^^^^^^^
File "/home/zhxchen17/pytorch/test/inductor/test_aot_inductor_utils.py", line 137, in run
optimized = AOTIRunnerUtil.load(device, so_path)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/zhxchen17/pytorch/test/inductor/test_aot_inductor_utils.py", line 119, in load
return torch._export.aot_load(so_path, device)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/zhxchen17/pytorch/torch/_export/__init__.py", line 165, in aot_load
runner = torch._C._aoti.AOTIModelContainerRunnerCuda(so_path, 1, device) # type: ignore[assignment, call-arg]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
RuntimeError: Expected extern kernel aten::hann_window to have serialized argument type as_scalar_type for argument 1 but got as_device
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146263
Approved by: https://github.com/angelayi
It's unused otherwise, and when running MPS tests, I get a bunch of warnings of this kind:
/Users/davidino/pytorch/pytorch/torch/include/torch/csrc/inductor/aoti_runtime/model_container.h:412:10: warning: private field 'blob_size_' is not used [-Wunused-private-field]
412 | size_t blob_size_;
| ^
1 warning generated.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146278
Approved by: https://github.com/Skylion007, https://github.com/jansel
## Background
This PR adds `torch.utils.serialization.config.load.calculate_storage_offsets`. This option relies on the previous PR in this stack, where storage order was changed to non lexicographical. A `.format_version` entry was added to the zipfile and `calculate_storage_offsets` will only work on checkpoints with `.format_version`.
When this is turned on, for `torch.load(mmap=True)`, offsets of each storage record (other than the 0th storage will be calculated instead of relying on `miniz` APIs to determine this).
The existing APIs will issue multiple random reads (reading the end of central directory record, then reading the zipfile header for the record) to determine the storage offset where the record starts. This can greatly degrade `torch.load(mmap=True)` performance for non-filesystem cases.
6aaae9d78f/caffe2/serialize/inline_container.cc (L589-L605)
## How does this work
The format for the checkpoint is as such
```
archive_name/
|_ data.pkl
|_.format_version
|_byteorder
|_data/
|_ 0
|_ 1
|_ 2
|_ ...
|_
```
Each `data/i` record represents a storage, where storages are written in the order that the Pickler encounters them.
For each storage, our `persistent_load` logic saves the following metadata to the pickle file `dtype, numel, key, location` where `numel` is the number of bytes in the storage.
Note that we always use `miniz` writer in the zip64 mode per [here](7796e308d0/caffe2/serialize/inline_container.cc (L701)) A zipfile record written by miniz looks as such
```
---------------- ----------------- ------------------- ---------------- --------- ------------------------------
| 30 byte header | n byte filename | zip64_extra_data | m byte padding | storage | 16 or 24 byte local dir footer |
---------------- ----------------- ------------------- ---------------- --------- ------------------------------
```
- The header size (30) is given by [`MZ_ZIP_LOCAL_DIR_HEADER_SIZE`](https://github.com/pytorch/pytorch/blob/main/third_party/miniz-3.0.2/miniz.c?fbclid=IwZXh0bgNhZW0CMTEAAR2O8Vysd--UoSCxW70gabXIS1dbz733oHwuUQ5_Ff1hY2WU6PL2i6CSH4A_aem_J9oaU2HpDeWtJKOU9EnVqw#L3290)
- filename will be `"{archive_name}/{filepath}"`
- `zip64_extra_data` is determined by [`mz_zip_writer_create_zip64_extra_data`](7796e308d0/third_party/miniz-3.0.2/miniz.c (L6202)). Note that [we only create zip64_extra_data if storage_size >= 0xFFFFFFFF or the offset of the start of the header >= 0xFFFFFFFF](7796e308d0/third_party/miniz-3.0.2/miniz.c (L6519-L6524))
- `m` is determined by [`getPadding`](7796e308d0/caffe2/serialize/inline_container.cc (L254)), which accounts for filename, zip64_extra_data to determine `m` such that the start of `storage` is aligned to 64 bytes. The `m` bytes will always start with `F B padding_size" as the first 4 bytes
- The local dir footer size is determined based on [this snippet ](7796e308d0/third_party/miniz-3.0.2/miniz.c (L6610-L6632)): if the buffer size is 0 it is skipped. If the zip64_extra_data was created, it is 24, otherwise it is 16.
When `torch.utils.serialization.config.load.calculate_storage_offsets` is set we do the following
- We keep track of where the "cursor" is in the file using `current_offset`, after each persistent_load call, it will be at the offset where the header for the next record starts
- for the 0th storage, "data/0", we use the regular get_record_offset to determine the start of the storage
- for any other storage, (where the storages will be in order encountered by the unpickler, 0, 1, 2, 3, ...) we use `get_record_offset_no_read`, which re-uses the `getPadding` logic to determine the offset of the storage
- Note that `load_tensor` will only ever be called again with the same key if the storage's `._data_ptr()` is 0 [[pointer1](https://github.com/pytorch/pytorch/blob/main/torch/serialization.py#L1917-L1918)][[pointer2](https://github.com/pytorch/pytorch/blob/main/torch/serialization.py#L1936-L1937)], so we cache the offsets for this edge case
- After each storage, if the storage is non-zero, we account for the local dir footer based on the logic described above
## Testing strategy
The agreed upon testing strategy was as follows:
- Add debug code gated by an environment flag `TORCH_SERIALIZATION_DEBUG` that will run this offset calculation logic and verify it against getRecordOffset for each storage (when mmap=False)
- This flag is set throughout CI, which means that every time `torch.load` is called, the offset calculation logic is implicitly being tested.
Differential Revision: [D67673026](https://our.internmc.facebook.com/intern/diff/D67673026)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143880
Approved by: https://github.com/albanD
ghstack dependencies: #143879
This PR implements a small UI improvement over #133603.
It prepares a NCCL memory allocator in torch cpp and then pybind's it out, so that user can directly use it.
UI:
```
pool = torch.cuda.MemPool(backend.mem_allocator)
with torch.cuda.use_mem_pool(pool):
tensor = torch.arange(1024 * 1024 * 2, device=device)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145675
Approved by: https://github.com/syed-ahmed, https://github.com/wconstab
This PR implements a small UI improvement over #133603.
It prepares a NCCL memory allocator in torch cpp and then pybind's it out, so that user can directly use it.
UI:
```
pool = torch.cuda.MemPool(backend.mem_allocator)
with torch.cuda.use_mem_pool(pool):
tensor = torch.arange(1024 * 1024 * 2, device=device)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145675
Approved by: https://github.com/syed-ahmed, https://github.com/wconstab
This PR introduces two new methods to the LazyGraphExecutor class:
- ClearComputationCache(): Allows clearing the entire computation cache.
- RemoveFromComputationCache(hash): Enables removal of specific cache entries based on their hash.
The main objective is to expose cache management functionality for debugging cache hits and misses across different computations. For instance:
- Reset the cache state in tests, allowing reuse of the same computation client to evaluate cache logic consistently.
- Selectively remove cache entries to analyze the impact on subsequent computations.
- Improve observability into the cache behavior, aiding in the investigation of cache-related issues or optimizations.
On the XLA lazy graph executor, we want to run a series of tests that modify some parts of the HLO module proto of the computation, and we need a means to ensure that the hash is agnostic to some elements (OpMetadata in the XLA proto data). Hence, it would be easy to parameterize the test, clear the cache and validate that the resulting hash is the same between runs. Otherwise, we'd need to hardcode the resulting serialized hash.
Simultaneously, **another motivation**, is that users could also clear some computation hashes for an added flexibility in their applications, by introducing their own custom strategies for maintaining the cache (without relying on the default LRU).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144489
Approved by: https://github.com/wconstab
This PR implements a small UI improvement over #133603.
It prepares a NCCL memory allocator in torch cpp and then pybind's it out, so that user can directly use it.
UI:
```
pool = torch.cuda.MemPool(backend.mem_allocator)
with torch.cuda.use_mem_pool(pool):
tensor = torch.arange(1024 * 1024 * 2, device=device)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145675
Approved by: https://github.com/syed-ahmed, https://github.com/wconstab
## Background
This PR adds `torch.utils.serialization.config.load.calculate_storage_offsets`. This option relies on the previous PR in this stack, where storage order was changed to non lexicographical. A `.format_version` entry was added to the zipfile and `calculate_storage_offsets` will only work on checkpoints with `.format_version`.
When this is turned on, for `torch.load(mmap=True)`, offsets of each storage record (other than the 0th storage will be calculated instead of relying on `miniz` APIs to determine this).
The existing APIs will issue multiple random reads (reading the end of central directory record, then reading the zipfile header for the record) to determine the storage offset where the record starts. This can greatly degrade `torch.load(mmap=True)` performance for non-filesystem cases.
6aaae9d78f/caffe2/serialize/inline_container.cc (L589-L605)
## Testing strategy
The agreed upon testing strategy was as follows:
- Add debug code gated by an environment flag `TORCH_SERIALIZATION_DEBUG` that will run this offset calculation logic and verify it against getRecordOffset for each storage (when mmap=False)
- This flag is set throughout CI, which means that every time `torch.load` is called, the offset calculation logic is implicitly being tested.
Differential Revision: [D67673026](https://our.internmc.facebook.com/intern/diff/D67673026)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143880
Approved by: https://github.com/albanD
ghstack dependencies: #143879
Summary:
et_replay uses random data to run operators, however, the operators using index tensor to access memory won't work with random data. It usually ran into two exceptions: 1. illegal memory access since index is out of range, it has been fixed with the environment variable ENABLE_PYTORCH_EXECUTION_TRACE_SAVE_INTEGRAL_TENSOR_RANGE to record the min/max value of index tensors. 2. unaligned memory access, FBGEMM ops have speical requirements for the memory layout.
To fix the second execption, ENABLE_PYTORCH_EXECUTION_TRACE_SAVE_INTEGRAL_TENSOR is added to allow user to specify the node names, separated by comma, so ET will save the integral tensor data for these nodes. The saved data will be used in et_replay.
Be careful to turn on this option since it will use more space to save the extra data.
Test Plan: buck2 run mode/opt caffe2/test:test_profiler_cuda -- profiler.test_execution_trace.TestExecutionTraceCUDA.test_execution_trace_record_integral_tensor_data_cuda
Differential Revision: D67989856
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144508
Approved by: https://github.com/briancoutinho
Summary:
This PR is basically a replacement of
https://github.com/pytorch/pytorch/pull/140087, which caused some perf
drop due to frequent TCPStore check in watchdog thread. The fix is to move the
tcpstore check in monitoring thread
If unhealthy, the user should be able to get the type of errors, e.g.,
timeout,nccl error or remote error.
This API is applied to PG level, compared to the
work.get_future_result() API which is applied to Work Level.
Error detection at PG level is much more convenient for users to handle
the PG failure as a whole, e.g, restarting the PG.
Error handling at the work level is still useful for users to attach
work specific context and debug the RC of the specific failing
work/collective
Note it is critical for all ranks in the PG to be notified about an
error as soon as it occurs, so we introduce an errorType of
REMOTE_ERROR, which is 'broadcasted' from a src rank (which detects a
local error) to all other ranks in the PG, the broadcast is done through
TCPStore currently
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144498
Approved by: https://github.com/kwen2501
Summary:
Fix memory leak on shutdown when socket is closed.
We still need to free the buffer to make valgrind happy.
Test Plan:
Use `mtiavm`.
Repro steps provided by cristianlume.
on window 1:
```
vm ssh --vm=0 -- $(buck run @//neteng/ai/rdma_gen/mode/owl //neteng/ai/rdma_gen:rdma_gen --emit-shell) --rdma_mode=mtiav1 --num_ranks=2
```
on window 2:
```
vm ssh --vm=1 -- $(buck run @//neteng/ai/rdma_gen/mode/owl //neteng/ai/rdma_gen:rdma_gen --emit-shell) --rdma_mode=mtiav1 --num_ranks=2 --rank=1 --store_host=172.16.1.1
```
without the fix:
```
==8766==ERROR: LeakSanitizer: detected memory leaks
```
With fix, no leak
Differential Revision: D68566104
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145507
Approved by: https://github.com/XilunWu, https://github.com/d4l3k
PR#141153 exposed the option to collect sizes as dynamic. After this
change, the function set_autograd_compiler returns PyTuple object which
is populated using PyTuple_SET_ITEM function. Yet, that function steals
reference to the object and doesn't INCREF it. So currently we are
missing INCREF on prior_compiler when it is Py_None and INCREF on
prior_dynamic which is either Py_False or Py_True. This bug may lead to
the possible memory corruption.
@xmfan @jansel @albanD
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145482
Approved by: https://github.com/albanD, https://github.com/jansel
Some context: Inplace padding is an optimization to do padding in place. E.g., if a tensor has size [2048, 2047] and stride [2048, 1]. When we need pad one extra element to the end of each row (e.g. during mm padding), we can just reuse the original tensor and do the padding inplace. This saves memory and bandwidth. One caveat for this optimization is, PyTorch does not allocate 2048 elements for the last row of the original tensor. It only allocate 2047 elements. So assuming the last row having enough space for 2048 elements may be wrong and cause OOB memory access (although I never see this happen maybe due to overallocation in the CUDACachingAllocation, this should better be fixed).
The fix is when we allocate the tensor, instead of doing something like:
```
buf0 = randn_strided([2048, 2047], [2048, 1])
```
we do some small overallocation
```
buf0 = randn_strided([2048, 2048], [2048, 1]).as_strided([2048, 2047], [2048, 1])
```
cpp_wrapper needs special handling since memory allocation goes thru different code path to python wrapper.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145325
Approved by: https://github.com/desertfire, https://github.com/jansel
ghstack dependencies: #140249
Summary:
Explicitly catch c10 error and log the error message only.
The standard exception `e.what()` below ends up logging the stack trace that is confusing users.
See S477887 for details.
Test Plan:
tested locally.
```
buck test caffe2/test/cpp/c10d:TCPStoreTest
buck2 daemon constraint mismatch: Version mismatch; killing daemon...
Starting new buck2 daemon...
Connected to new buck2 daemon.
File changed: fbcode//caffe2/torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp
File changed: fbsource//xplat/caffe2/torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp
Watchman fresh instance: new mergebase, cleared graph state, cleared dep files
Soft Error: source_directory_includes_subpackage: Directory `v2.17.1-1` of package `fbsource//third-party/nccl` may not cover any subpackages, but includes subpackage `v2.17.1-1/src/tests`.
Soft Error: source_directory_includes_subpackage: Directory `v2.18.3-1` of package `fbsource//third-party/nccl` may not cover any subpackages, but includes subpackage `v2.18.3-1/src/tests`.
Soft Error: source_directory_includes_subpackage: Directory `v2.19.3-1` of package `fbsource//third-party/nccl` may not cover any subpackages, but includes subpackage `v2.19.3-1/src/tests`.
Buck UI: https://www.internalfb.com/buck2/dbd34fa4-50ed-4eeb-800d-688f5a7bec68
Test UI: https://www.internalfb.com/intern/testinfra/testrun/281475375994918
Network: Up: 1.5GiB Down: 4.7GiB (reSessionID-d6b0568e-2347-4375-a2d9-2d03ca0c2161)
Loading targets. Remaining 0/3024 69199 dirs read, 687558 targets declared
Analyzing targets. Remaining 0/31483 1481904 actions, 1719048 artifacts declared
Executing actions. Remaining 0/250391 77:11:29.7s exec time total
Command: test. Finished 2031 local, 45445 remote, 51473 cache (52% hit) 20:16:36.9s exec time cached (26%)
Time elapsed: 7:32.7s
Tests finished: Pass 8. Fail 0. Fatal 0. Skip 0. Build failure 0
```
Differential Revision: D68516080
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145413
Approved by: https://github.com/fduwjj
The previous PRs built up to this. We change compiled autograd's initial
trace to stop baking in metadata.
While tracing, we allocate some weirdly shaped tensors that we can put
proxies on. The initial trace should not be accessing any metadata of
these tensors (it will likely error out if it does because of how weird
the shapes are).
This involved fixing some various sites where we do specialize on the
metadata, like:
- we change CopySlices's apply_with_saved to proxy some calls
into the graph (this change is fairly hard to split out by itself).
- we stop calling InputBuffer::add
- we delete the weird metadata from the graph so that no graph passes
can make use of it.
Test Plan:
- tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143417
Approved by: https://github.com/jansel, https://github.com/xmfan
ghstack dependencies: #143296, #143304, #143387, #143405
We will always proxy autograd.Function nodes in compiled autograd's
initial graph capture (previously there was an
option to proxy vs trace into the autograd.Function)
We have some requirements for the AOTBackward. Compiled Autograd runs
accumulate grad reordering passes on the AOTBackward graph directly
after the initial graph capture, so we can't just proxy a single node for it.
Instead, we:
- proxy the AOTBackward prologue function into the CA graph
- copy-paste the AOTBackward graph into the CA graph
- trace directly through the epilogue (the traced nodes go into the CA
graph).
Tracing through the epilogue is safe (assuming no Tensor subclasses)
because the only thing the epilogue does is drop some outputs. The
Tensor subclass situation was already broken so this doesn't regress
anything but this PR sets it up to be fixed (in a followup, where we
will proxy "make_subclass" calls into the graph from the epilogue).
Test Plan:
- existing tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143405
Approved by: https://github.com/jansel, https://github.com/xmfan
ghstack dependencies: #143296, #143304, #143387
We define a functional version of a C++ torch::autograd::Function. The
functional version reconstructs the ctx object and then calls
backward with it.
Some more details:
- we define how to pack/unpack ctx.saved_data into an IValue. It's a
Dict[str, IValue], so it wasn't difficult.
- every call to CppNode::apply_with_saved binds a new function to
Python. This is because we're unable to reuse the a previously bound
function for reasons (the schema may change depending on what the user
actually puts into their Dict[str, IValue]).
Test Plan:
- existing tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143387
Approved by: https://github.com/jansel, https://github.com/xmfan
ghstack dependencies: #143296, #143304
This PR is on the way to getting compiled autograd's initial capture to
stop specializing on Tensor metadata.
This PR changes compiled autograd's initial capture to proxy an opaque
(w.r.t. Dynamo) function into the graph for all built-in codegen'ed
autograd nodes and validate_outputs.
We changed each codegen'ed apply_with_saved (e.g.
MulBackward0::apply_with_saved) to call into Python to proxy a function
(compiled_autograd.ops.MulBackward0) into the graph. Then, we use the
node's InputMetadata to "guess" at the properties of the output Tensors
to create some new FakeTensors.
Some details:
- MulBackward0::apply_with_saved lives in libtorch_cpu, but needs to be
call to Python via libtorch_python. There is an indirection
(PyCompilerInterface) to do this.
- MulBackward0::apply_with_saved passes a C++ function to Python. To make
our lives easier, every codegen'ed apply_with_saved passes a C++
function with the same signature
`(variable_list, ivalue_list) -> variable_list`.
- We define how to pack arbitrary C++ types into IValue via a helper
IValuePacker struct and codegen functional variants of each builtin
C++ autograd node (e.g. MulBackward0_apply_functional_ivalue).
MulBackward0 before this PR:
https://gist.github.com/zou3519/a80381d5fa38e970e413fcd91b0530de
MulBackward0 after this PR:
https://gist.github.com/zou3519/0c2eee8b3d8d96232b51ef430b53c5b0
Test Plan:
- existing tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143296
Approved by: https://github.com/jansel
Part of my BE project addressing NJT bugs surfaced via OpInfo tests.
Implements `chunk()` backward on the batch dim, which was left out before. This PR unbinds the components and invokes `copy_()` on these to pass along the appropriate gradients.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144584
Approved by: https://github.com/soulitzer
ghstack dependencies: #144582, #144583
Summary:
PTD all_to_all uses a list of tensors, while ncclAllToAllv (provided
by NCCLX and RCCL) assumes that a single contiguous buffer is used.
These are fundamentally mismatched. The list of tensors might not be
contiguous or even ordered (buffer addresses might not be in
increasing order).
This patch removes the ncclAllToAllv specialization for PTD
all_to_all, and instead let's it directly call ncclSend/ncclRecv.
Co-authored by @pavanbalaji
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145045
Approved by: https://github.com/pavanbalaji, https://github.com/d4l3k, https://github.com/fduwjj, https://github.com/ezyang
Fix: #141974
This PR makes `ViewMeta` sequence, present in functional tensors,
serializable with pickle. In order to accomplish that, it makes
`ViewMeta` an abstract class with overridable `forward` and `reverse`
functions. In this context, each operation that once instanciated
`ViewMeta`, should now create a new specialized class that inherits from
`ViewMeta. Therefore, this PR also uses codegen for creating these
specializations.
In summary, these are the changes this PR introduces:
- `ViewMeta` is turned into an abstract class (see
_FunctionalStorageImpl.cpp_). `forward` and `reverse` are pure virtual
functions that need to be implemented. `to_out_index` should be
implemented by operations that might return more than 1 output.
- New `ViewMeta` specializations for `resize_` and `_unsafe_view` are
created (see _FunctionalizeFallbackKernel.h_).
- New templates _ViewMetaClasses.{cpp,h}_ are created. They hold the
declaration and definition of the `ViewMeta` specializations, which
are automatically generated in the ATen codegen (see _gen.py_).
- New `_functionalization` Python sub-module is created (see
_Module.cpp_). It serves as namespace for the `ViewMeta`
specializations and `InverseReturnMode` enum.
- New template _ViewMetaClassesPythonBinding.cpp_ is created. It holds
the automatically generated Python bindings for the `ViewMeta`
specialization, which are generated in the torch codegen (see
_generate_code.py_).
Note that this PR makes use of codegen at 2 different moments:
- ATen codegen (_gen.py_): generates the `ViewMeta` specialized classes.
- Torch codegen (_generate_code.py_): generated the Python bindings for
them.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143712
Approved by: https://github.com/bdhirsh
Static variables in C++11 is guaranteed to be initialised exactly once, as mentioned [here](https://en.cppreference.com/w/cpp/language/storage_duration)
```
If multiple threads attempt to initialize the same static local variable concurrently,
the initialization occurs exactly once
(similar behavior can be obtained for arbitrary functions with std::call_once.
Usual implementations of this feature use variants
of the double-checked locking pattern,
which reduces runtime overhead for already-initialized local statics
to a single non-atomic boolean comparison.
```
Given that static c10::once_flag is used before, why not just use the associated function to initialised the related static variables? That is the motivation behind this PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143255
Approved by: https://github.com/albanD
Fixes#108942
this PR converts eval_frame.c's static extension types to heap types, making it thread and sub-interpreter safe.
the current modification only showcases one state variable being lifted, but there are opportunities for other variables that can be addressed in this PR
todo / suggestions:
1. uplift `eval_frame_callback_key` to module state
2. define `.m_slots` to module definition so initialization is within python's module lifecycle rather than an explicit `torch_c_dynamo_eval_frame_init`
3. define configurations for module allowing sub-interpreters or not
```c
static int module_exec(PyObject *m) {}
static PyModuleDef_Slot module_slots[] = {
{Py_mod_exec, module_exec},
{0, NULL}
};
static struct PyModuleDef module = {
PyModuleDef_HEAD_INIT,
....
.m_slots = module_slots
};
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141357
Approved by: https://github.com/jansel
Co-authored-by: Edward Z. Yang <ezyang@meta.com>
Reported in https://github.com/pytorch/pytorch/issues/143470, we have a dangling references in `CudaEventCache`. So we want to fix it.
1. We add a unit test to repro the issue mentioned in the issue.
2. Instead of converting variables to shared pointers as suggested in the issue, we then make the cache itself a shared pointer. So if the thread creates the cache dies before all events get recycled, the cache is still there until the last CudaEvent get deleted. (thanks for the suggestion from @kwen2501 )
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144496
Approved by: https://github.com/kwen2501
Summary: Introduce `is_hop_single_tensor_return` field to the `Node` class in serialization so that during deserialization when there is a single return, we know whether it is a tuple of a single element or a single element.
Test Plan:
```
buck2 run @mode/dev-nosan sigmoid/inference/test:e2e_test_cpu -- -r E2ETestCPUCond
buck2 run @mode/dev-nosan sigmoid/inference/test:test_passes -- -r test_const_folding2
```
Differential Revision: D66991624
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143227
Approved by: https://github.com/zhxchen17
I.e. when `MTL_CAPTURE_ENABLED` environment variable is set to 1, one should be able to invoke wrap the code with `torch.mps.profiler.capture_metal` to generate gputrace for shaders invoked inside the context manager.
For example, code below:
```python
import torch
import os
def foo(x):
return x[:,::2].sin() + x[:, 1::2].cos()
if __name__ == "__main__":
os.environ["MTL_CAPTURE_ENABLED"] = "1"
x = torch.rand(32, 1024, device="mps")
with torch.mps.profiler.metal_capture("compiled_shader"):
torch.compile(foo)(x)
```
should capture the execution of a `torch.compile` generated shader
<img width="734" alt="image" src="https://github.com/user-attachments/assets/718ff64e-103b-4b11-b66c-c89cfc770b5d" />
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144561
Approved by: https://github.com/manuelcandales
ghstack dependencies: #144559, #144560
Summary: Use existing collective_comm (currently used for nccl traces) for hccl traces as well. Only init the nccl profiler when KINETO_HAS_NCCL_PROFILER is defined so as to not init it when the build is for MTIA/HCCL
Test Plan: CIs
Differential Revision: D67285333
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144490
Approved by: https://github.com/sraikund16
# Motivation
We propose to support Python with statement on `torch.Stream`. This is a benefit for all accelerators when writing device-agnostic code. The device-specific stream will also be supported because they are generally derived from `torch.Stream`.
With this PR, we can do like this
```python
s1= torch.Stream()
# Set s1 to the current stream
torch.accelerator.set_stream(s1)
with torch.Stream() as s2:
# Inside with statement, we set s2 to the current stream
assert torch.accelerator.current_stream() == s2
# Here the current stream should be s1
assert torch.accelerator.current_stream() == s1
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140138
Approved by: https://github.com/albanD
Summary:
LLVM-15 has a warning `-Wunused-variable` which we treat as an error because it's so often diagnostic of a code issue. Unused variables can compromise readability or, worse, performance.
This diff either (a) removes an unused variable and, possibly, it's associated code or (b) qualifies the variable with `[[maybe_unused]]`.
- If you approve of this diff, please use the "Accept & Ship" button :-)
Test Plan: Sandcastle
Reviewed By: palmje
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144371
Approved by: https://github.com/Skylion007
Summary:
Dump the active proxyOp status per rank and per communicator when WatchDog timeout or aborts.
Added
`#if defined(USE_ROCM) && defined(NCCL_COMM_DUMP)` guard in the print function, so only rcclexp users will see this dump in console.
This is the changes of the PTD.
Test Plan:
Job with A2A hang due to receiver failing to post receive operations https://fburl.com/mlhub/95vg12r3
{F1971449692}
Reviewed By: c-p-i-o
Differential Revision: D67036093
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143678
Approved by: https://github.com/c-p-i-o
Replace https://github.com/pytorch/pytorch/pull/138947 for re-import.
Replaces https://github.com/ROCm/pytorch/pull/1592
This PR contains the initial implementation of SDPA with composable_kernel backend. The CK path can be forced by simply calling torch.backends.cuda.preferred_rocm_fa_library("ck"). Similarly, you can force the incumbent aotriton implementation by passing in "aotriton" or "default". As you'd expect, not setting this option will result in aotriton to be used as the backend. In the case of CK, if pytorch deems flash attention usable, then it will use the CK path in all the same places aotriton would have been used. This PR makes no changes to the heuristics which select which attention scheme to use (i.e. flash attention vs memory efficient attention vs math etc etc). It only gets called when flash attention is both enabled (via USE_FLASH_ATTENTION) and is selected at runtime by the existing heuristics.
Files located in pytorch/aten/src/ATen/native/transformers/hip/flash_attn/ck/mha* have been pulled from https://github.com/Dao-AILab/flash-attention courtesy of @tridao's hard work who is the co-author
NOTE: In order to use this backend, the user MUST set USE_CK_FLASH_ATTENTION=1 in their environment when they build PyTorch.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143695
Approved by: https://github.com/malfet
Co-authored-by: Andy Lugo <Andy.LugoReyes@amd.com>
Co-authored-by: Jithun Nair <jithun.nair@amd.com>
When calling a fallback op in cpp_wrapper mode, where any of the inputs are complex numbers, utilize the runtime dispatched fallback mode. This properly handles the Conjugate and Negative dispatch keys, if present, in exchange for a performance pessimization in complex arithmetic.
This PR additionally fixes some cascading failure modes exposed in our `aot_inductor` tests by this change.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143223
Approved by: https://github.com/desertfire
ghstack dependencies: #141371
Currently, the roctracer for Windows is not available. This PR disables any mentions of its usage for Windows, and creates dummy functions for Windows to keep compatibility with existing code, but which warn the user about the lack of Windows' availability.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143329
Approved by: https://github.com/sraikund16
# Summary:
This also makes updates to different repositories throughout FB code to roll any updates needed for this new release.
I was not able to get AsyncMM.cu to build (still trying) Yfiu suggested that I just skip it for now
Test Plan:
Have run various build commands to try and expose errors
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143515
Approved by: https://github.com/eqy, https://github.com/Skylion007
Summary:
Attempt to fix the following exception which occurred when profiling a Pytorch model ( Meta-internal LLM ) that also involved a ThreadPoolExecutor in the background:
```
Exception Found: !stack.empty() INTERNAL ASSERT FAILED at "fbcode/caffe2/torch/csrc/autograd/profiler_python.cpp":987, please report a bug to PyTorch. Python replay stack is empty.
```
The root cause of this issue seems to be that a thread call stack can be empty, which is asserted to not be empty.
I fixed this with some minimal changes to profiler_python.cpp
Approach:
* Ensuring that the stack in question is not empty before trying to pop from it.
Test Plan:
* Tested manually on a reproducible scenario where the assertion failure was otherwise triggered ( repro too large to include here ). The assertion failure disappears.
* CI
Differential Revision: D67691558
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143940
Approved by: https://github.com/Skylion007, https://github.com/sraikund16
This PR is to add `torch._scaled_mm` for CPU backend.
`_scaled_mm_out_cpu` and `_scaled_mm_cpu` are new added and included in `torch._scaled_mm` CPU dispatch. We also add `_scaled_mm_out_cpu_emulated` as a fallback function if the current platform cannot run FP8 matmul using oneDNN. And this PR also updates the various UTs related to FP8 to support CPU tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139975
Approved by: https://github.com/mingfeima, https://github.com/jgong5, https://github.com/malfet
In hinsight, we never needed a DICT_SUBCLASS_GUARD_MANAGER, because Dynamo would inline through the overridden keys method. In this PR, we ensure that while creating guards and constructing variable trackers, we get the `d.keys()` value by using `dict.keys(d)`. This ensures that we do not call overridden keys method. Therefore, the C++ guard can use `PyDict_Next` directly to check the guards.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143722
Approved by: https://github.com/jansel
This PR is to add `torch._scaled_mm` for CPU backend.
`_scaled_mm_out_cpu` and `_scaled_mm_cpu` are new added and included in `torch._scaled_mm` CPU dispatch. We also add `_scaled_mm_out_cpu_emulated` as a fallback function if the current platform cannot run FP8 matmul using oneDNN. And this PR also updates the various UTs related to FP8 to support CPU tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139975
Approved by: https://github.com/mingfeima, https://github.com/jgong5, https://github.com/malfet
ghstack dependencies: #139974
In hinsight, we never needed a DICT_SUBCLASS_GUARD_MANAGER, because Dynamo would inline through the overridden keys method. In this PR, we ensure that while creating guards and constructing variable trackers, we get the `d.keys()` value by using `dict.keys(d)`. This ensures that we do not call overridden keys method. Therefore, the C++ guard can use `PyDict_Next` directly to check the guards.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143722
Approved by: https://github.com/jansel
In some situations we want to profile calls coming from all threads (similar to on-demand), not just the thread that started profiling and the spawned threads that would inherit KinetoThreadLocal state.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143659
Approved by: https://github.com/sraikund16
`py::call_guard<py::gil_scoped_release>` is not safe when using multiple threads. This instead moves it into the init function which is safe.
For more details see #143593https://github.com/pybind/pybind11/issues/5473
Test plan:
```
python setup.py develop
```
CI
```py
import time
from concurrent.futures import ThreadPoolExecutor
from torch import distributed as dist
def run():
store = dist.TCPStore(
host_name="localhost",
port=0,
is_master=True,
wait_for_workers=False,
)
# this sleep is required to trigger the crash
time.sleep(0.1)
del store
futures = []
with ThreadPoolExecutor(
max_workers=100,
) as executor:
for i in range(100000):
print(i)
futures.append(executor.submit(run))
if len(futures) > 100:
futures.pop(0).result()
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143598
Approved by: https://github.com/c-p-i-o
Description:
1. Quantize Linear Layer Weights to 4-bits:
Quantize the weights of the Linear layer to 4 bits, using symmetric quantization.
Pack two 4-bit weights into one uint8 container.
Choose a quantization scheme (channel-wise or group-wise), with the group size being a multiple of 32.
2. Prepare Quantized Weights, Scales, and Optional Bias:
After quantizing, obtain the quantized_weights, scales, and groupsize.
If the original Linear layer has a bias, prepare it as well.
3. Pack the Weights Efficiently:
Use torch.ops.aten._dyn_quant_pack_4bit_weight to optimally pack the weights, scales, and optional bias.
```python
packed_weights = torch.ops.aten._dyn_quant_pack_4bit_weight(weight, scales_and_zeros, bias, groupsize, in_features, out_features)
```
Input parameters should include:
in_features and out_features (the same as the Linear layer’s corresponding parameters).
4. Perform Dynamic Quantized Matrix Multiplication:
Use torch.ops.aten._dyn_quant_matmul_4bit to perform matrix multiplication with quantized weights.
```python
output = torch.ops.aten._dyn_quant_matmul_4bit(input, packed_weights, groupsize, in_features, out_features)
```
Inputs required include:
The input tensor, packed_weights , groupsize, and the in_features and out_features.
API Usage: https://github.com/pytorch/pytorch/issues/143289
Model Perf :
7B Transformer model:
Prefill : 340 t/s
Decode : 40 t/s
2B Transformer model
Prefill : 747 t/s
Decode : 80 t/s
Tests:
python test/test_linalg.py -k test__dyn_quant_pack_4bit_weight
Ran 1 test in 0.016s
OK
python test/test_linalg.py -k test__dyn_quant_matmul_4bit
Ran 8 tests in 0.077s
OK
python test/test_linalg.py -k test_compile_dyn_quant_matmul_4bit
Ran 8 tests in 11.454s
Change-Id: Ia1672bad5e6ec94e64d8bb1971395d60f4b3a452
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134124
Approved by: https://github.com/digantdesai, https://github.com/malfet
Fixes#130559
* Intro
This PR adds support for `@contextmanager` in Dynamo. We chose to limit the
scope of this work to only `@contextmanager` and plan to handle generators fully
in #141055 (still in draft).
* Motivation
Dynamo lacks support for generator functions. When it encounters one, it traces
it as if it were a regular function. This is problematic because it can lead to
incorrect behavior. To illustrate, consider the test case below:
```python
import torch
import contextlib
@contextlib.contextmanager
def set_default_dtype(dtype):
old_dtype = torch.get_default_dtype()
try:
torch.set_default_dtype(dtype)
yield
finally:
torch.set_default_dtype(old_dtype)
@torch.compile(backend="eager", fullgraph=True)
def fn():
with set_default_dtype(torch.float64):
x = torch.tensor([3.0, 3.0 + 5.0j])
return x
```
Before this work, Dynamo would not stop at the `yield`, and the graph produced
would contain both calls to `set_default_dtype` executed one after the other.
This is incorrect because the context manager should execute code before and
after the `yield`.
* List of changes
`YIELD_VALUE` now raises an exception (`YieldValueOp`) to signal that control
flow must be suspended and returned to the caller. Additionally, `RETURN_VALUE`
behaves differently in a generator function. Unlike regular functions, where
`RETURN_VALUE` indicates the final result, in generators it signifies that the
generator is exhausted and implicitly raises `StopIteration`.
A new `VariableTracker` named `FunctionDecoratedByContextlibContextManagerVariable`
was introduced to handle `@contextmanager`. This variable tracker acts not just
as a wrapper for the original function but also maintains an internal `tx`
(InstructionTranslator) object to suspend and return control flow to the parent
tracer when a `yield` is encountered.
* Corner cases
Returning a context manager from a compiled function is not supported. This
would require PyTorch to synchronize the generator state between Dynamo and the
interpreter. Any attempt to return it will result in an `IncorrectUsage`
exception.
Graph breaks require special handling as well. In the event of a graph break,
the frame associated with the context manager is skipped, and the context
manager runs in eager mode.
* This PR is breaking my code
There is a configuration flag (`enable_trace_contextlib`) that can be set to
`False` to disable tracing context managers. If this still causes crashes,
please revert this PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136033
Approved by: https://github.com/zou3519
Description:
1. Quantize Linear Layer Weights to 4-bits:
Quantize the weights of the Linear layer to 4 bits, using symmetric quantization.
Pack two 4-bit weights into one uint8 container.
Choose a quantization scheme (channel-wise or group-wise), with the group size being a multiple of 32.
2. Prepare Quantized Weights, Scales, and Optional Bias:
After quantizing, obtain the quantized_weights, scales, and groupsize.
If the original Linear layer has a bias, prepare it as well.
3. Pack the Weights Efficiently:
Use torch.ops.aten._dyn_quant_pack_4bit_weight to optimally pack the weights, scales, and optional bias.
```python
packed_weights = torch.ops.aten._dyn_quant_pack_4bit_weight(weight, scales_and_zeros, bias, groupsize, in_features, out_features)
```
Input parameters should include:
in_features and out_features (the same as the Linear layer’s corresponding parameters).
4. Perform Dynamic Quantized Matrix Multiplication:
Use torch.ops.aten._dyn_quant_matmul_4bit to perform matrix multiplication with quantized weights.
```python
output = torch.ops.aten._dyn_quant_matmul_4bit(input, packed_weights, groupsize, in_features, out_features)
```
Inputs required include:
The input tensor, packed_weights , groupsize, and the in_features and out_features.
API Usage: https://github.com/pytorch/pytorch/issues/143289
Model Perf :
7B Transformer model:
Prefill : 340 t/s
Decode : 40 t/s
2B Transformer model
Prefill : 747 t/s
Decode : 80 t/s
Tests:
python test/test_linalg.py -k test__dyn_quant_pack_4bit_weight
Ran 1 test in 0.016s
OK
python test/test_linalg.py -k test__dyn_quant_matmul_4bit
Ran 8 tests in 0.077s
OK
python test/test_linalg.py -k test_compile_dyn_quant_matmul_4bit
Ran 8 tests in 11.454s
Change-Id: Ia1672bad5e6ec94e64d8bb1971395d60f4b3a452
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134124
Approved by: https://github.com/digantdesai, https://github.com/malfet
Summary:
fix forward for S477887
leaking c++ singleton specifically
when c++ shutdown, it tries to destruct the singleton and acquire GIL, at this moment python runtime exists already, causing undefined behavior.
Leaking here specifically so that we won't try to destroy singleton at the shutdown phase
Test Plan: n/a
Differential Revision: D67400633
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143509
Approved by: https://github.com/c-p-i-o
Summary:
This PR is generated from a meta internal Diff, aiming to resolve a crash from a race condition on the dictionary.
Test Plan:
Build and run
Print out the count/name/value of the dictionary and see if the values are get/set/removed correctly.
Observe the print statement on app start within IG
@diff-train-skip-merge
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143418
Approved by: https://github.com/shoumikhin
Description:
1. Quantize Linear Layer Weights to 4-bits:
Quantize the weights of the Linear layer to 4 bits, using symmetric quantization.
Pack two 4-bit weights into one uint8 container.
Choose a quantization scheme (channel-wise or group-wise), with the group size being a multiple of 32.
2. Prepare Quantized Weights, Scales, and Optional Bias:
After quantizing, obtain the quantized_weights, scales, and groupsize.
If the original Linear layer has a bias, prepare it as well.
3. Pack the Weights Efficiently:
Use torch.ops.aten._dyn_quant_pack_4bit_weight to optimally pack the weights, scales, and optional bias.
```python
packed_weights = torch.ops.aten._dyn_quant_pack_4bit_weight(weight, scales_and_zeros, bias, groupsize, in_features, out_features)
```
Input parameters should include:
in_features and out_features (the same as the Linear layer’s corresponding parameters).
4. Perform Dynamic Quantized Matrix Multiplication:
Use torch.ops.aten._dyn_quant_matmul_4bit to perform matrix multiplication with quantized weights.
```python
output = torch.ops.aten._dyn_quant_matmul_4bit(input, packed_weights, groupsize, in_features, out_features)
```
Inputs required include:
The input tensor, packed_weights , groupsize, and the in_features and out_features.
API Usage: https://github.com/pytorch/pytorch/issues/143289
Model Perf :
7B Transformer model:
Prefill : 340 t/s
Decode : 40 t/s
2B Transformer model
Prefill : 747 t/s
Decode : 80 t/s
Tests:
python test/test_linalg.py -k test__dyn_quant_pack_4bit_weight
Ran 1 test in 0.016s
OK
python test/test_linalg.py -k test__dyn_quant_matmul_4bit
Ran 8 tests in 0.077s
OK
python test/test_linalg.py -k test_compile_dyn_quant_matmul_4bit
Ran 8 tests in 11.454s
Change-Id: Ia1672bad5e6ec94e64d8bb1971395d60f4b3a452
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134124
Approved by: https://github.com/digantdesai, https://github.com/malfet
Summary:
In et-replay, random data is used to run the operators. However, it does not work well for the op that uses index to access tensor. For example, embedding ops, which use the indices to look up the embedding table. If random data is used for these index ops, et-replay usually runs into invalid memory access issue.
To fix it, ET provides an environment variable "ENABLE_PYTORCH_EXECUTION_TRACE_INTEGRAL_TENSOR_RANGE", if it is set, ET will capture the min/max value of the flattened integral tensor. Then in et_replay, the min/max is used to generate the random tensor within that range. It fixed invalid memory access issue.
Test Plan: buck2 run mode/opt caffe2/test:test_profiler_cuda -- profiler.test_execution_trace.TestExecutionTraceCUDA.test_execution_trace_record_integral_tensor_range_cuda
Differential Revision: D66666931
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143088
Approved by: https://github.com/sanrise