### Summary
The fake impl for `nonzero` sets the symint's upper range to `sys.maxsize - 1` if there are any SymInts in the original input tensor shape. This PR constrains the range more intelligently by using the upper ranges of each SymInt in the input tensor shape.
See https://github.com/pytorch/pytorch/pull/134899 as a merged solution for a similar problem for a different op.
### Test plan
Added unit test to verify upper bound reduction calculation (`python test/export/test_export.py TestExport.test_nonzero_dynamic`)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137663
Approved by: https://github.com/ezyang
Summary:
* Fixed real tensor tracing w/ torchbind objs by passing the cloned tensor obj. For now I just catch the exception and have an error message if the `_clone` fails, but up for discussion on what to do here
* Separate question, should we require people to set up FakeScriptObjects and stuff for draft mode?
* Prevent side effects from happening when we do the first pass of custom ops profiling by cloning/copying everything. Not sure if deepcopying the model will succeed in all cases... But also I guess this path can be removed once custom ops profiling turns into one pass.
Test Plan: `buck2 run @//mode/dev-nosan //scripts/angelayi/draft_export:test_draft_export`
Reviewed By: ydwu4
Differential Revision: D64124825
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138797
Approved by: https://github.com/ydwu4
I was debugging an internal ne divergence for a while that ended up being because of a bad meta. I added an explicit a config option and an explicit backend `aot_eager_decomp_partition_crossref` to enable the FakeCrossRefMode when running the graph. I added an explicit backend bc I suspect it will be useful for internal models but I'm also happy to leave as config option.
It will only test ops that have meta to avoid memory overhead of hitting fallback path and running in eager.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138651
Approved by: https://github.com/zou3519, https://github.com/bdhirsh
unwrap_tensor_subclasses -> get_plain_tensors
Is used at runtime. For small models this overhead is feasible in comparison with small compiled kernel.
1/ Removing asserts from runtime path
2/ Removing list creation with using optional output list to append argument
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138498
Approved by: https://github.com/bdhirsh
Summary: Prototyping the custom op meta kernel generation. Rest of the changes are in fbcode/scripts/angelayi
Test Plan: followup diff (D63837739)
Differential Revision: D63837740
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137277
Approved by: https://github.com/zou3519
Summary: Previously we had a very bad bug where we don't allow any decomp on CIA. This never mattered before because we never had to actually push CIA decomp to Python key level in export.
Test Plan: CI
Differential Revision: D63363749
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136600
Approved by: https://github.com/bdhirsh
Summary:
Since https://www.internalfb.com/diff/D62215095 landed there has been many silence errors due to the dependency between functional_tensor and config.
```
File "/tmp/torch_deploy_zip5YRJC1/torch_python_modules.zip/torch/export/__init__.py", line 64, in <module>
File "/tmp/torch_deploy_zip5YRJC1/torch_python_modules.zip/torch/export/dynamic_shapes.py", line 23, in <module>
File "/tmp/torch_deploy_zip5YRJC1/torch_python_modules.zip/torch/export/exported_program.py", line 26, in <module>
File "/tmp/torch_deploy_zip5YRJC1/torch_python_modules.zip/torch/_higher_order_ops/__init__.py", line 1, in <module>
File "/tmp/torch_deploy_zip5YRJC1/torch_python_modules.zip/torch/_higher_order_ops/cond.py", line 6, in <module>
File "/tmp/torch_deploy_zip5YRJC1/torch_python_modules.zip/torch/_subclasses/functional_tensor.py", line 9, in <module>
File "/tmp/torch_deploy_zip5YRJC1/torch_python_modules.zip/torch/_inductor/config.py", line 44, in <module>
```
https://fburl.com/logarithm/ol5kx0ee
complaining about a cycle dependency
this fix it.
Test Plan: buck test multipy/runtime:test_deploy_embedded_cuda_interp_without_cuda_available -- --run-disabled TorchpyTest.AcquireMultipleSessionsInDifferentPackages
Reviewed By: aorenste
Differential Revision: D62616765
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135926
Approved by: https://github.com/aorenste, https://github.com/oulgen, https://github.com/Skylion007
This PR:
* Implements the pre-existing `nt.to_padded_tensor(padding_val)` ATen op via the FBGEMM kernel + appropriate view gymnastics (since that kernel only handles 2D values)
* Introduces a new `_nested_from_padded_tensor` op for the reverse conversion, implemented via the reverse FBGEMM kernel + view gymnastics
* Note: there is currently no public API for this; design booted to a future PR
TODO:
* ~~Propagate min / max sequence length via the new factory function `_nested_from_padded_tensor`~~
* ~~Verify that Inductor does computation fusion via test logic~~
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125947
Approved by: https://github.com/soulitzer
The idea behind the tracking is the following, whenever we see a tensor if the tensors is a root tensors (does not have any view metas ) when we consider is as the base of the all the tensors that shares its storage.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135141
Approved by: https://github.com/zou3519
Summary:
When exporting for training with `tolist`, we do not hit `FunctionalTensor.tolist` since we do not functionalize. Unfortunately, this means we hit `FakeTensor.tolist`, which creates unbacked symints that are not backed by proxies.
Rather than trying to patch up this low-level implementation, we replace it with essentially what `FunctionalTensor.tolist` does, which is higher-level: we essentially desugar to `item()` calls and let it take care of unbacked symints.
Test Plan:
Some expected failures are gone now.
Also found a test for `tolist` that was written when `FunctionalTensor.tolist` was implemented but not really doing much; repurposed it now to exercise more modes.
Differential Revision: D62197742
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135131
Approved by: https://github.com/ezyang
We should not try to do ConstProp on the unrecognized types (e.g. Subclasses).
In case of those types throwing NotImplemented will jump to the next torch_dispatch.
Test:
```
python test/functorch/test_aotdispatch.py -k test_aot_test_subclasses_with_tensor_factories
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135033
Approved by: https://github.com/zou3519, https://github.com/bdhirsh
## Summary
At the moment, the fake impl for `masked_select` simply sets the upper range while updating its size-like SymInt to `sys.maxsize`(9223372036854775807, max value for an unsigned int64) if the there are any SymInts in the original input tensor shape. This PR constrains the range more intelligently by using the upper ranges of each SymInt in the input tensor shape.
This solves an issue where an model being lowered to Executorch errors during memory planning because the memory allocated for `masked_select` ended up exceeded the 64-bit address space (`INT_MAX * size(dtype)`).
## Test plan
- Passes existing unit tests (tests case where upper bound is inf)
- Added unit test to verify upper bound reduction calculation
- Tested end-to-end by exporting with TORCH_LOGS="export" and ensuring that the range for `masked_select`'s SymInt size has the correct upper bound
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134899
Approved by: https://github.com/ezyang
- The new implementation (auto_functionalized_v2) is enabled by default but can be disable
using an inductor flag.
- In export mode the old implementation is used.
**Motiviation**
Previous functionalization fails to re-inplace arguments when they are view over other tensors.
see issue https://github.com/pytorch/pytorch/issues/131192
The new functionalization is easier to re-inplace for views.
**A) Functionalizations pass**
consider a program:
```
func(t)
x = t[0]
y = t[1]
foo(x, y) # custom operator with x, y mutable
return (x, y, t)
```
- To functionalize `foo` we generate a function that operates on the base tensors of the inputs; (x.base() and y.base())
and record how to regenerates the views out of the base for argument x by recording ```ViewInfo=(x.base(), x.size(), x.stride, x,storage_offset())```
- Due to some limitations on the torch.export arguments format, we have to generate alot of arguments, but this is something we can simplify in the future, for the example above we get the following function.
```
auto_functionalized = torch.ops.higher_order.auto_functionalized(torch.ops.mylib.foo.default,
_x_base_index = 0, _x_size = (), _x_stride = (), _x_storage_offset = 0 ,
_y_base_index = 0,_y_size = (), _y_stride = (), _y_storage_offset = 1 ,
_all_bases = [arg0_1])
```
- In the code above:
- _all_bases[t]: refers to a unique set of bases for all foo arguments.
- for each argument x we have _x_base_index, _x_size, _x_stride, _x_storage_offset that can be used to (1) regenerate x from _all_bases[_x_base_index] or a copy of a the base.
- the output of auto_functionalized is foo output , followed by x tensors one for each base in _all_bases, that is a copy of the base tensor after observing the mutations of the all the arguments that are views of that base.
- for each use of a base in _all_bases or a view of it , that are after the call to foo, replace it with a view of the new output
for the function above after functionalization we get :
```
def forward(self, arg0_1: "f32[2][1]cpu"):
auto_functionalized = torch.ops.higher_order.auto_functionalized(torch.ops.mylib.foo.default, _x_base_index = 0, _x_size = (), _x_stride = (), _x_storage_offset = 0, _y_base_index = 0, _y_size = (), _y_stride = (), _y_storage_offset = 1, _all_bases = [arg0_1])
getitem_1: "f32[2][1]cpu" = auto_functionalized[1]; auto_functionalized = None
copy_: "f32[2][1]cpu" = torch.ops.aten.copy_.default(arg0_1, getitem_1); arg0_1 = copy_ = None
# No stacktrace found for following nodes
select_2: "f32[][]cpu" = torch.ops.aten.select.int(getitem_1, 0, 0)
select_3: "f32[][]cpu" = torch.ops.aten.select.int(getitem_1, 0, 1); getitem_1 = None
return (select_2, select_3)
```
**B) Semantics of auto_functionalize**
The new semantics of auto_functionalize is as the following:
1. For each base in all_bases, copy the base and create all_bases copies. (if a base is inplaced we do not need to copy it)
2. For each arg, regenerate the arg from the copy of its base using the view information above.
3. return the original foo output followed by the new bases.
**C) Re-inplace pass**
since auto_functionalize not copy the bases, what we actually inplace is the bases.
(run just like before but on the beses instead of args).
1. For each base b in _all_bases check if there is any use of base (or its aliases/views) after auto_functionalize (before its overwritten with a copy) if there is not any, then inplace it (avoid copying it in step 1 above).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134409
Approved by: https://github.com/zou3519
The issue:
Const propagation checks only if arguments do not have FakeTensor. If argument is Subclass, it will pass this condition.
As a result Const Propogation execution happens without FakeTensorMode and having tensor factories inside Subclass.__torch_dispatch__ results that this Tensor is not Fakified.
Solution:
If we have subclasses arguments, do not count that const propagation is doable
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134855
Approved by: https://github.com/zou3519
Summary:
With training IR, we cannot rely on trapping `to()` in `FunctionalTensor` because the regular decomposition kicks it first, and that can cause it to be optimized away.
So instead we preserve it until we functionalize, and then replace it explicitly with `_to_copy()`.
Test Plan: expected test failures go away
Differential Revision: D61883878
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134622
Approved by: https://github.com/zhxchen17, https://github.com/tugsbayasgalan
See #121528 for additional context.
In #120682, we moved the attention kernels from meta_registrations to fake_impls with the intent of fixing the device handling for seed/offset: these are typically on CPU. We needed to put the registrations in fake_impls to do this because meta_registrations doesn't have a way to specify device, whereas fake_impls does. But when we tried to actually fix the device types (#120839), we had to revert the PR because it broke cudagraph handling (during which seed/offset _are_ on CUDA).
Now, we want to put the registrations back in meta_registrations so that we can call these kernels with meta tensors. The use case is later in this stack - we want to be able to use the flop counter with these kernels.
Also - I specifically skip the `compare_tensor_meta()` check in test_fake / test_fake_autocast tests for the `_efficient_attention_forward` and `_flash_attention_forward` kernels, which fails because of the device mismatch from the seed/offset tensors. Then we can un-skip these opinfos. I verified that the efficient_attention_forward bug (#120842) is now caught by these opinfos if I revert the fix from this PR.
Differential Revision: [D61687369](https://our.internmc.facebook.com/intern/diff/D61687369)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134288
Approved by: https://github.com/drisspg
Support of effectful operations in backward:
1/ AOTD collects metadata from forward fn only, so we can have usage of effectful ops in backward, that were not used in forward => Allowing tokens discovery during joint function .
FunctionalTensorMode holds _tokens, in Joint function after tracing forward we memoize _tokens as `_tokens_forward_output`.
2/ Tokens are added as primals inputs (forward) in EffectTokensWrapper.
Tokens that will be used in backward are in partitioner saved values. We do not have control on which positions they are saved in forward outputs.
2/ If new tokens discovered in backward after tracing joint_fn, the result graph will be manually added in the end of primals.
_aot_autograd/utils.py
3/ All effectful ops during backward are marked with 'must_be_in_backward' partitioner_tag, to prevent partiitoner to place them in forward.
For that functional_tensor_mode got new optional state `self._effects_partitioner_tag` for effectful ops, to set after tracing forward.
There are additional changes in partitioner to improve functionality of 'must_be_in_backward'
4/ Unlift tokens now should run for both forward and backward.
- As saved for backward tokens are placed on non static places - we identify input and output tokens to erase, by input and output of `with_effects` operation
- In forward we can have input tokens, discovered in backward, that are not used in with_effects ops in forward, but saved for backward. We identify them by position in forward inputs.
5/ Adding aot debug logging for graphs before unlifting and before adding additional primal for backward tokens.
Tests:
```
python test/higher_order_ops/test_with_effects.py
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132638
Approved by: https://github.com/bdhirsh
Part of #134054.
This corresponds to the pytorch mypy changes from D61493706. Updating takes so
long and touches so many files that it's impossible to land as a whole without conflicting with some other intermediate change.
So landing these 'type: ignore' for pytorch in advance of them actually being needed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134202
Approved by: https://github.com/Skylion007
This PR does 3 things:
1. Adds a copy-free strided->jagged layout conversion for NT
2. Adds a copy-free jagged->strided layout conversion for NT
3. Modifies and expands the .to() API to support the layout argument for the specific case of NT layout conversion.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115749
Approved by: https://github.com/jbschlosser
Combines contributions from https://github.com/pytorch/pytorch/pull/130505
Some context can be found in this large comment block:
a5b64d39fd/test/dynamo/test_subclasses.py (L1667-L1681)
Changes in this PR
- For each tensor fakified, check the nested int registry in eager, and eagerly symbolicize if that tensor has already been associated with nested int in eager.
- Adds a separate counter stored on FakeTensorMode as a fake analog to _tensor_id_counter (which keeps track of unique tensors). This counter is initialized to the global eager tensor id counter upon creation of the FakeTensorMode, and needs to be reset when the same FakeTensorMode is reused to trace again (in this PR, we piggyback on the epoch incrementing logic).
- (refactor) Today, we store FakeTensor -> symbolic nested int in the global registry. With this PR, symbolic nested int is stored directly on the FakeTensor. (Eager still caches nested int in the registry, though we should avoid this at some point.)
Basically unchanged, but worth noting:
- `__tensor_unflatten__` is still responsible for determining whether we should cache for now. The logic is somewhat simplified.
- to_copy is still using the trick of updating two different tensors in the registry to point to the same nested int. This is kind of broken, but we try to leave it as is, and plan a better fix with the UnionFind stack.
Differential Revision: [D60406772](https://our.internmc.facebook.com/intern/diff/D60406772)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130292
Approved by: https://github.com/bdhirsh
ghstack dependencies: #131916, #131803
Rewrite of original PR in https://github.com/pytorch/pytorch/pull/130291
To answer review comments from https://github.com/pytorch/pytorch/pull/130291#pullrequestreview-2166671953:
> At a higher level, do we need this?
Today, this should not change the behavior of anything. But an invariant of "same tensor always corresponds to the same FakeTensor" is nice (from discussion with @bdhirsh).
> Why does this happen?
Today, both dynamo and meta_utils do some recursion when it comes to FakeTensors. So whenever we fakify a subclass, the process would roughly like:
```
wrap_to_fake (subclass)
meta_utils (subclass)
meta_utils (values) -> not cached because we use callback
meta_utils(offsets) -> not cached because we use callback
wrap_to_fake (values)
wrap_to_fake (offsets) -> cached because we rely on top-level meta_utils
```
However, we know that:
- Caching only occurs at the top-level of meta_utils.
- The return value of the top-level wrap_to_fake is returned.
This means that after all of this:
- The fakified subclass holds inner FakeTensors that are NOT part of the cache
- values/offsets are Fakified a second time, and those instances are cached.
Differential Revision: [D60406773](https://our.internmc.facebook.com/intern/diff/D60406773)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131803
Approved by: https://github.com/ezyang
ghstack dependencies: #131916
This PR does 3 things:
1. Adds a copy-free strided->jagged layout conversion for NT
2. Adds a copy-free jagged->strided layout conversion for NT
3. Modifies and expands the .to() API to support the layout argument for the specific case of NT layout conversion.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115749
Approved by: https://github.com/jbschlosser
get_plain_tensors() should result in DFS of leaves.
The error was that plain tensors (leaves) on the same level were returned before subclasses plained tensors even if subclasses are before in "flatten" list.
Original issue from AO: https://github.com/pytorch/ao/issues/515
Test:TBD, need to make asymetric subclass with dense tensors and subclasses
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132096
Approved by: https://github.com/bdhirsh
Summary: This code was overly complex and is confusing some guards - basically if a result cached tensor isn't a view there's no reason to be messing with its storage.
Test Plan: unit tests pass
Differential Revision: D60387821
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132050
Approved by: https://github.com/oulgen
Adds support for SymInts in the FakeTensor cache.
A couple notes:
1. When a SymInt is present in the input key for a FakeTensor operation we cache on the ShapeEnv instead of using the FakeTensorMode cache. This is necessary so we don't have to remember and check the guards. It reduces the cache hits but there's diminishing return on how much work we can do before the cache becomes more of a burden than a gain.
2. We need to be careful that when we cache an output SymInt that is a direct copy from the input that when we have a cache-hit we copy the SymNode from the input to the output. This is important because the fx-graph building code actually uses SymNode ids in the process of building the graph so constructing a same-content-but-different-id SymNode will fail.
3. In the cache key we store SymInts as a _PySymInputStub. These represent SymInt (and friends) but support `__hash__` and `__eq__` (which SymInt do not).
4. In the cache entry we store SymInts as a _SymIntOutputStub.
Perf example:
```
python benchmarks/dynamo/timm_models.py --ci --accuracy --timing
--explain --inductor --dynamic-shapes --dynamic-batch-only --device cuda
--training --amp --total-partitions 2 --partition-id 0 --output
/tmp/training_timm_models.csv --filter crossvit_9_240
```
fake tensor cache before:
```
INFO: FakeTensor cache stats:
INFO: cache_hits: 68137
INFO: cache_misses: 837
INFO: cache_bypasses:
INFO: symbolic shape: 48224
INFO: CompositeImplicitAutograd: 917
INFO: non-fake tensor: 70
INFO: non-FakeTensor output: 62
INFO: non-builtin: 8
INFO: dynamic output shape: 1
```
and after:
```
INFO: FakeTensor cache stats:
INFO: cache_hits: 88187
INFO: cache_misses: 14233
INFO: cache_bypasses:
INFO: CompositeImplicitAutograd: 1037
INFO: non-FakeTensor output: 602
INFO: non-fake tensor: 70
INFO: unsafe view: 36
INFO: non-builtin: 8
INFO: dynamic output shape: 1
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127596
Approved by: https://github.com/eellison
ghstack dependencies: #131014, #129780
This is part of #127596, pulled out to make reviewing a little easier.
Flatten the FakeTensor cache key - so it's a list of singular elements and pointing at one requires a single index rather than a PyTree path. This is used in the next PR to allow us to have the cache entry refer to an input SymInt that it needs to copy directly into the output.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129780
Approved by: https://github.com/oulgen, https://github.com/eellison
ghstack dependencies: #131014
Summary:
## Context
TL;DR: aot_export failed for SDPA memory efficient backend when using `inference_mode`
The CMF AOTI lowering started to fail on the trunk. We have the script (https://fburl.com/code/kfk64i5s) to reproduce the issue quickly (log: P1469307638). By bisecting the stack, we found the issue starting from the D58701607
## Root Cause
In the `inference_mode()`,
the `aten::scaled_dot_product_attention` was not decomposed before the `functionalization` and the op it-self was an out-place op, so the `functionalization` doesn't make change and then was decomposed into `masked_fill_.`, then decomposed to the `copy_`
So it's `aten::sdpa` --- (functionalization) ---> `aten::sdpa` --- (decompose) ---> `masked_fill_` --- (decompose) ---> `copy_` ---> failure
In the `torch.no_grad()`,
`aten::sdpa` was decomposed before `functionalization`, so the story is
`aten::sdpa` --- (decompose) ---> `masked_fill_` --- (functionalization) ---> `masked_fill` --- (decompose) ---> `out-place ops` ---> good
## How to fix
Long-term:
The issue was tracked in the ticket (https://github.com/pytorch/pytorch/issues/129418). The long-term fix could be we do one more round of `functionalization` after the `decompose`, like
`aten::sdpa` --- (functionalization) ---> `aten::sdpa` --- (decompose) ---> `masked_fill_` --- (functionalization) ---> `masked_fill` ---> good
Short-term:
It would be a big change I guess. To unblock the production use-case, I marked the `aten::sdpa` should be decomposed in this diff
Test Plan:
local repro works now
buck run mode/opt scripts/sijiac/prototypes:sdpa_aoti
Differential Revision: D59385876
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130164
Approved by: https://github.com/zou3519
Looks like one of the first failures seen is `test_causal_variants_compile_causal_variant_CausalVariant_LOWER_RIGHT_shape0_cuda` when `test_causal_variants_causal_variant_CausalVariant_LOWER_RIGHT_shape0_cuda` passes.
What seems interesting here is that the `torch.compile` version fails while the eager version passes. Not sure what the difference would be here...
Nevertheless, is there a recommended mechanism to skip cuDNN SDPA as a backend for this test? CC @drisspg
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125343
Approved by: https://github.com/Skylion007
This PR does 3 things:
1. Adds a copy-free strided->jagged layout conversion for NT
2. Adds a copy-free jagged->strided layout conversion for NT
3. Modifies and expands the .to() API to support the layout argument for the specific case of NT layout conversion.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115749
Approved by: https://github.com/jbschlosser
Recently we decided to split export IR into two different IRs (training vs inference). In the inference IR, one major change we decided to introduce was we wanted to keep the composite ops that user specified in the IR. This PR does that by overriding the CompositeImplicitAutograd decomp in export inference path.
Differential Revision: [D58701607](https://our.internmc.facebook.com/intern/diff/D58701607)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128077
Approved by: https://github.com/bdhirsh
Looks like one of the first failures seen is `test_causal_variants_compile_causal_variant_CausalVariant_LOWER_RIGHT_shape0_cuda` when `test_causal_variants_causal_variant_CausalVariant_LOWER_RIGHT_shape0_cuda` passes.
What seems interesting here is that the `torch.compile` version fails while the eager version passes. Not sure what the difference would be here...
Nevertheless, is there a recommended mechanism to skip cuDNN SDPA as a backend for this test? CC @drisspg
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125343
Approved by: https://github.com/Skylion007
When handling an input to dynamo that's a view of a subclass, dynamo does some handling to reconstruct the view. Part of this is to construct symints for the input parameters to the view.
Previously, the code would just call `create_symbol()` which by default specifies a _positive_ symint (>= 0); this fails in the case where you have an aten::view that was called with a -1.
Fix: just specify `positive=None` when calling `create_symbol()`, to avoid restricting the symint to >= 0 or <= 0.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128662
Approved by: https://github.com/jbschlosser
Fixes https://github.com/pytorch/pytorch/issues/127374
The error in the linked repro is:
```
AssertionError: Please convert all Tensors to FakeTensors first or instantiate FakeTensorMode with 'allow_non_fake_inputs'. Found in aten.sym_storage_offset.default(_to_functional_tensor(FakeTensor(..., device='cuda:0', size=(16, 4), dtype=torch.uint8),
device='cuda:0'))
```
Where we hit FakeTensor.__torch_dispatch__, but our input is a C++ `FunctionalTensorWrapper`.
What should actually have happened is that the call to `aten.sym_storage_offset` hits the `Functionalize` dispatch key, which should remove the `FunctionalTensorWrapper` and redispatch. I spent some time debugging and haven't actually figured out why this isn't happening. Instead, this PR just skips that step completely, and asks `FunctionalTensor` to directly unwrap the C++ `FunctionalTensorWrapper` when querying tensor metadata.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127927
Approved by: https://github.com/tugsbayasgalan
This PR renames the implementation details of register_fake to align
more with the new name. It is in its own PR because this is risky
(torch.package sometimes depends on private library functions and
implementation details).
Test Plan:
- tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123938
Approved by: https://github.com/williamwen42
At a high level, the idea behind this PR is:
* Make it clearer what the promotion and int/float rules for various Sympy operations are. Operators that previously were polymorphic over int/float are now split into separate operators for clarity. We never do mixed int/float addition/multiplication etc in sympy, instead, we always promote to the appropriate operator. (However, equality is currently not done correctly.)
* Enforce strict typing on ValueRanges: if you have a ValueRange for a float, the lower and upper MUST be floats, and so forth for integers.
The story begins in **torch/utils/_sympy/functions.py**. Here, I make some changes to how we represent certain operations in sympy expressions:
* FloorDiv now only supports integer inputs; to do float floor division, do a truediv and then a trunc. Additionally, we remove the divide out addition by gcd optimization, because sympy gcd is over fields and is willing to generate rationals (but rationals are bad for ValueRange strict typing).
* ModularIndexing, LShift, RShift now assert they are given integer inputs.
* Mod only supports integer inputs; eventually we will support FloatMod (left for later work, when we build out Sympy support for floating operations). Unfortunately, I couldn't assert integer inputs here, because of a bad interaction with sympy's inequality solver that is used by the offline solver
* TrueDiv is split into FloatTrueDiv and IntTrueDiv. This allows for us to eventually generate accurate code for Python semantics IntTrueDiv, which is written in a special way to preserve precision when the inputs are >= 2**53 beyond what first coercing the integer to floats and then doing true division.
* Trunc is split to TruncToFloat and TruncToInt.
* Round is updated to return a float, not an int, making it consistent with the round op handler in Inductor. To get Python-style conversion to int, we call TruncToInt on the result.
* RoundDecimal updated to consistently only ever return a float
* Add ToFloat for explicit coercion to float (required so we can enforce strict ValueRanges typing)
In **torch/__init__.py**, we modify SymInt and SymFloat to appropriately call into new bindings that route to these refined sympy operations. Also, we modify `torch.sym_min` and `torch.sym_max` to have promotion semantics (if one argument is a float, the return result is always a float), making them inconsistent with builtins.min/max, but possible to do type analysis without runtime information.
We also need to introduce some new op handlers in **torch/_inductor/ops_handler.py**:
* `to_int` for truncation to int64, directly corresponding to TruncToInt; this can be implemented by trunc and dtype, but with a dedicated handler it is more convenient for roundtripping in Sympy
* `int_truediv` for Python-style integer true division, which has higher precision than casting to floats and then running `truediv`
These changes have consequences. First, we need to make some administrative changes:
* Actually wire up these Sympy functions from SymInt/SymFloat in **torch/fx/experimental/sym_node.py**, including the new promotion rules (promote2)
* Add support for new Sympy functions in **torch/utils/_sympy/interp.py**, **torch/utils/_sympy/reference.py**
* In particular, in torch.utils._sympy.reference, we have a strong preference to NOT do nontrivial compute, instead, everything in ops handler should map to a singular sympy function
* TODO: I chose to roundtrip mod back to our Mod function, but I think I'm going to have to deal with the C/Python inconsistency this to fix tests here
* Add printer support for the Sympy functions in **torch/_inductor/codegen/common.py**, **torch/_inductor/codegen/cpp_utils.py**, **torch/_inductor/codegen/triton.py**. `int_truediv` and mixed precision equality is currently not implemented soundly, so we will lose precision in codegen for large values. TODO: The additions here are not exhaustive yet
* Update ValueRanges logic to use new sympy functions in **torch/utils/_sympy/value_ranges.py**. In general, we prefer to use the new Sympy function rather than try to roll things by hand, which is what was done previously for many VR analysis functions.
In **torch/fx/experimental/symbolic_shapes.py** we need to make some symbolic reasoning adjustments:
* Avoid generation of rational subexpressions by removing simplification of `x // y` into `floor(x / y)`. This simplification then triggers an addition simplification rule `(x + y) / c --> x / c + y / c` which is bad because x / c is a rational number now
* `_assert_bound_is_rational` is no more, we no longer generate rational bounds
* Don't intersect non-int value ranges with the `int_range`
* Support more sympy Functions for guard SYMPY_INTERP
* Assert the type of value range is consistent with the variable type
The new asserts uncovered necessary bug fixes:
* **torch/_inductor/codegen/cpp.py**, **torch/_inductor/select_algorithm.py**, **torch/_inductor/sizevars.py** - Ensure Wild/Symbol manually allocated in Inductor is marked `is_integer` so it's accepted to build expressions
* **torch/_inductor/utils.py** - make sure you actually pass in sympy.Expr to these functions
* **torch/_inductor/ir.py** - make_contiguous_strides_for takes int/SymInt, not sympy.Expr!
* **torch/export/dynamic_shapes.py** - don't use infinity to represent int ranges, instead use sys.maxsize - 1
Because of the removal of some symbolic reasoning that produced rationals, some of our symbolic reasoning has gotten worse and we are unable to simplify some guards. Check the TODO at **test/test_proxy_tensor.py**
**Reland notes.** This requires this internal fbcode diff https://www.internalfb.com/phabricator/paste/view/P1403322587 but I cannot prepare the diff codev due to https://fb.workplace.com/groups/osssupport/posts/26343544518600814/
It also requires this Executorch PR https://github.com/pytorch/executorch/pull/3911 but the ET PR can be landed prior to this landing.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126905
Approved by: https://github.com/xadupre, https://github.com/lezcano
At a high level, the idea behind this PR is:
* Make it clearer what the promotion and int/float rules for various Sympy operations are. Operators that previously were polymorphic over int/float are now split into separate operators for clarity. We never do mixed int/float addition/multiplication etc in sympy, instead, we always promote to the appropriate operator. (However, equality is currently not done correctly.)
* Enforce strict typing on ValueRanges: if you have a ValueRange for a float, the lower and upper MUST be floats, and so forth for integers.
The story begins in **torch/utils/_sympy/functions.py**. Here, I make some changes to how we represent certain operations in sympy expressions:
* FloorDiv now only supports integer inputs; to do float floor division, do a truediv and then a trunc. Additionally, we remove the divide out addition by gcd optimization, because sympy gcd is over fields and is willing to generate rationals (but rationals are bad for ValueRange strict typing).
* ModularIndexing, LShift, RShift now assert they are given integer inputs.
* Mod only supports integer inputs; eventually we will support FloatMod (left for later work, when we build out Sympy support for floating operations). Unfortunately, I couldn't assert integer inputs here, because of a bad interaction with sympy's inequality solver that is used by the offline solver
* TrueDiv is split into FloatTrueDiv and IntTrueDiv. This allows for us to eventually generate accurate code for Python semantics IntTrueDiv, which is written in a special way to preserve precision when the inputs are >= 2**53 beyond what first coercing the integer to floats and then doing true division.
* Trunc is split to TruncToFloat and TruncToInt.
* Round is updated to return a float, not an int, making it consistent with the round op handler in Inductor. To get Python-style conversion to int, we call TruncToInt on the result.
* RoundDecimal updated to consistently only ever return a float
* Add ToFloat for explicit coercion to float (required so we can enforce strict ValueRanges typing)
In **torch/__init__.py**, we modify SymInt and SymFloat to appropriately call into new bindings that route to these refined sympy operations. Also, we modify `torch.sym_min` and `torch.sym_max` to have promotion semantics (if one argument is a float, the return result is always a float), making them inconsistent with builtins.min/max, but possible to do type analysis without runtime information.
We also need to introduce some new op handlers in **torch/_inductor/ops_handler.py**:
* `to_int` for truncation to int64, directly corresponding to TruncToInt; this can be implemented by trunc and dtype, but with a dedicated handler it is more convenient for roundtripping in Sympy
* `int_truediv` for Python-style integer true division, which has higher precision than casting to floats and then running `truediv`
These changes have consequences. First, we need to make some administrative changes:
* Actually wire up these Sympy functions from SymInt/SymFloat in **torch/fx/experimental/sym_node.py**, including the new promotion rules (promote2)
* Add support for new Sympy functions in **torch/utils/_sympy/interp.py**, **torch/utils/_sympy/reference.py**
* In particular, in torch.utils._sympy.reference, we have a strong preference to NOT do nontrivial compute, instead, everything in ops handler should map to a singular sympy function
* TODO: I chose to roundtrip mod back to our Mod function, but I think I'm going to have to deal with the C/Python inconsistency this to fix tests here
* Add printer support for the Sympy functions in **torch/_inductor/codegen/common.py**, **torch/_inductor/codegen/cpp_utils.py**, **torch/_inductor/codegen/triton.py**. `int_truediv` and mixed precision equality is currently not implemented soundly, so we will lose precision in codegen for large values. TODO: The additions here are not exhaustive yet
* Update ValueRanges logic to use new sympy functions in **torch/utils/_sympy/value_ranges.py**. In general, we prefer to use the new Sympy function rather than try to roll things by hand, which is what was done previously for many VR analysis functions.
In **torch/fx/experimental/symbolic_shapes.py** we need to make some symbolic reasoning adjustments:
* Avoid generation of rational subexpressions by removing simplification of `x // y` into `floor(x / y)`. This simplification then triggers an addition simplification rule `(x + y) / c --> x / c + y / c` which is bad because x / c is a rational number now
* `_assert_bound_is_rational` is no more, we no longer generate rational bounds
* Don't intersect non-int value ranges with the `int_range`
* Support more sympy Functions for guard SYMPY_INTERP
* Assert the type of value range is consistent with the variable type
The new asserts uncovered necessary bug fixes:
* **torch/_inductor/codegen/cpp.py**, **torch/_inductor/select_algorithm.py**, **torch/_inductor/sizevars.py** - Ensure Wild/Symbol manually allocated in Inductor is marked `is_integer` so it's accepted to build expressions
* **torch/_inductor/utils.py** - make sure you actually pass in sympy.Expr to these functions
* **torch/_inductor/ir.py** - make_contiguous_strides_for takes int/SymInt, not sympy.Expr!
* **torch/export/dynamic_shapes.py** - don't use infinity to represent int ranges, instead use sys.maxsize - 1
Because of the removal of some symbolic reasoning that produced rationals, some of our symbolic reasoning has gotten worse and we are unable to simplify some guards. Check the TODO at **test/test_proxy_tensor.py**
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126905
Approved by: https://github.com/xadupre, https://github.com/lezcano
Backporting a few fixes from xFormers:
* Bug fixes for local attention (which is not exposed in PT at the moment)
* Massively reduced memory usage on the BW pass (see also https://github.com/facebookresearch/xformers/pull/1028)
Essentially this will also make xFormers build process much easier, as we will be able to use mem-eff from PyTorch (if the user has a recent enough version) rather than building it at xFormers install time
The goal is to have the source of truth for these files in PT moving forward, and remove them from xFormers eventually once our users have a recent-enough version of PT.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127090
Approved by: https://github.com/drisspg
At a high level, the idea behind this PR is:
* Make it clearer what the promotion and int/float rules for various Sympy operations are. Operators that previously were polymorphic over int/float are now split into separate operators for clarity. We never do mixed int/float addition/multiplication etc in sympy, instead, we always promote to the appropriate operator. (However, equality is currently not done correctly.)
* Enforce strict typing on ValueRanges: if you have a ValueRange for a float, the lower and upper MUST be floats, and so forth for integers.
The story begins in **torch/utils/_sympy/functions.py**. Here, I make some changes to how we represent certain operations in sympy expressions:
* FloorDiv now only supports integer inputs; to do float floor division, do a truediv and then a trunc. Additionally, we remove the divide out addition by gcd optimization, because sympy gcd is over fields and is willing to generate rationals (but rationals are bad for ValueRange strict typing).
* ModularIndexing, LShift, RShift now assert they are given integer inputs.
* Mod only supports integer inputs; eventually we will support FloatMod (left for later work, when we build out Sympy support for floating operations). Unfortunately, I couldn't assert integer inputs here, because of a bad interaction with sympy's inequality solver that is used by the offline solver
* TrueDiv is split into FloatTrueDiv and IntTrueDiv. This allows for us to eventually generate accurate code for Python semantics IntTrueDiv, which is written in a special way to preserve precision when the inputs are >= 2**53 beyond what first coercing the integer to floats and then doing true division.
* Trunc is split to TruncToFloat and TruncToInt.
* Round is updated to return a float, not an int, making it consistent with the round op handler in Inductor. To get Python-style conversion to int, we call TruncToInt on the result.
* RoundDecimal updated to consistently only ever return a float
* Add ToFloat for explicit coercion to float (required so we can enforce strict ValueRanges typing)
In **torch/__init__.py**, we modify SymInt and SymFloat to appropriately call into new bindings that route to these refined sympy operations. Also, we modify `torch.sym_min` and `torch.sym_max` to have promotion semantics (if one argument is a float, the return result is always a float), making them inconsistent with builtins.min/max, but possible to do type analysis without runtime information.
We also need to introduce some new op handlers in **torch/_inductor/ops_handler.py**:
* `to_int` for truncation to int64, directly corresponding to TruncToInt; this can be implemented by trunc and dtype, but with a dedicated handler it is more convenient for roundtripping in Sympy
* `int_truediv` for Python-style integer true division, which has higher precision than casting to floats and then running `truediv`
These changes have consequences. First, we need to make some administrative changes:
* Actually wire up these Sympy functions from SymInt/SymFloat in **torch/fx/experimental/sym_node.py**, including the new promotion rules (promote2)
* Add support for new Sympy functions in **torch/utils/_sympy/interp.py**, **torch/utils/_sympy/reference.py**
* In particular, in torch.utils._sympy.reference, we have a strong preference to NOT do nontrivial compute, instead, everything in ops handler should map to a singular sympy function
* TODO: I chose to roundtrip mod back to our Mod function, but I think I'm going to have to deal with the C/Python inconsistency this to fix tests here
* Add printer support for the Sympy functions in **torch/_inductor/codegen/common.py**, **torch/_inductor/codegen/cpp_utils.py**, **torch/_inductor/codegen/triton.py**. `int_truediv` and mixed precision equality is currently not implemented soundly, so we will lose precision in codegen for large values. TODO: The additions here are not exhaustive yet
* Update ValueRanges logic to use new sympy functions in **torch/utils/_sympy/value_ranges.py**. In general, we prefer to use the new Sympy function rather than try to roll things by hand, which is what was done previously for many VR analysis functions.
In **torch/fx/experimental/symbolic_shapes.py** we need to make some symbolic reasoning adjustments:
* Avoid generation of rational subexpressions by removing simplification of `x // y` into `floor(x / y)`. This simplification then triggers an addition simplification rule `(x + y) / c --> x / c + y / c` which is bad because x / c is a rational number now
* `_assert_bound_is_rational` is no more, we no longer generate rational bounds
* Don't intersect non-int value ranges with the `int_range`
* Support more sympy Functions for guard SYMPY_INTERP
* Assert the type of value range is consistent with the variable type
The new asserts uncovered necessary bug fixes:
* **torch/_inductor/codegen/cpp.py**, **torch/_inductor/select_algorithm.py**, **torch/_inductor/sizevars.py** - Ensure Wild/Symbol manually allocated in Inductor is marked `is_integer` so it's accepted to build expressions
* **torch/_inductor/utils.py** - make sure you actually pass in sympy.Expr to these functions
* **torch/_inductor/ir.py** - make_contiguous_strides_for takes int/SymInt, not sympy.Expr!
* **torch/export/dynamic_shapes.py** - don't use infinity to represent int ranges, instead use sys.maxsize - 1
Because of the removal of some symbolic reasoning that produced rationals, some of our symbolic reasoning has gotten worse and we are unable to simplify some guards. Check the TODO at **test/test_proxy_tensor.py**
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126905
Approved by: https://github.com/xadupre, https://github.com/lezcano
Follow-up to #113118 and #124306.
Developed in coordination with the solution to https://github.com/microsoft/onnxscript/pull/1547
This PR adds the missing fake tensor implementation for `aten.unique_dim`, thus enabling tracing and compilation of `torch.unique` when `dim` is not None.
Local testing has proceeded with the following simple script (provided that one has checked out the changes in https://github.com/microsoft/onnxscript/pull/1547):
```python
import onnx
import onnxruntime as ort
import logging
import numpy as np
onnx_program = torch.onnx.dynamo_export(
lambda x: torch.unique(x,
dim=0,
return_inverse=True),
torch.arange(10),
export_options=torch.onnx.ExportOptions(
dynamic_shapes=True,
diagnostic_options=torch.onnx.DiagnosticOptions(
verbosity_level=logging.DEBUG)))
onnx_program.save("torch_unique.onnx")
onnx_inputs = onnx_program.adapt_torch_inputs_to_onnx(torch.arange(10))
onnx_outputs = onnx_program(*onnx_inputs)
loaded_onnx_program = onnx.load("torch_unique.onnx")
onnx.checker.check_model(loaded_onnx_program)
ort_session = ort.InferenceSession("torch_unique.onnx")
inputs = np.random.randint(0, 10, 10)
print(f"Inputs: {inputs}")
outputs = ort_session.run(None,
{
"l_x_": inputs
})
print(f"Outputs: {outputs}")
print("Success")
```
Co-authored-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126561
Approved by: https://github.com/ezyang
This adds dumps of MetaTensorDesc and MetaStorageDesc to structured logs
when they are triggered from Dynamo. The logs look like this:
```
V0522 08:13:25.267000 140224882566144 torch/_subclasses/meta_utils.py:195] {"describe_storage": {"id": 0, "describer_id": 0, "size": 32}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
V0522 08:13:25.267000 140224882566144 torch/_subclasses/meta_utils.py:220] {"describe_tensor": {"id": 0, "ndim": 1, "dtype": "torch.float32", "device": "device(type='cpu')", "size": [8], "is_leaf": true, "stride": [1], "storage": 0, "view_func": "<built-in method _view_func_unsafe of Tensor object at 0x7f882959e840>", "describer_id": 0}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
V0522 08:13:25.268000 140224882566144 torch/_subclasses/meta_utils.py:1594] {"describe_source": {"describer_id": 0, "id": 0, "source": "L['x']"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
```
The `describer_id` is used to disambiguate ids. We expect it to be
unique per frame id, but if there is a bug it possibly is not. Note you will get
redundant dumps when evaluation restarts.
tlparse can use this to give a visualization of input tensors to a
model, you could also use this to generate example inputs to run graphs
on.
Some care is taken to avoid redumping the tensor metadata multiple
times, which would happen ordinarily because AOTAutograd refakifies
everything after Dynamo, to deal with metadata mutation.
Partially fixes https://github.com/pytorch/pytorch/issues/126644
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126879
Approved by: https://github.com/jamesjwu
1. **Expose seqused_k & alibi_slopes arguments**:
- This can be used when your sequence length k is not the full extent of the tensor. This is useful for kv cache scenarios and was not previously supported in the FA2 TORCH integration. We need these arguments for external xformers lib call to the _flash_attention_forward API.
Before:
```
std::optional<Tensor> seqused_k = c10::nullopt;
std::optional<Tensor> alibi_slopes = c10::nullopt;
```
After:
```
_flash_attention_forward(...
std::optional<Tensor>& seqused_k,
std::optional<Tensor>& alibi_slopes,
```
2. There is a difference between the **TORCH_FA2_flash_api:mha_fwd** and **FA2_flash_api:mha_fwd** (same for **mha_varlen_fwd**) at the query transposition (GQA) step.
The **CHECK_SHAPE** is applied on the original query vs the reshaped query. This causes an error (because of the shape constraint) for such inputs:
```
q = torch.randn([7, 1, 4, 256], dtype=torch.bfloat16, device='cuda')
k = torch.randn([7, 51, 1, 256], dtype=torch.bfloat16, device='cuda')
v = torch.randn([7, 51, 1, 256], dtype=torch.bfloat16, device='cuda')
```

- i've modified the code as little as possible, but if you prefer a more verbose change like the following, dont hesitate to tell me:
```
at::Tensor swapped_q = seqlenq_ngroups_swapped
? q.reshape({batch_size, num_heads_k, num_heads / num_heads_k, head_size_og}).transpose(1, 2)
: q;
if (seqlenq_ngroups_swapped) {
seqlen_q = num_heads / num_heads_k;
num_heads = num_heads_k;
}
CHECK_SHAPE(swapped_q, batch_size, seqlen_q, num_heads, head_size_og);
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126520
Approved by: https://github.com/drisspg