This PR moves the logic for computing the overlapping relations between input tensors that
share a storage instance to C++.
In summary, this PR:
- Moves both `tensors_definitely_do_not_overlap` and part of `compute_overlapping_tensors`
to C++
- Introduces a `check_overlapping` function that re-runs `compute_overlapping_tensors`,
checking that the result is consistent with what is expected
- Introduces the `StorageOverlapChecker` class
- Keeps track of overlapping and non-overlapping tensors
- Actually checks the overlapping relation (call `check_overlapping`) when all tensors
are collected
- Introduces the `STORAGE_OVERLAPPING` relational guard
- Has a reference to a `StorageOverlapChecker`
- Stores the to-be-checked tensors in the checker, and triggers its check
- Introduces `install_storage_overlapping_guard` python function
- Creates an instance of `StorageOverlapChecker`
- Creates 2 instances of the `STORAGE_OVERLAPPING` guard (for overlapping and
non-overlapping tensors), referencing the same `StorageOverlapChecker` instance
**Why is `StorageOverlapChecker` needed?**
The way `GuardManager` is implemented, we have no control over the order in which the
check methods are called, i.e. no control over the order the tensors are collected. So, we
can't easily split them in "overlapping" and non-overlapping kinds.
Instead, we create 2 instances of `STORAGE_OVERLAPPING` guard, each of which helps
collecting the tensors for one of the kinds mentioned above. They are then used in a
single `StorageOverlapChecker` instance.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140013
Approved by: https://github.com/bdhirsh
ghstack dependencies: #139554, #139555
Certain `cpp_wrapper`-enabled tests were OOM-ing in the CI pipeline, with error messages suggesting that sufficient memory was accessible. This ultimately resulted from an internal memory limitation that was not queryable in the API. This PR adds querying for that limit.
Additionally, the failing tests had incorrect memory availability checks, and are updated with measured memory requirements.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140620
Approved by: https://github.com/malfet, https://github.com/eqy
ghstack dependencies: #141367
Before this PR, users need to call `empty_strided_p2p()` with a `group_name`:
```python
tensor = _SymmetricMemory.empty_strided_p2p((1024,), (1,), device=device, group_name="0")
symm_mem = _SymmetricMemory.rendezvous(tensor)
```
Users can now omit `group_name` at allocation time and specify it later at rendezvous time:
```python
tensor = _SymmetricMemory.empty_strided_p2p((1024,), (1,), device=device)
symm_mem = _SymmetricMemory.rendezvous(tensor, group_name="0")
```
Rationales for this change:
- This allows the same allocation to establish symmetric memory under different groups
- Specifying `group_name` at rendezvous time instead of allocation time is a more natural UX
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139529
Approved by: https://github.com/lw
In `match_nested_cell`, Dynamo tried to identify pre-existing captured
cells by `(cell_name, id(cell_contents))`. This works in most cases, but
as the test added in this patch shows, it's not a complete solution.
This patch
1. changes `match_nested_cell` to `lookup_variable_for_captured_cell`,
and does the lookup based on id of cell objects, not their contents.
This requires plumbing a tuple of captured cell objects from
different CPython versions all the way to
`InstructionTranslator.__init__`, where we store a mapping from the
ids of these cell objects, and use it later in
`UserFunctionVariable.bind_args` to look for these unboxed cells.
2. builds off (1) -- rather than using a `VariableTracker` that
represents the content of the unboxed cells, use `ClosureVariable`,
which enables codegen in case these cells escape as closure of a
`NestedUserFunctionVariable`.
The patch adds a regression test for each of the scenarios above:
1. `test_write_to_cells_with_name_shadowing` where Dynamo mistakenly
thought the program is writing to a cell captured by root frame (which
it doesn't support atm), which resulted in
```
File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/symbolic_convert.py", line 3340, in STORE_DEREF
unimplemented("write to __closure__ while inlining")
File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/exc.py", line 313, in unimplemented
raise Unsupported(msg, case_name=case_name)
torch._dynamo.exc.Unsupported: write to __closure__ while inlining
```
2. `test_existing_func_that_creates_capturing_nested_func` where Dynamo
ended up trying to codegen a `NestedUserFunctionVariable` that
captures a cell which was also captured by the root frame, so it was
unboxed and ends up emitting `LOAD_DEREF` rather than
`LOAD_FAST/LOAD_CLOSURE` during codegen, resulting in
```
File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/variables/functions.py", line 105, in _create_nested_fn
func = FunctionType(code, f_globals, name, defaults, closure)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
TypeError: arg 5 (closure) expected cell, found int
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140436
Approved by: https://github.com/jansel, https://github.com/williamwen42
ghstack dependencies: #140330, #140152
This patch introduces a `DynamoFrameType` to serve as a layer between
Dynamo and different versions of Python frame object. In
`DynamoFrameType`, we only register attributes Dynamo cares about (e.g.,
`f_code`, `f_locals`, etc.
This will be helpful when it comes to adding new attributes to this
`DynamoFrameType`, or dealing with Python version changes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140330
Approved by: https://github.com/jansel, https://github.com/williamwen42
Summary:
If unhealthy, the user should be able to get the type of errors, e.g.,
timeout,nccl error or remote error.
This API is applied to PG level, compared to the work.get_future_result() API which is applied to Work Level.
Error detection at PG level is much more convenient for users to handle the PG failure as a whole, e.g, restarting the PG.
Error handling at the work level is still useful for users to attach work specific context and debug the RC of the specific failing work/collective
Note it is critical for all ranks in the PG to be notified about an error as soon as it occurs, so we introduce an errorType of REMOTE_ERROR, which is 'broadcasted' from a src rank (which detects a local error) to all other ranks in the PG, the broadcast is done through TCPStore currently
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140087
Approved by: https://github.com/kwen2501
Differential Revision: D63206258
This diff introduces a mechanism to generate a json-compatible deserializer in cpp using nlohmann json (already being used by AOTI).
Why we need this? Because there will be a lot of cases where people don't want to use Python to load the graph (e.g. cpp runtime), and instead they can use this header to deserialize the JSON graph.
Every time we call update_schema.py to update the schema, the header will be auto generated and included into the source files.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136398
Approved by: https://github.com/angelayi
This PR updates the binding for `stream_write_value32` to be consistent with `memset32` which IMO makes more sense for this type of utilities:
- Changed the API to take a uint32 tensor as argument, instead of a device pointer
- Changed the Python binding to be a static method of `_SymmetricMemory`, instead of a object method
- Use the dispatcher for device dispatching, as opposed to `SymmetricMemory` backends
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139934
Approved by: https://github.com/weifengpy
ghstack dependencies: #139227
This PR updates the binding for `stream_write_value32` to be consistent with `memset32` which IMO makes more sense for this type of utilities:
- Changed the API to take a uint32 tensor as argument, instead of a device pointer
- Changed the Python binding to be a static method of `_SymmetricMemory`, instead of a object method
- Use the dispatcher for device dispatching, as opposed to `SymmetricMemory` backends
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139934
Approved by: https://github.com/weifengpy
ghstack dependencies: #139227
This PR introduces the following:
### torch.ops.symm_mem._async_input_mm
`_async_input_mm(Tensor a, Tensor b, Tensor a_chunk_signals, int a_chunk_pivot) -> Tensor`
An mm impl that supports consuming asynchronous input. It guarantees the following rasterization order, and that the corresponding signal arrives before an input chunk is consumed.
```
num_chunks = a_chunks_signals.numel()
for chunk_idx in range(a_chunk_pivot, num_chunks + a_chunk_pivot):
chunk_idx = chunk_idx % num_chunks
wait_signal(a_chunk_signals, chunk_idx)
# Compute output tiles that consumes the input chunk
```
### PersistentAsyncInputScheduler
This is a forked version of PersistentScheduler that supports consuming asynchronous input. This tile scheduler introduces the following arguments:
- `tiles_per_chunk_m` – Specifies the size of an M chunk. Chunks are the granularity at which the asynchronous input becomes ready. It must be an interger multiple of the size of an M tile.
- `chunk_signals` – `chunk_signals[i] == 1` indicates that chunk i is ready. Before returning a work tile, get_current_work() waits for the signal to ensure that the corresponding chunk is ready.
- `tile_idx_pivot_m` – After applying swizzling, apply `pivot(m) => (m + tile_idx_pivot_m) % tiles_m` to `m`. In a distributed setting, this allows different ranks to process different m indices at the same time, thus avoiding communication hotspots.
Note that this scheduler currently only supports the `KernelTmaWarpSpecializedCooperative` kernel schedule. This is enforced via the template argument `KernelSchedule`.
Usage:
```
using GemmKernel = cutlass::gemm::kernel::GemmUniversal<
Shape<int, int, int, int>,
CollectiveMainloop,
CollectiveEpilogue,
cutlass::gemm::PersistentAsyncInputScheduler<KernelSchedule>>;
```
### _fused_all_gather_matmul_native
An ag-mm impl that combines `torch.ops.symm_mem._async_input_mm` and progress-aware all-gather. This is not yet enabled via the async-tp passes. We will use it as a backend to optimize the current decomposition-based async-tp impl.
## Benchmarks
### 4096x3584x8192
- cublas + nccl: 539us
- decomp-based async-tp w/o cuda graph: 694us
- decomp-based async-tp w/ cuda graph: 478us
- new cutlass kernel: 408us
<img width="478" alt="image" src="https://github.com/user-attachments/assets/39f316ab-36c5-4b41-af77-07854a385dfc">
### 2048x3584x8192
- cublas + nccl: 301us
- decomp-based async-tp w/o cuda graph: 687us
- decomp-based async-tp w/ cuda graph: 356us
- new cutlass kernel: 276us
<img width="441" alt="image" src="https://github.com/user-attachments/assets/9e23ce21-863b-43dd-a562-fb05d3a5a144">
## Next Steps
- Add tuning logic
- Use `_fused_all_gather_matmul_native` as a backend for the decomp-based async-tp impl
Differential temp Revision: [D65623152](https://our.internmc.facebook.com/intern/diff/D65623152)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139227
Approved by: https://github.com/weifengpy, https://github.com/Chillee
This PR introduces the following:
### torch.ops.symm_mem._async_input_mm
`_async_input_mm(Tensor a, Tensor b, Tensor a_chunk_signals, int a_chunk_pivot) -> Tensor`
An mm impl that supports consuming asynchronous input. It guarantees the following rasterization order, and that the corresponding signal arrives before an input chunk is consumed.
```
num_chunks = a_chunks_signals.numel()
for chunk_idx in range(a_chunk_pivot, num_chunks + a_chunk_pivot):
chunk_idx = chunk_idx % num_chunks
wait_signal(a_chunk_signals, chunk_idx)
# Compute output tiles that consumes the input chunk
```
### PersistentAsyncInputScheduler
This is a forked version of PersistentScheduler that supports consuming asynchronous input. This tile scheduler introduces the following arguments:
- `tiles_per_chunk_m` – Specifies the size of an M chunk. Chunks are the granularity at which the asynchronous input becomes ready. It must be an interger multiple of the size of an M tile.
- `chunk_signals` – `chunk_signals[i] == 1` indicates that chunk i is ready. Before returning a work tile, get_current_work() waits for the signal to ensure that the corresponding chunk is ready.
- `tile_idx_pivot_m` – After applying swizzling, apply `pivot(m) => (m + tile_idx_pivot_m) % tiles_m` to `m`. In a distributed setting, this allows different ranks to process different m indices at the same time, thus avoiding communication hotspots.
Note that this scheduler currently only supports the `KernelTmaWarpSpecializedCooperative` kernel schedule. This is enforced via the template argument `KernelSchedule`.
Usage:
```
using GemmKernel = cutlass::gemm::kernel::GemmUniversal<
Shape<int, int, int, int>,
CollectiveMainloop,
CollectiveEpilogue,
cutlass::gemm::PersistentAsyncInputScheduler<KernelSchedule>>;
```
### _fused_all_gather_matmul_native
An ag-mm impl that combines `torch.ops.symm_mem._async_input_mm` and progress-aware all-gather. This is not yet enabled via the async-tp passes. We will use it as a backend to optimize the current decomposition-based async-tp impl.
## Benchmarks
### 4096x3584x8192
- cublas + nccl: 539us
- decomp-based async-tp w/o cuda graph: 694us
- decomp-based async-tp w/ cuda graph: 478us
- new cutlass kernel: 408us
<img width="478" alt="image" src="https://github.com/user-attachments/assets/39f316ab-36c5-4b41-af77-07854a385dfc">
### 2048x3584x8192
- cublas + nccl: 301us
- decomp-based async-tp w/o cuda graph: 687us
- decomp-based async-tp w/ cuda graph: 356us
- new cutlass kernel: 276us
<img width="441" alt="image" src="https://github.com/user-attachments/assets/9e23ce21-863b-43dd-a562-fb05d3a5a144">
## Next Steps
- Add tuning logic
- Use `_fused_all_gather_matmul_native` as a backend for the decomp-based async-tp impl
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139227
Approved by: https://github.com/weifengpy, https://github.com/Chillee
Summary:
This PR adds Auto-Trace implementation for Trace ID. By default, the python side will generate a uuid in the same format as the one set in the backend by kineto. Upon running an auto-trace, the python generated trace id will overwrite the one set in kineto using the Config variable. Since we don't expect users to generate on-demand traces after an auto-trace we can simply keep overwriting the backend trace id whenever autotrace is ran. If we one day want to eventually do something like this, we simply have to add a call in kineto on the backend to generate a new ID upon start of profiling.
We also implement a custom callback in the frontend such that users can generate their own trace ids if they wish to. This works similarly as the default, only difference being that they have to manually set this callback after a profiler is generated. We use a specific call to set this rather then putting it in the frontend initializer in case users want to change the trace_id for different repeats.
Test Plan: Tested both default and custom callbacks using the verbose prints added. Trace ids on the frontend and the prints on the backend for the manifold upload matched.
Differential Revision: D65178308
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139310
Approved by: https://github.com/shengfukevin
When we see a custom op:
- check that its mutation annotations are correct
- check that its aliasing constraints matches our constraints for custom
ops.
Otherwise, there may be undefined behavior.
Test Plan:
- new tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139212
Approved by: https://github.com/angelayi
This PR aims to support the following use case:
```python
def all_reduce_eager(x):
y = x * x
req = dist.all_reduce(y, op=dist.ReduceOp.SUM, async_op=True)
assert isinstance(req, torch.distributed.Work)
return y
@torch.compile(fullgraph=True)
def all_reduce_wait_compiled(y):
torch.ops.c10d_functional.wait_tensor(y)
return y * y
x = torch.ones(1280, 1280, device="cuda") + self.rank
with allow_inflight_collective_as_graph_input_ctx():
y = all_reduce_eager(x)
z = all_reduce_wait_compiled(y)
```
where the collective is issued in eager (with `async_op=True`) but waited in compiled region.
This is important for internal use cases such as TorchRec, where we issue collectives in eager for SparseArch all_to_all but want to wait for them in compiled region at beginning of OverArch, so that the all_to_all can be overlapped with the DenseArch compute that runs in parallel.
----
**Update**: Did two items to prevent regression to existing use cases:
1. Added memory-stressed test case to test_c10d_nccl.py `test_unwaited` to cover existing user's "not calling work.wait() for non-functional collective" use case
2. Gated all new `register_work()` / `unregister_work()` calls with `c10d::allow_inflight_collective_as_graph_input()` check, which is a new context manager that requires explicit user enablement (i.e. not on by default, so should not affect existing users).
The risk of this new version of PR causing regression should be very low.
------
Test commands:
- `pytest -rA test/distributed/test_inductor_collectives.py::TestCollectivesMultiProc::test_eager_async_allreduce_inductor_wait`
- `pytest -rA test/test_fx.py::TestDCE::test_keep_collectives`
- `pytest -rA test/test_fx.py::TestDCE::test_keep_collectives_no_overload`
- `pytest -rA test/distributed/test_c10d_functional_native.py::TestWithNCCL::test_wait_tensor`
- `pytest -rA test/distributed/test_c10d_functional_native.py::TestWithNCCL::test_unwaited`
- `pytest -rA test/distributed/test_c10d_nccl.py::CommTest::test_wait_tensor`
- `pytest -rA test/distributed/test_c10d_nccl.py::CommTest::test_unwaited`
- `pytest -rA test/distributed/_tensor/test_tensor_ops.py::DistTensorOpsTest::test_equal`
- `pytest -rA test/distributed/_tensor/test_random_ops.py::DistTensorRandomOpTest::test_manual_seed`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_ddp_baseline_aot_eager_multiprocess`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_aot_eager`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_setattr`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_unspecialized_forced_getattr_inline`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_unspecialized_forced_getattr_no_inline`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_asymmetric_compilation`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_automatic_dynamic_scalar`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_automatic_dynamic_speculation_divergence`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_automatic_dynamic_tensor`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_dim_mismatch`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_graph_break_empty_graph_still_collective`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_missing_source`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_scalar_missing_source`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_type_mismatch`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_ddp_activation_checkpointing`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_ddp_baseline_aot_eager_multiprocess`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_activation_checkpointing`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_aot_eager`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_inductor`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_setattr`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_unspecialized_forced_getattr_inline`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_unspecialized_forced_getattr_no_inline`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_hf_bert_ddp_aot_eager`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_hf_bert_ddp_aot_eager_static_graph`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_hf_bert_ddp_inductor`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_hf_bert_ddp_inductor_static_graph`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_hf_bert_fsdp_activation_checkpointing`
- `pytest -rA test/distributed/_tensor/test_experimental_ops.py::DistOtherOpsTest::test_bernoulli`
- `pytest -rA test/distributed/_tensor/test_dtensor_compile.py::TestDTensorCompileE2E::test_tp_compile_fullgraph_is_seq_parallel_True`
- `pytest -rA test/distributed/test_inductor_collectives.py::TestCollectivesMultiProc::test_allreduce_inductor_cudagraph_trees`
- `python benchmarks/dynamo/torchbench.py --ci --accuracy --timing --explain --inductor --device cuda --inference --bfloat16 --total-partitions 2 --partition-id 1 --output inference_torchbench.csv --only moco`
------
Differential Revision: [D65023311](https://our.internmc.facebook.com/intern/diff/D65023311)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137763
Approved by: https://github.com/yifuwang
This PR enables you to inspect PyObjects in C using `INSPECT(...)` without requiring https://docs.python.org/3/howto/gdb_helpers.html. `torch._dynamo.eval_frame.raise_sigtrap` can also be used to set gdb breakpoints while running Python code, e.g.
```python
x = x + 1
torch._dynamo.eval_frame.raise_sigtrap();
# can breakpoint on ceval.c:CALL to breakpoint the `sin` call in C.
x = torch.sin(x)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138030
Approved by: https://github.com/jansel
# Motivation
According to [[RFC]A device-agnostic Python runtime API design for stream-based accelerators](https://github.com/pytorch/pytorch/issues/128403), this PR intends to introduce a device-agnostic runtime API design.
I personally prefer the **Simple Version** APIs that no longer accept the device type as an input argument. It means we will leverage `getAccelerator` to fetch the current accelerator. And it is flexible to expand these APIs to handle multiple types of accelerator scenarios. The design does **NOT** break the previous design philosophies.
I also believe that namespace torch.accelerator is better. It lets users know that the APIs they are calling are running on an accelerator rather than CPU. This is important. Meanwhile, we can follow a simple API design principle:
1. Device-agnostic APIs should be placed under the torch.accelerator namespace and not accept a device_type optional parameter.
2. Device-specific APIs should be placed under device-specific submodules.
3. APIS required by both CPU and accelerators should be placed under the torch namespace and accept a device_type optional parameter.
Also, I list the pros and cons of **Simple Version** here:
Pros:
- `torch.accelerator.foo` will have the same input argument as `torch.xxx.foo`, bringing a better user experience;
- more concise, facilitate the developer to write a device-agnostic code.
Cons:
- no obvious drawbacks.
# Additional Context
I list the new APIs here:
```python
torch.accelerator.is_available() -> bool:
torch.accelerator.current_accelerator() -> torch.device:
torch.accelerator.device_count() -> int:
torch.accelerator.current_device_idx() -> int:
torch.accelerator.set_device_idx(device: Union[torch.device, str, int, None]) -> None:
torch.accelerator.current_stream(device: Union[torch.device, str, int, None]) -> torch.Stream:
torch.accelerator.set_stream(stream: torch.Stream) -> None:
torch.accelerator.synchronize(device: Union[torch.device, str, int, None]) -> None:
```
According to the discussion with Alban, we decide to change the API name `set_device` to `set_device_idx` and `current_device` to `current_device_idx` for more explicit. And will submit other PR to support device and stream context manager.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132204
Approved by: https://github.com/EikanWang, https://github.com/abhilash1910, https://github.com/gujinghui, https://github.com/albanD
This PR refactors some ref-counting functionality out of `beginAllocateToPool` and `releasePool`. The ref-counting logic is then used in construction and destruction of `torch.cuda.MemPool`.
The `use_count` variable in the CUDACachingAllocator is essentially a refcount of how many context managers are using the pool. Since we are now lifting up the MemPool abstraction to the user, the MemPool object itself now needs to hold a an extra reference as well.
Part of https://github.com/pytorch/pytorch/issues/124807.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133600
Approved by: https://github.com/eqy, https://github.com/ezyang
- composable_kernel as a third_party submodule
- "ck" as a `torch.backends.cuda.preferred_linalg_library()`
- reference CK gemm implementations for float, bfloat16, and half types
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131004
Approved by: https://github.com/xw285cornell, https://github.com/pruthvistony
Co-authored-by: Andres Lugo <Andy.LugoReyes@amd.com>
Co-authored-by: Pruthvi Madugundu <pruthvigithub@gmail.com>
Thanks @eqy for reminding me of this RFC: https://github.com/pytorch/pytorch/issues/119797
This PR is meant to:
- provide a way to abort multiple PGs without deadlocking each other.
- provide a possibility to manually handle comm errors or timeouts (and potentially recovery of such).
One can find an example from: https://github.com/NVIDIA/nccl/issues/1013
## How is it different from `destroy_process_group`?
`destroy_process_group` is meant for normal exit, while `_abort_process_group` is meant for bailout upon hangs or failures. Similar to `ncclCommDestroy` vs `ncclCommAbort`.
## What's new in `_abort_process_group`?
It added support for "group abort" semantic. The "group abort" semantic is capable of aborting multiple NCCL comms concurrently, avoiding deadlock in otherwise serialized `ncclCommAbort` executions. Details are in the [RFC](https://github.com/pytorch/pytorch/issues/119797) targeting [the hang issue in multi-comm case](https://github.com/NVIDIA/nccl/issues/1013). `Group abort` semantic is added in NCCL 2.22.
## What's next?
Ideally, the watchdog's behavior should support "group abort" too. But this is hard to implement today due to a lack of "global view" by each PG's individual watchdog. A big semi-big refactor may be needed to "uplift" the watchdogs to a global level or consolidate them into one (i.e. one dog watching multiple PGs).
In any case, it may not be a bad idea to experiment the "group abort" feature with a manual API first and then extend to the automatic mode (watchdog).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132291
Approved by: https://github.com/eqy
**Motivation**
Enable SVE vectorization with `torch.compile`
Extends PR: #119571
* This PR enables vectorization for codegen part using SVE-256 (vec length)
* The changes can be extended to other SVE vec lengths
I've done some comparisons against existing NEON implementation with SVE vectorization enabled route for `torch.compile`
Test results are for 8 cores on ARM Neoverse_V1
<img width="359" alt="Screenshot 2024-08-28 at 16 02 07" src="https://github.com/user-attachments/assets/6961fbea-8285-4ca3-b92e-934a2db50ee2">
It's worth mentioning, for standalone `SiLU op` there's a `~1.8x` speedup with `torch.compile`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134672
Approved by: https://github.com/jgong5, https://github.com/malfet
This reverts commit 7743149b2b.
Reverts
* https://github.com/pytorch/pytorch/pull/135503
* https://github.com/pytorch/pytorch/pull/135502
* https://github.com/pytorch/pytorch/pull/135422
This passes this test. Earlier, the getitem would stay like a getitem in the Fx graph. But now the fake tensor propagations fails saying that .item is called. It seems that torch function is not getting triggered while fake tensor propagation.
```
import torch
from torch.nn.attention.flex_attention import BlockMask, _mask_mod_signature, _score_mod_signature, flex_attention
from torch._inductor.lowering import make_pointwise, register_lowering
from torch._inductor.virtualized import ops
from torch.nn.attention.flex_attention import create_block_mask
torch.set_default_device('cuda')
flex_attention = torch.compile(flex_attention, dynamic=False)
prefix_lengths = torch.arange(8)
def prefix_lm(b, h, q, kv):
return prefix_lengths[b] >= kv
mask = create_block_mask(prefix_lm, 8, None, 512, 512, _compile=True)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136590
Approved by: https://github.com/Chillee
We introduced the dispatchable backend for a ProcessGroup and collective in https://github.com/pytorch/pytorch/issues/86225. This PR is a follow-up cleanup to clean up the option of a ProcessGroup and ask users to either set timeout or backend later on or directly create backend after creating a PG.
Also PGNCCL is using option class from ProcessGroup but we actually should use Option from backend class. So this PR is to make the type or name to be aligned with what we are doing in cpp side. I don't change the signature for the public API, so they still use args named "pg_options"
We need to make changes to the test to make it aligned with the change.
This is try to reland D62008954 by fixing internal errors.
Differential Revision: [D62483294](https://our.internmc.facebook.com/intern/diff/D62483294/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135653
Approved by: https://github.com/wz337, https://github.com/H-Huang
* Added a cpp loader, AOTIModelPackageLoader, which can load the .pt2, build the .so, and create a runner. The python-facing API is that users can directly call the `run` function, whereas in cpp users can directly access the `runner_` if they are more familiar with that. I couldn't figure out how to bind the `get_runner()` function to python...
* Added a new config, `aot_inductor.package_cpp_only` which will **not** package the so. This means that whenever the package is loaded, we will need to build the so. This is turned off by default so that new environments do not need to rebuild their so. The `package_cpp_only` is a feature which torchchat intends to use to provide flexibility to users.
* Added a new config, `aot_inductor.metadata` which stores user-provided metadata, serialized to the pt2 as a json file. It also stores the device used when exporting, "cuda" or "cpu", so that during load time, we can use that data to determine which AOTIModelContainerRunner to use. The metadata can be accessed through `loader.get_metadata()`. TODO is to move this metadata to the toplevel `package_aoti` function so that we can remove the metadata as a config.
* Separated out `package_aoti` as a standalone function, instead of it automatically being called in inductor. This is to prepare for the case where users will compile multiple models, and want to bundle it in one package. The specific use case is in torchchat, where we want to package the separately-exported encoder and decoder layers. An example of how to use this is in `test_multiple_methods`.
* `load_package` will load a singular model, given the model name.
* The loader doesn't support windows for now, I think I need to add some more casing to make the build commands work on windows?
Differential Revision: [D62329906](https://our.internmc.facebook.com/intern/diff/D62329906)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135374
Approved by: https://github.com/desertfire, https://github.com/malfet
We introduced the dispatchable backend for a ProcessGroup and collective in https://github.com/pytorch/pytorch/issues/86225. This PR is a follow-up cleanup to clean up the option of a ProcessGroup and ask users to either set timeout or backend later on or directly create backend after creating a PG.
Also PGNCCL is using option class from ProcessGroup but we actually should use Option from backend class. So this PR is to make the type or name to be aligned with what we are doing in cpp side. I don't change the signature for the public API, so they still use args named "pg_options"
We need to make changes to the test to make it aligned with the change.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132931
Approved by: https://github.com/H-Huang
PYTHONPATH=$(pwd) python benchmarks/update_hint_benchmark.py out
as of this diff, compile_time_instruction_count counts the number of instruction from within
convert_frame.compile_inner
```
update_hint_regression,compile_time_instruction_count,10522459165
```
will add result from CI once populated.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133834
Approved by: https://github.com/aorenste
Summary:
We want to add compile IDs and frames to each Torch-Compiled Region in order to help users cross reference the section they are checking alongside data obtained from tools, such as tlparse.
This diff operates on the assumption that each graph section will enter and exit a CompileContext before it is ran to either compile the graph or look it up in the cache. Based on this assuption, we can save the value of the graph section from the exited CompileContext in eval_frame.c using a Python C API. After this, we can create a new interface in cpp shim to wrap around the record_function in order to pass in the new keyword argument for "context".
Test Plan:
Enhance test_profiler_dynamo_compiled_region to look for kwinputs as well as a name to see that the context is now labeled. Also changed test to run graph with more contexts so that we test a wider range of profiling.
Differential Revision: D60803317
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132765
Approved by: https://github.com/anijain2305
Summary:
This PR adds in cuSPARSELt as a backend to PyTorch.
It is now possible to see if cuSPARSELt is available and the version if
it is with
```
torch.backends.cusparselt.is_available()
torch.backends.cusparselt.version()
```
Test Plan:
```
python test/test_sparse_semi_structured.py -k test_cusparselt_backend
```
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128534
Approved by: https://github.com/cpuhrsch, https://github.com/eqy, https://github.com/syed-ahmed
This PR adds a C function to check if all torch function is disabled.
Recall that there are three torch function enablement states:
* All disabled
* Torch Function Subclass disabled
* All enabled
The API before this change provides two functions:
* `_is_torch_function_enabled` - returns True iff the current TF state is All enabled
* `_is_torch_function_mode_enabled` - returns True iff the state is not All disabled and the torch function mode stack is non-empty.
The crux of why a new API is needed is the following: If dynamo enters a frame with the torch function mode stack empty, `_is_torch_function_enabled` == False, it is impossible to determine if after a new mode is pushed whether we should enter the mode or not. This is because we don't know if the enablement state is All disabled or only subclass disabled. Adding this API to check if All disabled is True allows us to disambiguate this case.
In the next PR, Dynamo InstructionTranslator will have clearer flags than the underlying C API:
* A flag to indicate if subclasses are disabled (ie All disabled or Subclass Disabled is the current state)
* A flag to indicate if modes are disabled (ie if All disabled is the current state)
* A symbolic stack which can be checked if any modes are present
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133136
Approved by: https://github.com/bdhirsh
ghstack dependencies: #133130, #133729, #133131, #133132, #133133, #133134
This PR adds a guard on the torch function mode stack state at the beginning of tracing. The way this is implemented is via a new leaf guard which is passed the initial stack state at construction and compares it to the stack state at the time the guard is run.
Details:
The stack state is extracted via popping all modes, appending them to a list, and pushing all modes back. This list is stored on the output graph and read during guard construction to pass to the stack mode guard. There the length and types of the modes are recorded. Next time the guard is run it compares this recorded state to the current mode stack state.
To implement this in python a helper function was added to utils.py and this is used if cpp guards are not enabled.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133130
Approved by: https://github.com/anijain2305
Summary:
It seems we have multiple places deserializing torchbind objects. Moving the code around so that every load essentially share the same implementation.
Also added a test case "package_reader_testing" which load back the archive file in Python and eagerly validate the numerical result.
Test Plan: buck test mode/opt sigmoid/inference/test:e2e_test_cpu
Reviewed By: SherlockNoMad
Differential Revision: D61235770
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133463
Approved by: https://github.com/ydwu4
Fixes#10536
Reattempt of #61467. Thank you so much to @mskoh52 for your excellent work!
As I was trying to create a more efficient LLM data collator, I realized that `pad_sequence` only supports right padding, even though left padding is a very common format for LLMs, like Llama and Mistral.
The proposed alternative implementation was to use multiple flips, which tends to be 1.5x-2x slower. Instead we can add a [`padding_side` parameter as there is for for Hugging Face tokenizers](9d6c0641c4/src/transformers/tokenization_utils_base.py (L1565)), which requires only a very small change in the C++ code.
Here are the benchmarks of the new implementation!
`float32`:

`bool`:

Code:
```python
from __future__ import annotations
import random
import time
from typing import Literal
import numpy as np
import torch
def pad_sequence_with_flips(
sequences: list[torch.Tensor],
batch_first: bool = False,
padding_value: int | float | bool = 0.0,
padding_side: Literal["left", "right"] | str = "left",
) -> torch.Tensor:
if padding_side == 'right':
padded_sequence = torch._C._nn.pad_sequence([t.flatten() for t in sequences], batch_first=batch_first, padding_value=padding_value)
elif padding_side=='left':
padded_sequence = torch._C._nn.pad_sequence([t.flatten().flip(0) for t in sequences], batch_first=batch_first, padding_value=padding_value) # pyright: ignore[reportArgumentType]
padded_sequence = padded_sequence.flip(int(batch_first))
else:
raise ValueError(f"padding_side should be either 'right' or 'left', but got {padding_side}")
return padded_sequence
sequence_lengths: list[int] = []
flip_left_pad_times: list[float] = []
flip_left_pad_times_std: list[float] = []
left_pad_times: list[float] = []
left_pad_times_std: list[float] = []
RUNS_PER_LOOP: int = 100
for i in range(1, 7):
sequence_length = i * int(1e6) // 6
sequence_lengths.append(sequence_length)
sequences = [torch.randint(0, 2, (random.randint(1, sequence_length),), dtype=torch.bool) for _ in range(64)]
inner_left_pad_times: list[float] = []
inner_right_pad_times: list[float] = []
inner_flip_left_pad_times: list[float] = []
inner_flip_right_pad_times: list[float] = []
for _ in range(RUNS_PER_LOOP):
start = time.perf_counter()
torch._C._nn.pad_sequence(sequences, batch_first=True, padding_value=False, padding_side="left")
end = time.perf_counter()
inner_left_pad_times.append(end - start)
start = time.perf_counter()
pad_sequence_with_flips(sequences, batch_first=True, padding_value=False, padding_side="left")
end = time.perf_counter()
inner_flip_left_pad_times.append(end - start)
left_pad_times.append(sum(inner_left_pad_times) / len(inner_left_pad_times))
left_pad_times_std.append(np.std(inner_left_pad_times))
flip_left_pad_times.append(sum(inner_flip_left_pad_times) / len(inner_flip_left_pad_times))
flip_left_pad_times_std.append(np.std(inner_flip_left_pad_times))
print(f"Sequence Length: {sequence_length}, Left Pad Time: {left_pad_times[-1]}, Left with Flips Pad Time: {flip_left_pad_times[-1]}")
import matplotlib.pyplot as plt
plt.plot(sequence_lengths, left_pad_times, label="new pad_sequence left")
plt.scatter(sequence_lengths, left_pad_times)
plt.errorbar(sequence_lengths, left_pad_times, yerr=left_pad_times_std, linestyle='None', marker='^')
plt.plot(sequence_lengths, flip_left_pad_times, label="old pad_sequence left (2 flips)")
plt.scatter(sequence_lengths, flip_left_pad_times)
plt.errorbar(sequence_lengths, flip_left_pad_times, yerr=flip_left_pad_times_std, linestyle='None', marker='^')
plt.xlabel("Sequence Length")
plt.ylabel("Time (s)")
plt.legend(loc="upper right")
# Sequence Length: 166666, Left Pad Time: 0.06147645162009212, Left with Flips Pad Time: 0.09842291727001794
# Sequence Length: 333333, Left Pad Time: 0.08933195920990329, Left with Flips Pad Time: 0.15597836187991562
# Sequence Length: 500000, Left Pad Time: 0.08863158334006585, Left with Flips Pad Time: 0.15224887342999863
# Sequence Length: 666666, Left Pad Time: 0.10524682551997103, Left with Flips Pad Time: 0.18177212480995877
# Sequence Length: 833333, Left Pad Time: 0.11801802741003485, Left with Flips Pad Time: 0.20821274195001024
# Sequence Length: 1000000, Left Pad Time: 0.131894061660023, Left with Flips Pad Time: 0.23223503091008751
```
Co-authored-by: mskoh52 <mskoh52@users.noreply.github.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131884
Approved by: https://github.com/ezyang
The regression from https://github.com/pytorch/pytorch/issues/132281 pinpoints e4ace1a396 as the cause. The main delta that commit introduces is that we now manually check `is_inference()` and call `increment_version()` (a pybind call) on every mutated input tensor to the graph.
This PR attempts to reduce overhead a bit by bundling up all of those checks into a single pybind call, by:
(1) updating `torch.autograd.graph.increment_version()` to accept a `Union[Tensor, List[Tensor]]`
(2) updating its semantics to no-op if you pass in a tensor with no version counter, instead of erroring
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132652
Approved by: https://github.com/albanD
We provide an API for user to add ephemeral timeout across all PGs within one rank and the timeout will reset when the first collective issued after the timeout added finishes.
Each extension only covers collectives after the issue and before the first collective finished. The diagram below shows how the timeout changes:
<img width="1174" alt="image" src="https://github.com/user-attachments/assets/354923b7-581c-40de-ae0f-1cd3da273ccc">
While this feature provides flexibility in specific scenarios, it introduces statefulness to timeout setting. Therefore, it is advisable to use this API sparingly and consider alternative approaches, such as directly setting the timeout or utilizing a barrier collective (one can set any timeout to the barrier), whenever feasible.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130905
Approved by: https://github.com/ezyang
Implements donated buffer feature and adds unit tests. Donated buffer is a saved tensor that is not aliased with forward inputs, fw_outputs (except saved tensors), and bw_outputs. We detect donated buffers during `aot_dispatch_autograd` and store donated buffers in `ViewAndMutationMetadata`, such that it can be accssed in inductor.
Fixes#129496
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130580
Approved by: https://github.com/bdhirsh
```python
# NOTE [low-contention collectives]
# When a collective is overlapped with abundant compute, it makes sense to
# prioritize reducing the contention between the collective and the overlapped
# compute, even at the cost of a slightly slower collective.
#
# Common collective implementations (e.g., NCCL without user buffer
# registration) optimize for throughput with no ambient compute. However, such
# implementations may not be optimal when they are overlapped with compute:
# - These impls typically fuse the entire collective into a single kernel and
# reserve SM resources based on the most demanding portion of the collective,
# even when a large portion of the collective does not require this much
# resource.
# - These implementations typically fuse the entire collective into a single
# kernel and reserve SM resources based on the most demanding portion of the
# collective, even when a large portion of the collective does not require this
# much resource.
# - These implementations often use SM-based P2P copy as opposed to copy
# engine-based P2P copy. Copy engine-based P2P copy may not have a significant
# advantage when there's no ambient compute. However, it may significantly
# improve overall resource utilization in the presence of ambient compute.
#
# When overlapped with intensive compute (e.g., persistent matmul kernels), the
# SM-usage of a collective can lead to inefficient overlapping.
#
# Low-contention collectives achieve their goals with the following strategies:
# - Use copy engine-based copy whenever possible.
# - Break down portions of a collective with different resource requirements
# into multiple kernels. This improves the overlapping efficiency at the cost
# of additional launching overhead.
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130583
Approved by: https://github.com/weifengpy
Adds support for SymInts in the FakeTensor cache.
A couple notes:
1. When a SymInt is present in the input key for a FakeTensor operation we cache on the ShapeEnv instead of using the FakeTensorMode cache. This is necessary so we don't have to remember and check the guards. It reduces the cache hits but there's diminishing return on how much work we can do before the cache becomes more of a burden than a gain.
2. We need to be careful that when we cache an output SymInt that is a direct copy from the input that when we have a cache-hit we copy the SymNode from the input to the output. This is important because the fx-graph building code actually uses SymNode ids in the process of building the graph so constructing a same-content-but-different-id SymNode will fail.
3. In the cache key we store SymInts as a _PySymInputStub. These represent SymInt (and friends) but support `__hash__` and `__eq__` (which SymInt do not).
4. In the cache entry we store SymInts as a _SymIntOutputStub.
Perf example:
```
python benchmarks/dynamo/timm_models.py --ci --accuracy --timing
--explain --inductor --dynamic-shapes --dynamic-batch-only --device cuda
--training --amp --total-partitions 2 --partition-id 0 --output
/tmp/training_timm_models.csv --filter crossvit_9_240
```
fake tensor cache before:
```
INFO: FakeTensor cache stats:
INFO: cache_hits: 68137
INFO: cache_misses: 837
INFO: cache_bypasses:
INFO: symbolic shape: 48224
INFO: CompositeImplicitAutograd: 917
INFO: non-fake tensor: 70
INFO: non-FakeTensor output: 62
INFO: non-builtin: 8
INFO: dynamic output shape: 1
```
and after:
```
INFO: FakeTensor cache stats:
INFO: cache_hits: 88187
INFO: cache_misses: 14233
INFO: cache_bypasses:
INFO: CompositeImplicitAutograd: 1037
INFO: non-FakeTensor output: 602
INFO: non-fake tensor: 70
INFO: unsafe view: 36
INFO: non-builtin: 8
INFO: dynamic output shape: 1
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127596
Approved by: https://github.com/eellison
ghstack dependencies: #131014, #129780
## Description
For single thread case, this PR improves the cache blocking in CPP GEMM template with the CPU info (the L1 and L2 cache size). `Mc_blocks` and `Kc_blocks` are calculated based on the below condition:
- size_of_B < L1
- size_of_A < 0.5 * L2
For multi-thread, we need to tune the task decomposition among threads together with cache blocking. We disabled the cache blocking change for now and will submit a follow-up PR for multi-thread optimizations.
## Performance
No regressions. Models with > 3% performance speedup are listed below:
### BF16 single thread (measured on CPU with AMX support)
- static shape
| Model Family | Model Name | Speedup |
|--------------|------------|---------|
torchbench | detectron2_fasterrcnn_r_101_dc5| 4%
- dynamic shape
| Model Family | Model Name | Speedup |
|--------------|------------|---------|
torchbench | detectron2_fasterrcnn_r_101_dc5| 4%
### FP32 single thread (measured on Ice Lake)
- static shape
| Model Family | Model Name | Speedup |
|--------------|------------|---------|
torchbench | basic_gnn_edgecnn| 10%
- dynamic shape
| Model Family | Model Name | Speedup |
|--------------|------------|---------|
torchbench | basic_gnn_edgecnn| 10%
### Next step
The E2E level improvement is limited due to the below reasons:
- For several HF models, we can observe performance improvement at kernel level for the gemm template kernel but since the performance is either still worse than ATen kernel (thus won't be selected during autotune) or improved from worse than ATen to similar to ATen, so we don't see E2E level performance change.
- There're models where the gemm template kernel could get > 10% performance improvement with this PR but since the kernel time is only about 3% of the E2E time, we don't observe significant E2E level improvement.
We will continue to find possible optimizations in the gemm template kernel in follow-up PRs.
Co-authored-by: Jiong Gong <jiong.gong@intel.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129348
Approved by: https://github.com/jgong5, https://github.com/jansel
ghstack dependencies: #130675, #130690
This is the implementation following the RFC: https://github.com/pytorch/pytorch/issues/130407
ncclCommSplit
Summary:
In current Pytorch/c10d, the new_group API is used to create a new
process group from the default pg. When device_id is specified in
init_process_group and nccl is used as the backend, the new_group call
will use ncclCommSplit to create the nccl communicators to save
communicator resources. It has a few drawbacks:
Redundant calls
Suppose the default group has 256 ranks, we need to have 32 children PGs
and each child PG has 8 ranks. in this case, each rank needs to call
new_group and ncclCommSplit 32 times because of how we implement
new_group API and the collective requirement of ncclCommSplit. For a
specific global rank, 31 calls of ncclCommSplit would be no_color split,
and only 1 of them is colored split. With the proposed new split_group
API, we expect only 1 call of split_group/ncclCommSplit is needed per
rank in the above example case
new_group can only split from default_pg
Ideally, a new pg should be able to be split from any pg
With the new split_group API, users can create new PGs using
ncclCommSplit with less number of calls and initialize the PG eagerly.
This is also useful in the cases of creating many P2P communicators.
Test Plan:
New UTs:
e.g., python test/distributed/test_c10d_nccl.py -k
test_comm_split_group_larger_scale
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130507
Approved by: https://github.com/wconstab
Summary: On the autograd side of things, we are currently saving the kwinputs but we aren't doing anything with them on the profiler side. This diff enables the use of the kwinputs for both FunctionEvents and Chrome Traces.
Test Plan: Added unit testing for both chrome traces and FunctionEvents. Used RecordFunctionFast to test kwinputs since test already had kwargs being passed in but not tested.
Differential Revision: D59472345
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130373
Approved by: https://github.com/davidberard98
In this PR, we abstracted the different types of aten operation parameters as `ParameterMetadata`. This structure intends to be used to represent and store the metadata of each aten operation parameter. Currently, it only supports `Tensor`, `TensorList`, and `Scalar`.
```C++
using ParameterMetadataValue = std::variant<TensorMetadata, std::vector<TensorMetadata>, c10::Scalar>;
```
With this PR, we can extend other parameter-type support in a more modularize way, like `string`, `int`, `double`.
Differential Revision: [D59399546](https://our.internmc.facebook.com/intern/diff/D59399546)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125308
Approved by: https://github.com/jgong5, https://github.com/jansel, https://github.com/atalman
Looks like one of the first failures seen is `test_causal_variants_compile_causal_variant_CausalVariant_LOWER_RIGHT_shape0_cuda` when `test_causal_variants_causal_variant_CausalVariant_LOWER_RIGHT_shape0_cuda` passes.
What seems interesting here is that the `torch.compile` version fails while the eager version passes. Not sure what the difference would be here...
Nevertheless, is there a recommended mechanism to skip cuDNN SDPA as a backend for this test? CC @drisspg
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125343
Approved by: https://github.com/Skylion007
Looks like one of the first failures seen is `test_causal_variants_compile_causal_variant_CausalVariant_LOWER_RIGHT_shape0_cuda` when `test_causal_variants_causal_variant_CausalVariant_LOWER_RIGHT_shape0_cuda` passes.
What seems interesting here is that the `torch.compile` version fails while the eager version passes. Not sure what the difference would be here...
Nevertheless, is there a recommended mechanism to skip cuDNN SDPA as a backend for this test? CC @drisspg
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125343
Approved by: https://github.com/Skylion007
This PR removes `ProcessGroupCudaP2P` and changes async-TP to use `SymmetricMemory`. The async-TP implementation is still workspace-based, but it now doesn't require a buffer size to be specified upfront.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128762
Approved by: https://github.com/wanchaol
Changes:
1. Make some arguments positional-only as we only support Python 3.8+
2. Clean up `torch.typename(obj)` implementation.
3. Update type annotations., especially `is_tensor()` and `is_masked_tensor()` using `TypeGuard`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129001
Approved by: https://github.com/malfet