Summary:
- Add `torch._C` bindings from `torch/csrc/autograd/init.cpp`
- Renamed `torch._C.set_grad_enabled` to `torch._C._set_grad_enabled`
so it doesn't conflict with torch.set_grad_enabled anymore
This is a continuation of gh-38201. All I did was resolve merge conflicts and finish the annotation of `_DecoratorContextManager.__call__` that ezyang started in the first commit.
~Reverts commit b5cd3a80bb, which was only motivated by not having `typing_extensions` available.~ (JIT can't be made to understand `Literal[False]`, so keep as is).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43415
Reviewed By: ngimel
Differential Revision: D23301168
Pulled By: malfet
fbshipit-source-id: cb5290f2e556b4036592655b9fe54564cbb036f6
Summary:
In case we want to store binary files using `ScriptModule.save(..., _extra_files=...)` functionality. With python3 we can just use bytes only and not bother about it.
I had to do a copy-pasta from pybind sources, maybe we should upstream it, but it'd mean adding a bunch of template arguments to `bind_map` which is a bind untidy.
Let me know if there's a better place to park this function (it seems to be the only invocation of `bind_map` so I put it in the same file)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43241
Reviewed By: zdevito
Differential Revision: D23205244
Pulled By: dzhulgakov
fbshipit-source-id: 8f291eb4294945fe1c581c620d48ba2e81b3dd9c
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42617
While we figure out the random plan, I want to initially disable
support for random operations. This is because there is an ambiguity in
what randomness means. For example,
```
tensor = torch.zeros(B0, 1)
vmap(lambda t: t.normal_())(tensor)
```
in the above example, should tensor[0] and tensor[1] be equal (i.e.,
use the same random seed), or should they be different?
The mechanism for disabling random support is as follows:
- We add a new dispatch key called VmapMode
- Whenever we're inside vmap, we enable VmapMode for all tensors.
This is done via at::VmapMode::increment_nesting and
at::VmapMode::decrement_nesting.
- DispatchKey::VmapMode's fallback kernel is the fallthrough kernel.
- We register kernels that raise errors for all random functions on
DispatchKey::VmapMode. This way, whenever someone calls a random
function on any tensor (not just BatchedTensors) inside of a vmap block,
an error gets thrown.
Test Plan: - pytest test/test_vmap.py -v -k "Operators"
Reviewed By: ezyang
Differential Revision: D22954840
Pulled By: zou3519
fbshipit-source-id: cb8d71062d4087e10cbf408f74b1a9dff81a226d
Summary:
Move Storage class from __init__.pyi.in to types.py and make it a protocol, since this is not a real class
Expose `PyTorchFileReader` and `PyTorchFileWriter` native classes
Ignore function attributes, as there are yet no good way to type annotate those, see https://github.com/python/mypy/issues/2087
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40862
Differential Revision: D22344743
Pulled By: malfet
fbshipit-source-id: 95cdb6f980ee79383960f306223e170c63df3232
Summary:
Related to https://github.com/pytorch/pytorch/issues/40397
Inspired by ezyang's comment at https://github.com/pytorch/pytorch/issues/40397#issuecomment-648233001, this PR attempts to leverage using `__all__` to explicitly export private functions from `_VariableFunctions.pyi` in order to make `mypy` aware of them after:
```
if False:
from torch._C._VariableFunctions import *
```
The generation of the `__all__` template variable excludes some items from `unsorted_function_hints`, as it seems that those without hints end up not being explicitly included in the `.pyi` file: I leaned on the side of caution and opted for having `__all__` consistent with the definitions inside the file. Additionally, added some pretty-printing to avoid having an extremely long line.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40499
Differential Revision: D22240716
Pulled By: ezyang
fbshipit-source-id: 77718752577a82b1e8715e666a8a2118a9d3a1cf
Summary:
Adds `torch.experimental.deterministic` flag to enforce deterministic algorithms across all of pytorch.
Adds `torch.experimental.deterministic_error_level` to allow users to choose between error/warning/silent if determinism for an operation is not available.
Adds `torch.experimental.alert_not_deterministic()` which should be called within operations that are not deterministic.
Offers both Python and ATen interfaces
Issue https://github.com/pytorch/pytorch/issues/15359
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38683
Differential Revision: D21998093
Pulled By: ezyang
fbshipit-source-id: 23aabbddd20f6199d846f97764ff24d728163737
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38173
- Introduce torch.types.Device representing all "device-like" types
- Stubbed torch.device.__reduce__
- Stubbed all torch._C functions comprehensively
- Deleted _safe_call which is unused throughout the codebase
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D21497399
Pulled By: ezyang
fbshipit-source-id: 1f534442b0ec9a70d556545d072f2c06a08b9d15
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39033
Added `real` and `imag` views as tensor attributes. Right now, tensor.imag is disabled for real tensors. This is because if we return a new tensor of zeros, the user would be able to update the tensor returned by tensor.imag which should not be allowed as numpy returns a read-only array, and pytorch doesn't support read-only tensors yet.
TODO in follow-up PRs:
1. add a setter for `real` and `imag`
2. add special case in codegen for `real` and `imag` backward functions.
3. remove `copy_real` and `copy_imag` methods.
Test Plan: Imported from OSS
Differential Revision: D21767542
Pulled By: anjali411
fbshipit-source-id: 539febf01f01ff055e3fbc7e9ff01fd3fe729056
Summary:
Most test files have a ton of errors; there's not much point adding ignores for them though. The way of working is simply to run `mypy test/test_somefile.py`, fix up the errors, then add that file to the `files =` list in `mypy.ini`.
Can't add all of `test/*` by default, because the JIT test files have (on purpose) syntax errors that are meant to exercise the robustness of the JIT to bad annotations. Leave those alone for now.
_Depends on the ghstacked PRs in gh-38173, only the last 2 commits are new._
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38220
Differential Revision: D21503481
Pulled By: ezyang
fbshipit-source-id: 63026e73201c549d64647a03a20a4c6687720244
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38157
This removes the error prone process of assembling `torch/__init__.pyi`
(and frequently forgetting to expose things), since now we can simply
rely on the true source file to get things done. Most of the old
codegen in gen_pyi.py is now rerouted to various files:
- `torch/_C/__init__.pyi` (the dumping pile of all misc bindings)
- `torch/_C/_nn.pyi` (NN function bindings)
- `torch/_C/_VariableFunctions.pyi` (torch function bindings)
`torch.types` grew a bunch more definitions that previously where
defined in `torch/__init__.pyi`
Some miscellaneous changes
- Fixed a bug where we treat single TensorList argument as implying
varargs are accepted. This is actually only supported on IntList.
This means we can correctly generate a stub for dequantize.
- Add missing manual stub for nonzero
- Switched torch/onnx/operators.py to directly refer to _C module,
since apparently mypy doesn't think that methods prefixed with
underscores get reexported. This may be a recurring theme; maybe
we need to find a better way to solve it.
Because I was really lazy, I dumped namedtuple definitions in both
`torch._C` and `torch._C._VariableFunctions`. This is definitely wrong.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D21497400
Pulled By: ezyang
fbshipit-source-id: 07b126141c82efaca37be27c07255cb2b9b3f064
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38080
Originally, my plan was to just delete the torch.autograd stub, but
this triggered a bunch of downstream errors relating to non-existent
to _C modules, and so instead of ignoring those files, I decided to
add a minimal _C type stubs, where it was easy (cases which were
codegened I ignored).
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D21487841
Pulled By: ezyang
fbshipit-source-id: cfcc467ff1c146d242cb9ff33a46ba26b33b8213