Commit Graph

1178 Commits

Author SHA1 Message Date
Ke Wen
18a7a04c4a [c10d] Add NCCL memory allocator (#145675)
This PR implements a small UI improvement over #133603.

It prepares a NCCL memory allocator in torch cpp and then pybind's it out, so that user can directly use it.

UI:
```
pool = torch.cuda.MemPool(backend.mem_allocator)
with torch.cuda.use_mem_pool(pool):
    tensor = torch.arange(1024 * 1024 * 2, device=device)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145675
Approved by: https://github.com/syed-ahmed, https://github.com/wconstab
2025-01-29 23:20:22 +00:00
PyTorch MergeBot
6371c25b91 Revert "[c10d] Add NCCL memory allocator (#145675)"
This reverts commit 9fd6722fc9.

Reverted https://github.com/pytorch/pytorch/pull/145675 on behalf of https://github.com/ZainRizvi due to This fails to build internally, can you please take a look at D68831004 for more details? ([comment](https://github.com/pytorch/pytorch/pull/145675#issuecomment-2622515425))
2025-01-29 18:30:30 +00:00
Ke Wen
9fd6722fc9 [c10d] Add NCCL memory allocator (#145675)
This PR implements a small UI improvement over #133603.

It prepares a NCCL memory allocator in torch cpp and then pybind's it out, so that user can directly use it.

UI:
```
pool = torch.cuda.MemPool(backend.mem_allocator)
with torch.cuda.use_mem_pool(pool):
    tensor = torch.arange(1024 * 1024 * 2, device=device)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145675
Approved by: https://github.com/syed-ahmed, https://github.com/wconstab
2025-01-29 02:48:56 +00:00
cyyever
23eb0a3201 Improve typing in torch/types.py (#145237)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145237
Approved by: https://github.com/XuehaiPan, https://github.com/albanD

Co-authored-by: Xuehai Pan <XuehaiPan@pku.edu.cn>
2025-01-28 05:29:12 +00:00
PyTorch MergeBot
c986eba560 Revert "[CUDA][cuBLAS] Add fp16 accumulate option to cuBLAS/cuBLASLt (#144441)"
This reverts commit abf28982a8.

Reverted https://github.com/pytorch/pytorch/pull/144441 on behalf of https://github.com/ZainRizvi due to Sorry but this is failing internally. @Chillee can you please help change get remerged? See  D68720562 ([comment](https://github.com/pytorch/pytorch/pull/144441#issuecomment-2616726406))
2025-01-27 19:38:26 +00:00
Randolf Scholz
835e770bad Use typing.IO[bytes] instead of io.BytesIO in annotations (#144994)
Fixes #144976

Using appoach ① `IO[bytes]`, but could also try with a protocol.

## Notes:

- moved `torch.serialization.FILE_LIKE` to `torch.types.FileLike`
- Use `FileLike` annotation where it makes sense
- made sure those functions also support `os.PathLike`
- Replaced `isinstance(x, io.BytesIO)` with `isinstance(x, (io.IOBase, IO))` where appropriate.
- Replaced `BinaryIO` with `IO[bytes]` (the two ABCs are almost identical, the only difference is that `BinaryIO` allows `bytearray` input to `write`, whereas `IO[bytes]` only `bytes`)
- needed to make `torch.serialization._opener` generic to avoid LSP violations.
- skipped `torch/onnx/verification` for now (functions use `BytesIO.getvalue` which is not part of the `IO[bytes]` ABC, but it kind of seems that this is redundant, as e.g. `onnx.load` supports `str | PathLike[str] | IO[bytes]` directly...

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144994
Approved by: https://github.com/ezyang, https://github.com/Skylion007
2025-01-27 18:08:07 +00:00
Eddie Yan
abf28982a8 [CUDA][cuBLAS] Add fp16 accumulate option to cuBLAS/cuBLASLt (#144441)
Test for `cublasGemmEx` added, still need to figure out the best way to exercise the other APIs...

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144441
Approved by: https://github.com/Chillee
2025-01-27 18:05:23 +00:00
Shuqiang Zhang
c0861d092c [PGNCCL] Add an API to get the status/error code at the PG level (#144498)
Summary:
This PR is basically a replacement of
https://github.com/pytorch/pytorch/pull/140087, which caused some perf
drop due to frequent TCPStore check in watchdog thread. The fix is to move the
tcpstore check in monitoring thread

If unhealthy, the user should be able to get the type of errors, e.g.,
timeout,nccl error or remote error.

This API is applied to PG level, compared to the
work.get_future_result() API which is applied to Work Level.
Error detection at PG level is much more convenient for users to handle
the PG failure as a whole, e.g, restarting the PG.

Error handling at the work level is still useful for users to attach
work specific context and debug the RC of the specific failing
work/collective

Note it is critical for all ranks in the PG to be notified about an
error as soon as it occurs, so we introduce an errorType of
REMOTE_ERROR, which is 'broadcasted' from a src rank (which detects a
local error) to all other ranks in the PG, the broadcast is done through
TCPStore currently

Tags:

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144498
Approved by: https://github.com/kwen2501
2025-01-24 16:47:32 +00:00
PyTorch MergeBot
dad9bc3461 Revert "[CUDA][cuBLAS] Add fp16 accumulate option to cuBLAS/cuBLASLt (#144441)"
This reverts commit de945d78da.

Reverted https://github.com/pytorch/pytorch/pull/144441 on behalf of https://github.com/izaitsevfb due to unused variables again :( ([comment](https://github.com/pytorch/pytorch/pull/144441#issuecomment-2611182461))
2025-01-23 22:59:25 +00:00
Nikhil Gupta
41b38f755c Revert "Reverting the PR adding Kleidiai-based int4 kernels (#145392)" (#145505)
https://github.com/pytorch/pytorch/pull/134124 was reverted by https://github.com/pytorch/pytorch/pull/145392 due to KleidiAI clone issue.

1. This reverts commit 0940eb6d44 (https://github.com/pytorch/pytorch/pull/145392 )and Fixes KleidiAI mirror issue.
2. KleidiAI is now cloned from github mirror instead of arm gitlab

Change-Id: I7d6eee7214cd117d3057d615936fcc3ee6052fa2

Fixes https://github.com/pytorch/pytorch/issues/145273

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145505
Approved by: https://github.com/malfet
2025-01-23 18:50:59 +00:00
Animesh Jain
015c6d6fdb [dynamo][guards] Turn on profiling of guard manager (#145420)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145420
Approved by: https://github.com/ezyang
ghstack dependencies: #145351
2025-01-23 18:17:43 +00:00
Eddie Yan
de945d78da [CUDA][cuBLAS] Add fp16 accumulate option to cuBLAS/cuBLASLt (#144441)
Test for `cublasGemmEx` added, still need to figure out the best way to exercise the other APIs...

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144441
Approved by: https://github.com/Chillee
2025-01-22 22:42:48 +00:00
albanD
0940eb6d44 Reverting the PR adding Kleidiai-based int4 kernels (#145392)
Mitigation for https://github.com/pytorch/pytorch/issues/145273
Reverting https://github.com/pytorch/pytorch/pull/134124 and https://github.com/pytorch/pytorch/pull/144074

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145392
Approved by: https://github.com/ZainRizvi, https://github.com/malfet, https://github.com/atalman, https://github.com/digantdesai
2025-01-22 20:11:49 +00:00
Hyunho Yeo
057d9aff39 [S481486] [MTIA] Correct mtia.device_count() API (#145338)
Summary:
Prev: Count the number of "general" accelerators

Curr: Count the number of MTIA devices by using the MTIA runtime API

Test Plan:
```
buck test //mtia/host_runtime/torch_mtia/tests:test_torch_mtia_api -- -r  test_get_device_count
```

https://www.internalfb.com/intern/testinfra/testrun/8162774572631995

Reviewed By: BoyueZheng

Differential Revision: D68472668

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145338
Approved by: https://github.com/BoyueZheng, https://github.com/egienvalue
2025-01-22 17:45:15 +00:00
Isuru Fernando
0efa843392 Dynamic shape guards in C++ (#139899)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139899
Approved by: https://github.com/anijain2305, https://github.com/albanD, https://github.com/jansel
ghstack dependencies: #143385, #143164
2025-01-22 14:58:35 +00:00
Aaron Orenstein
f2cfe8b59f PEP585 update - mostly toplevels (#145178)
See #145101 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145178
Approved by: https://github.com/bobrenjc93
2025-01-22 02:21:14 +00:00
Aaron Orenstein
5b5766665d PEP585 update - torch/_C torch/_decomp torch/_lazy torch/_library torch/_numpy torch/_prims torch/_refs torch/_strobelight (#145102)
See #145101 for details.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145102
Approved by: https://github.com/bobrenjc93
ghstack dependencies: #145105
2025-01-18 20:47:12 +00:00
Yu, Guangye
176cde6240 Use torch with statement in torch distributed module (#144951)
# Motivation
In https://github.com/pytorch/pytorch/pull/137678, we help use the device-agnostic APIs to generalize distributed module. As this [comment](https://github.com/pytorch/pytorch/pull/137678#discussion_r1828645683) said, we will use the with statement of `torch.Stream` once https://github.com/pytorch/pytorch/pull/140138 is landed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144951
Approved by: https://github.com/kwen2501, https://github.com/albanD
2025-01-17 01:49:28 +00:00
PyTorch MergeBot
6c713ccb5e Revert "Make functionalization ViewMeta serializable with pickle. (#143712)"
This reverts commit b8abdaa286.

Reverted https://github.com/pytorch/pytorch/pull/143712 on behalf of https://github.com/kit1980 due to breaking internal builds ([comment](https://github.com/pytorch/pytorch/pull/143712#issuecomment-2597205261))
2025-01-17 00:52:50 +00:00
PyTorch MergeBot
4ea189422d Revert "[CUDA][cuBLAS] Add fp16 accumulate option to cuBLAS/cuBLASLt (#144441)"
This reverts commit a6763b7b81.

Reverted https://github.com/pytorch/pytorch/pull/144441 on behalf of https://github.com/kit1980 due to breaking internal builds: unused variable 'halpha' ([comment](https://github.com/pytorch/pytorch/pull/144441#issuecomment-2596895865))
2025-01-16 21:12:41 +00:00
Yukio Siraichi
b8abdaa286 Make functionalization ViewMeta serializable with pickle. (#143712)
Fix: #141974

This PR makes `ViewMeta` sequence, present in functional tensors,
serializable with pickle. In order to accomplish that, it makes
`ViewMeta` an abstract class with overridable `forward` and `reverse`
functions. In this context, each operation that once instanciated
`ViewMeta`, should now create a new specialized class that inherits from
`ViewMeta. Therefore, this PR also uses codegen for creating these
specializations.

In summary, these are the changes this PR introduces:

- `ViewMeta` is turned into an abstract class (see
  _FunctionalStorageImpl.cpp_). `forward` and `reverse` are pure virtual
  functions that need to be implemented. `to_out_index` should be
  implemented by operations that might return more than 1 output.

- New `ViewMeta` specializations for `resize_` and `_unsafe_view` are
  created (see _FunctionalizeFallbackKernel.h_).

- New templates _ViewMetaClasses.{cpp,h}_ are created. They hold the
  declaration and definition of the `ViewMeta` specializations, which
  are automatically generated in the ATen codegen (see _gen.py_).

- New `_functionalization` Python sub-module is created (see
  _Module.cpp_). It serves as namespace for the `ViewMeta`
  specializations and `InverseReturnMode` enum.

- New template _ViewMetaClassesPythonBinding.cpp_ is created. It holds
  the automatically generated Python bindings for the `ViewMeta`
  specialization, which are generated in the torch codegen (see
  _generate_code.py_).

Note that this PR makes use of codegen at 2 different moments:

- ATen codegen (_gen.py_): generates the `ViewMeta` specialized classes.
- Torch codegen (_generate_code.py_): generated the Python bindings for
  them.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143712
Approved by: https://github.com/bdhirsh
2025-01-16 19:41:41 +00:00
eqy
a6763b7b81 [CUDA][cuBLAS] Add fp16 accumulate option to cuBLAS/cuBLASLt (#144441)
Test for `cublasGemmEx` added, still need to figure out the best way to exercise the other APIs...

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144441
Approved by: https://github.com/Chillee
2025-01-15 18:37:55 +00:00
PyTorch MergeBot
64bcf39180 Revert "[CUDA][cuBLAS] Add fp16 accumulate option to cuBLAS/cuBLASLt (#144441)"
This reverts commit 388b75edec.

Reverted https://github.com/pytorch/pytorch/pull/144441 on behalf of https://github.com/kit1980 due to breaking internal builds: unused variable 'halpha' ([comment](https://github.com/pytorch/pytorch/pull/144441#issuecomment-2588517060))
2025-01-14 00:48:28 +00:00
bobrenjc93
80c286cbec remove allow-untyped-defs from torch/_C/_dynamo/eval_frame.pyi (#144655)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144655
Approved by: https://github.com/StrongerXi
2025-01-13 20:03:25 +00:00
eqy
388b75edec [CUDA][cuBLAS] Add fp16 accumulate option to cuBLAS/cuBLASLt (#144441)
Test for `cublasGemmEx` added, still need to figure out the best way to exercise the other APIs...

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144441
Approved by: https://github.com/Chillee
2025-01-11 15:30:38 +00:00
Nikita Shulga
92ddb3d3d3 [MPS] Expose MPSProfiler::start/stopCapture to Python (#144561)
I.e. when `MTL_CAPTURE_ENABLED` environment variable is set to 1, one should be able to invoke wrap the code with `torch.mps.profiler.capture_metal` to generate gputrace for shaders invoked inside the context manager.

For example, code below:
```python
import torch
import os

def foo(x):
   return x[:,::2].sin() + x[:, 1::2].cos()

if __name__ == "__main__":
    os.environ["MTL_CAPTURE_ENABLED"] = "1"
    x = torch.rand(32, 1024, device="mps")

    with torch.mps.profiler.metal_capture("compiled_shader"):
        torch.compile(foo)(x)
```
should capture the execution of a `torch.compile` generated shader
<img width="734" alt="image" src="https://github.com/user-attachments/assets/718ff64e-103b-4b11-b66c-c89cfc770b5d" />

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144561
Approved by: https://github.com/manuelcandales
ghstack dependencies: #144559, #144560
2025-01-11 02:05:36 +00:00
Randolf Scholz
f002825e1e added __add__ and __mul__ hints to torch.Size (#144322)
Fixes #144218

`Size` returns `Size`, whereas `tuple` returns `tuple`: 9f28171658/stdlib/builtins.pyi (L985-L988)

- Use `SupportIndex` instead of `int` in `__getitem__` (supported at runtime)
- `Size.__add__` overrides  `tuple.__add__`, the latter supports adding tuples on non-integral type.
- Added typing unit tests.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144322
Approved by: https://github.com/Skylion007
2025-01-08 01:02:11 +00:00
Xiaodong Wang
0a94bb432e [ROCm] CK Flash Attention Backend (#143695)
Replace https://github.com/pytorch/pytorch/pull/138947 for re-import.

Replaces https://github.com/ROCm/pytorch/pull/1592

This PR contains the initial implementation of SDPA with composable_kernel backend. The CK path can be forced by simply calling torch.backends.cuda.preferred_rocm_fa_library("ck"). Similarly, you can force the incumbent aotriton implementation by passing in "aotriton" or "default". As you'd expect, not setting this option will result in aotriton to be used as the backend. In the case of CK, if pytorch deems flash attention usable, then it will use the CK path in all the same places aotriton would have been used. This PR makes no changes to the heuristics which select which attention scheme to use (i.e. flash attention vs memory efficient attention vs math etc etc). It only gets called when flash attention is both enabled (via USE_FLASH_ATTENTION) and is selected at runtime by the existing heuristics.

Files located in pytorch/aten/src/ATen/native/transformers/hip/flash_attn/ck/mha* have been pulled from https://github.com/Dao-AILab/flash-attention courtesy of @tridao's hard work who is the co-author

NOTE: In order to use this backend, the user MUST set USE_CK_FLASH_ATTENTION=1 in their environment when they build PyTorch.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143695
Approved by: https://github.com/malfet

Co-authored-by: Andy Lugo <Andy.LugoReyes@amd.com>
Co-authored-by: Jithun Nair <jithun.nair@amd.com>
2025-01-03 22:01:36 +00:00
Yu, Guangye
3848de55ed Add get_stream_from_external API for CUDA backend (#143799)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143799
Approved by: https://github.com/albanD, https://github.com/EikanWang
ghstack dependencies: #142347, #141119, #141123
2024-12-31 11:15:59 +00:00
Yu, Guangye
8f6c4d1732 Add get_stream_from_external API for XPU backend (#141123)
# Motivation
This PR aims to introduce `torch.xpu.ExternalStream` to be used to wrap SYCL queue created in other libraries to PyTorch.

# Additional Context

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141123
Approved by: https://github.com/albanD, https://github.com/EikanWang
ghstack dependencies: #142347, #141119
2024-12-31 11:15:52 +00:00
Aaron Orenstein
06b4b96b34 dynamo tracing perf: no re in arg_ref: 33.9 -> 33.7 (#143069)
See #143056 for overall docs.

This PR: Avoid use of python re and move valid varname check in
`GuardBuilder.arg_ref()` into C++

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143069
Approved by: https://github.com/jansel
2024-12-23 05:32:09 +00:00
Aaron Orenstein
9bf4b1c2e9 dynamo tracing perf: c++ strip_function_call: 49.12 -> 47.77 (#143063)
See #143056 for overall docs.

This PR: Convert `strip_function_call()` into C++

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143063
Approved by: https://github.com/jansel
ghstack dependencies: #143057, #143062
2024-12-22 06:38:46 +00:00
Nikhil Gupta
94737e8a2a [ARM][feat]: Add 4 bit dynamic quantization matmuls & KleidiAI Backend (#134124)
Description:
1. Quantize Linear Layer Weights to 4-bits:
Quantize the weights of the Linear layer to 4 bits, using symmetric quantization.
Pack two 4-bit weights into one uint8 container.
Choose a quantization scheme (channel-wise or group-wise), with the group size being a multiple of 32.

2. Prepare Quantized Weights, Scales, and Optional Bias:
After quantizing, obtain the quantized_weights, scales, and groupsize.
If the original Linear layer has a bias, prepare it as well.

3. Pack the Weights Efficiently:
Use torch.ops.aten._dyn_quant_pack_4bit_weight to optimally pack the weights, scales, and optional bias.
```python
packed_weights = torch.ops.aten._dyn_quant_pack_4bit_weight(weight, scales_and_zeros, bias, groupsize, in_features, out_features)
```
Input parameters should include:
in_features and out_features (the same as the Linear layer’s corresponding parameters).

4. Perform Dynamic Quantized Matrix Multiplication:
Use torch.ops.aten._dyn_quant_matmul_4bit to perform matrix multiplication with quantized weights.
```python
output = torch.ops.aten._dyn_quant_matmul_4bit(input, packed_weights,  groupsize, in_features, out_features)
```
Inputs required include:
The input tensor, packed_weights , groupsize, and the in_features and out_features.

API Usage: https://github.com/pytorch/pytorch/issues/143289

Model Perf :
7B Transformer model:
Prefill : 340 t/s
Decode  : 40  t/s
2B Transformer model
Prefill : 747 t/s
Decode  : 80  t/s

Tests:
python test/test_linalg.py -k test__dyn_quant_pack_4bit_weight
Ran 1 test in 0.016s

OK

python test/test_linalg.py -k test__dyn_quant_matmul_4bit
Ran 8 tests in 0.077s

OK

python test/test_linalg.py -k test_compile_dyn_quant_matmul_4bit
Ran 8 tests in 11.454s

Change-Id: Ia1672bad5e6ec94e64d8bb1971395d60f4b3a452

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134124
Approved by: https://github.com/digantdesai, https://github.com/malfet
2024-12-20 19:32:03 +00:00
Guilherme Leobas
673cc88fd6 Add support for contextmanager in Dynamo (#136033)
Fixes #130559

* Intro

This PR adds support for `@contextmanager` in Dynamo. We chose to limit the
scope of this work to only `@contextmanager` and plan to handle generators fully
in #141055 (still in draft).

* Motivation

Dynamo lacks support for generator functions. When it encounters one, it traces
it as if it were a regular function. This is problematic because it can lead to
incorrect behavior. To illustrate, consider the test case below:

```python
import torch
import contextlib

@contextlib.contextmanager
def set_default_dtype(dtype):
    old_dtype = torch.get_default_dtype()
    try:
        torch.set_default_dtype(dtype)
        yield
    finally:
        torch.set_default_dtype(old_dtype)

@torch.compile(backend="eager", fullgraph=True)
def fn():
    with set_default_dtype(torch.float64):
        x = torch.tensor([3.0, 3.0 + 5.0j])
    return x
```

Before this work, Dynamo would not stop at the `yield`, and the graph produced
would contain both calls to `set_default_dtype` executed one after the other.
This is incorrect because the context manager should execute code before and
after the `yield`.

* List of changes

`YIELD_VALUE` now raises an exception (`YieldValueOp`) to signal that control
flow must be suspended and returned to the caller. Additionally, `RETURN_VALUE`
behaves differently in a generator function. Unlike regular functions, where
`RETURN_VALUE` indicates the final result, in generators it signifies that the
generator is exhausted and implicitly raises `StopIteration`.

A new `VariableTracker` named `FunctionDecoratedByContextlibContextManagerVariable`
was introduced to handle `@contextmanager`. This variable tracker acts not just
as a wrapper for the original function but also maintains an internal `tx`
(InstructionTranslator) object to suspend and return control flow to the parent
tracer when a `yield` is encountered.

* Corner cases

Returning a context manager from a compiled function is not supported. This
would require PyTorch to synchronize the generator state between Dynamo and the
interpreter. Any attempt to return it will result in an `IncorrectUsage`
exception.

Graph breaks require special handling as well. In the event of a graph break,
the frame associated with the context manager is skipped, and the context
manager runs in eager mode.

* This PR is breaking my code

There is a configuration flag (`enable_trace_contextlib`) that can be set to
`False` to disable tracing context managers. If this still causes crashes,
please revert this PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136033
Approved by: https://github.com/zou3519
2024-12-20 12:02:20 +00:00
PyTorch MergeBot
8136daff5a Revert "[ARM][feat]: Add 4 bit dynamic quantization matmuls & KleidiAI Backend (#134124)"
This reverts commit 4b82251011.

Reverted https://github.com/pytorch/pytorch/pull/134124 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it breaks lots of internal build ([comment](https://github.com/pytorch/pytorch/pull/134124#issuecomment-2555953189))
2024-12-19 23:33:17 +00:00
Nikhil Gupta
4b82251011 [ARM][feat]: Add 4 bit dynamic quantization matmuls & KleidiAI Backend (#134124)
Description:
1. Quantize Linear Layer Weights to 4-bits:
Quantize the weights of the Linear layer to 4 bits, using symmetric quantization.
Pack two 4-bit weights into one uint8 container.
Choose a quantization scheme (channel-wise or group-wise), with the group size being a multiple of 32.

2. Prepare Quantized Weights, Scales, and Optional Bias:
After quantizing, obtain the quantized_weights, scales, and groupsize.
If the original Linear layer has a bias, prepare it as well.

3. Pack the Weights Efficiently:
Use torch.ops.aten._dyn_quant_pack_4bit_weight to optimally pack the weights, scales, and optional bias.
```python
packed_weights = torch.ops.aten._dyn_quant_pack_4bit_weight(weight, scales_and_zeros, bias, groupsize, in_features, out_features)
```
Input parameters should include:
in_features and out_features (the same as the Linear layer’s corresponding parameters).

4. Perform Dynamic Quantized Matrix Multiplication:
Use torch.ops.aten._dyn_quant_matmul_4bit to perform matrix multiplication with quantized weights.
```python
output = torch.ops.aten._dyn_quant_matmul_4bit(input, packed_weights,  groupsize, in_features, out_features)
```
Inputs required include:
The input tensor, packed_weights , groupsize, and the in_features and out_features.

API Usage: https://github.com/pytorch/pytorch/issues/143289

Model Perf :
7B Transformer model:
Prefill : 340 t/s
Decode  : 40  t/s
2B Transformer model
Prefill : 747 t/s
Decode  : 80  t/s

Tests:
python test/test_linalg.py -k test__dyn_quant_pack_4bit_weight
Ran 1 test in 0.016s

OK

python test/test_linalg.py -k test__dyn_quant_matmul_4bit
Ran 8 tests in 0.077s

OK

python test/test_linalg.py -k test_compile_dyn_quant_matmul_4bit
Ran 8 tests in 11.454s

Change-Id: Ia1672bad5e6ec94e64d8bb1971395d60f4b3a452

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134124
Approved by: https://github.com/digantdesai, https://github.com/malfet
2024-12-19 18:51:26 +00:00
PyTorch MergeBot
14fe1f7190 Revert "[ARM][feat]: Add 4 bit dynamic quantization matmuls & KleidiAI Backend (#134124)"
This reverts commit d3ff2d42c2.

Reverted https://github.com/pytorch/pytorch/pull/134124 on behalf of https://github.com/malfet due to This broke S390 builds, includes cpuinfo unconditionally ([comment](https://github.com/pytorch/pytorch/pull/134124#issuecomment-2552560208))
2024-12-19 01:05:11 +00:00
Nikhil Gupta
d3ff2d42c2 [ARM][feat]: Add 4 bit dynamic quantization matmuls & KleidiAI Backend (#134124)
Description:
1. Quantize Linear Layer Weights to 4-bits:
Quantize the weights of the Linear layer to 4 bits, using symmetric quantization.
Pack two 4-bit weights into one uint8 container.
Choose a quantization scheme (channel-wise or group-wise), with the group size being a multiple of 32.

2. Prepare Quantized Weights, Scales, and Optional Bias:
After quantizing, obtain the quantized_weights, scales, and groupsize.
If the original Linear layer has a bias, prepare it as well.

3. Pack the Weights Efficiently:
Use torch.ops.aten._dyn_quant_pack_4bit_weight to optimally pack the weights, scales, and optional bias.
```python
packed_weights = torch.ops.aten._dyn_quant_pack_4bit_weight(weight, scales_and_zeros, bias, groupsize, in_features, out_features)
```
Input parameters should include:
in_features and out_features (the same as the Linear layer’s corresponding parameters).

4. Perform Dynamic Quantized Matrix Multiplication:
Use torch.ops.aten._dyn_quant_matmul_4bit to perform matrix multiplication with quantized weights.
```python
output = torch.ops.aten._dyn_quant_matmul_4bit(input, packed_weights,  groupsize, in_features, out_features)
```
Inputs required include:
The input tensor, packed_weights , groupsize, and the in_features and out_features.

API Usage: https://github.com/pytorch/pytorch/issues/143289

Model Perf :
7B Transformer model:
Prefill : 340 t/s
Decode  : 40  t/s
2B Transformer model
Prefill : 747 t/s
Decode  : 80  t/s

Tests:
python test/test_linalg.py -k test__dyn_quant_pack_4bit_weight
Ran 1 test in 0.016s

OK

python test/test_linalg.py -k test__dyn_quant_matmul_4bit
Ran 8 tests in 0.077s

OK

python test/test_linalg.py -k test_compile_dyn_quant_matmul_4bit
Ran 8 tests in 11.454s

Change-Id: Ia1672bad5e6ec94e64d8bb1971395d60f4b3a452

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134124
Approved by: https://github.com/digantdesai, https://github.com/malfet
2024-12-18 22:30:07 +00:00
Zizeng Meng
eb67dd3e2d [3/N][Memory Profiling] Add memory profiling function for MTIA hooks (#142149)
Design Doc: https://fburl.com/gdoc/47zpuweb
Prototyping:  D66469341

In this diff, we implement two new mtia hooks to start/stop profiler and export the memory snapshot.

In next diff, we will integrate the mtia backend with profiler python api

Differential Revision: [D66823583](https://our.internmc.facebook.com/intern/diff/D66823583/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142149
Approved by: https://github.com/nautsimon
2024-12-18 11:58:23 +00:00
William Wen
18261e9f39 [dynamo] implement framelocals mapping as c++ object (#140063)
Implements https://github.com/pytorch/pytorch/issues/93753 - move frame local guard accessors to C++.

Before, we used dict accessors on a Python dict representing the frame's fastlocals that we manually build. We move this accessor to C++ and additionally use the fastlocal index whenever possible.

Some implementation notes:
- `FrameLocalsMapping` is now initialized as a C++ vector of `PyObject`s. We do not just use the frame's localsplus/fastlocals buffer because we also unbox cells.
- `FrameLocalsMapping` can still be converted into a Python dict representing the frame's fastlocals, but it is done lazily.
- We update `LeafGuard`, `GuardAccessor`, and `GuardManager`'s `check_nopybind` methods to accept `FrameLocalsMapping`. By default, we convert the `FrameLocalsMapping` to a Python dict and run the original `check_nopybind` on it, but in some cases, conversion is not needed.
- We add a new guard accessor `FrameLocalsGuardAccessor`, which is similar to `DictGetItemGuardAccessor` but has special handling for `FrameLocalsMapping`. We create a separate class to emphasize different use cases, but we could probably combine these two (can do in a follow up)

dynamo_guard_eval.py microbenchmark update:
- 713.2us -> 630.0us (3.10)
- 598.8us -> 530.7us (3.12)

Other followups:
- Add `FrameLocalsMapping` version for `check_verbose_nopybind` in order to match behavior between `check_nopybind` and `check_verbose_nopybind`. This can prevent difficult debugging situations where guards fail (`check_nopybind` returns false) but no guard error message is generated (`check_verbose_nopybind` succeeds).
- Rewrite the `SHAPE_ENV` guard into C++ - it is a fairly common guard that results in `FrameLocalsMapping` needing to convert to a dict

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140063
Approved by: https://github.com/jansel
ghstack dependencies: #142117, #142430
2024-12-17 18:54:27 +00:00
bobrenjc93
74e66a21b4 remove allow-untyped-defs for torch/_C/_distributed_autograd.pyi (#143369)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143369
Approved by: https://github.com/aorenste
2024-12-17 18:09:28 +00:00
bobrenjc93
313b9964ae remove allow-untyped-defs for torch/_C/_lazy.pyi (#143370)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143370
Approved by: https://github.com/aorenste, https://github.com/desertfire
ghstack dependencies: #143366
2024-12-17 17:18:10 +00:00
PyTorch MergeBot
969b07b96f Revert "[ROCm] CK Flash Attention Backend (#138947)"
This reverts commit 500d02921b.

Reverted https://github.com/pytorch/pytorch/pull/138947 on behalf of https://github.com/atalman due to Breaks default windows checkout ([comment](https://github.com/pytorch/pytorch/pull/138947#issuecomment-2548998359))
2024-12-17 16:46:57 +00:00
Andy Lugo
500d02921b [ROCm] CK Flash Attention Backend (#138947)
Replaces https://github.com/ROCm/pytorch/pull/1592

This PR contains the initial implementation of SDPA with composable_kernel backend. The CK path can be forced by simply calling `torch.backends.cuda.preferred_rocm_fa_library("ck")`. Similarly, you can force the incumbent aotriton implementation by passing in "aotriton" or "default". As you'd expect, not setting this option will result in aotriton to be used as the backend. In the case of CK, if pytorch deems flash attention usable, then it will use the CK path in all the same places aotriton would have been used. This PR makes no changes to the heuristics which select which attention scheme to use (i.e. flash attention vs memory efficient attention vs math etc etc). It only gets called when flash attention is both enabled (via `USE_FLASH_ATTENTION`) and is selected at runtime by the existing heuristics.

Files located in pytorch/aten/src/ATen/native/transformers/hip/flash_attn/ck/mha* have been pulled from https://github.com/Dao-AILab/flash-attention courtesy of @tridao's hard work who is the co-author

NOTE: In order to use this backend, the user MUST set USE_CK_FLASH_ATTENTION=1 in their environment when they build PyTorch.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138947
Approved by: https://github.com/pruthvistony, https://github.com/xw285cornell, https://github.com/leitian

Co-authored-by: Xiaodong Wang <xw285@cornell.edu>
2024-12-17 02:18:07 +00:00
Yifu Wang
af190479c8 [fused_all_gather_matmul] use _multimem_all_gather_matmul for small global Ms (#143160)
## Benchmark
M=2048, N=3584, K=8192

baseline (nccl + cublas): 301us
decomp-based async-tp: 354us
comm-aware async-tp: 295us
**multimem_all_gather matmul: 277us**

As M further decreases, the multimem_all_gather approach consistently outperforms the baseline and other approaches (omitted other approaches in the chart as they start to be slower than the baseline):
![image](https://github.com/user-attachments/assets/5811455a-68c9-43fe-9d82-ca488dd77bc1)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143160
Approved by: https://github.com/weifengpy
ghstack dependencies: #142283, #142810, #143159
2024-12-17 01:07:27 +00:00
Nichols A. Romero
c0a39ad35a [ROCm] Fix TunableOp UTs: Rotating Buffer (#143172)
TunableOp's rotating buffer feature cannot be properly tested because the environment variable that controls this feature is sticky. A Python API is introduced to modify this value.

Additional items in this PR:
* UT for rotating buffer API
* Clean up UTs that were setting the rotating buffer via the environment variable
* Align behavior of environment variable and Python API when a negative value (< 0) is set.
* Update documentation.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143172
Approved by: https://github.com/jeffdaily
2024-12-14 06:18:11 +00:00
Alex Denisov
539286a67b Inductor annotations (#130429)
Add NVTX annotations around training phases and buffer computations

RFC/discussion: https://dev-discuss.pytorch.org/t/rfc-performance-profiling-at-scale-with-details-nvtx-annotations/2224

<img width="2160" alt="Screenshot 2024-07-10 at 11 48 04" src="https://github.com/pytorch/pytorch/assets/1175576/9ade139c-d393-473f-9b68-6c25da367dc4">

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130429
Approved by: https://github.com/aorenste, https://github.com/eellison, https://github.com/albanD

Co-authored-by: Cedric GESTES <cedric.gestes@flex.ai>
2024-12-10 08:53:39 +00:00
Bin Bao
6680a83e89 [AOTI XPU] Support AOT Inductor for Intel GPU. (#140269)
This PR add XPU support for AOT Inductor, and reuse the corresponding UT.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140269
Approved by: https://github.com/desertfire, https://github.com/EikanWang
ghstack dependencies: #140268

Co-authored-by: Bin Bao <binbao@meta.com>
2024-12-10 05:05:08 +00:00
lzhang2
5d6acd5a31 Register Intel distributed Backend (XCCL) in PyTorch distributed package (#141856)
### Motivation:

As design illustrated in Intel distributed support RFC https://github.com/pytorch/pytorch/issues/141741, two sections are needed to enable intel distributed backend (`XCCL`) support in PyTorch.
1. Intel GPU distributed Backend integration in PyTorch `torch-xpu-ops`.
2. **Intel distributed Backend register in PyTorch distributed package**. This PR is to contribute section 2 change.

### Example:
Here is a simple example of using spawn to launch XCCL backend and perform allreduce on XPU tensors.
```
import os
import torch
import torch.distributed as dist
import torch.multiprocessing as mp

def setup(rank, world_size):
    os.environ['MASTER_ADDR'] = 'localhost'
    os.environ['MASTER_PORT'] = '29500'
    dist.init_process_group(rank=rank, world_size=world_size)

def cleanup():
    dist.destroy_process_group()

def run_allreduce(rank, world_size):
    setup(rank, world_size)
    device = torch.device('xpu:{}'.format(rank))
    x = torch.randn([2, 2], device=device)
    dist.all_reduce(x)
    cleanup()

if __name__ == '__main__':
    world_size = 2
    mp.spawn(run_allreduce, args=(world_size,), nprocs=world_size, join=True)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141856
Approved by: https://github.com/kwen2501, https://github.com/gujinghui, https://github.com/albanD
2024-12-10 01:58:06 +00:00
PyTorch MergeBot
219e9c83a5 Revert "[AOTI XPU] Support AOT Inductor for Intel GPU. (#140269)"
This reverts commit 854d83133b.

Reverted https://github.com/pytorch/pytorch/pull/140269 on behalf of https://github.com/clee2000 due to breaks forward compatibility?  D66937097 ([comment](https://github.com/pytorch/pytorch/pull/140269#issuecomment-2528828555))
2024-12-09 17:33:28 +00:00
xinan.lin
854d83133b [AOTI XPU] Support AOT Inductor for Intel GPU. (#140269)
This PR add XPU support for AOT Inductor, and reuse the corresponding UT.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140269
Approved by: https://github.com/desertfire, https://github.com/EikanWang
ghstack dependencies: #140268
2024-12-07 19:22:04 +00:00
eqy
8fc6d3a5d8 [SDPA] Allow user-specified priority order with context manager (#140467)
TODO: docs changes?
For better debuggability of issues like https://github.com/pytorch/pytorch/issues/139298

Better testing, current sketch:

``` Python
import torch
from torch.nn.functional import scaled_dot_product_attention
from torch.nn.attention import SDPBackend, sdpa_kernel

q = torch.randn(64, 1024, 8, 64, dtype=torch.half, device='cuda')
print(torch._C._get_sdp_priority_order())

orders = [[SDPBackend.CUDNN_ATTENTION, SDPBackend.MATH, SDPBackend.EFFICIENT_ATTENTION],
          [SDPBackend.MATH, SDPBackend.CUDNN_ATTENTION, SDPBackend.EFFICIENT_ATTENTION],
          [SDPBackend.EFFICIENT_ATTENTION, SDPBackend.CUDNN_ATTENTION, SDPBackend.MATH]]
import time
times = list()
for order in orders:
    print(order)
    with sdpa_kernel(order, set_priority=True):
        scaled_dot_product_attention(q, q, q)
    torch.cuda.synchronize()
    t0 = time.perf_counter()
    with sdpa_kernel(order, set_priority=True):
        scaled_dot_product_attention(q, q, q)
    torch.cuda.synchronize()
    t1 = time.perf_counter()
    times.append(t1 - t0)
print(times)
assert times[0] < times[1]
assert times[0] > times[2]
assert times[1] > times[2]
print(torch._C._get_sdp_priority_order())
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140467
Approved by: https://github.com/drisspg
2024-12-06 07:56:35 +00:00
Yukio Siraichi
12d28a5929 Move overlapping guards to C++. (#140013)
This PR moves the logic for computing the overlapping relations between input tensors that
share a storage instance to C++.

In summary, this PR:

- Moves both `tensors_definitely_do_not_overlap` and part of `compute_overlapping_tensors`
to C++
- Introduces a `check_overlapping` function that re-runs `compute_overlapping_tensors`,
checking that the result is consistent with what is expected
- Introduces the `StorageOverlapChecker` class
    - Keeps track of overlapping and non-overlapping tensors
    - Actually checks the overlapping relation (call `check_overlapping`) when all tensors
    are collected
- Introduces the `STORAGE_OVERLAPPING` relational guard
    - Has a reference to a `StorageOverlapChecker`
    - Stores the to-be-checked tensors in the checker, and triggers its check
- Introduces `install_storage_overlapping_guard` python function
    - Creates an instance of `StorageOverlapChecker`
    - Creates 2 instances of the `STORAGE_OVERLAPPING` guard (for overlapping and
    non-overlapping tensors), referencing the same `StorageOverlapChecker` instance

**Why is `StorageOverlapChecker` needed?**

The way `GuardManager` is implemented, we have no control over the order in which the
check methods are called, i.e. no control over the order the tensors are collected. So, we
can't easily split them in "overlapping" and non-overlapping kinds.

Instead, we create 2 instances of `STORAGE_OVERLAPPING` guard, each of which helps
collecting the tensors for one of the kinds mentioned above. They are then used in a
single `StorageOverlapChecker` instance.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140013
Approved by: https://github.com/bdhirsh
ghstack dependencies: #139554, #139555
2024-12-05 14:43:58 +00:00
Yu, Guangye
8dd4673cea Support torch.xpu.mem_get_info API (#141230)
# Motivate
Fix https://github.com/pytorch/pytorch/issues/130599
This PR intends to add a new API, `torch.xpu.mem_get_info,` which is widely used in popular model workloads.
For example, [here](403c0714d1/src/accelerate/utils/modeling.py (L721)) we need to get current GPU memory usage to split or load the model.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141230
Approved by: https://github.com/EikanWang, https://github.com/albanD
2024-12-05 08:17:25 +00:00
Benjamin Glass
4959784dac Add API query for available per-process CUDA memory (#140620)
Certain `cpp_wrapper`-enabled tests were OOM-ing in the CI pipeline, with error messages suggesting that sufficient memory was accessible.  This ultimately resulted from an internal memory limitation that was not queryable in the API.  This PR adds querying for that limit.

Additionally, the failing tests had incorrect memory availability checks, and are updated with measured memory requirements.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140620
Approved by: https://github.com/malfet, https://github.com/eqy
ghstack dependencies: #141367
2024-12-03 00:24:03 +00:00
Hyunho Yeo
d70b7029c8 [MTIA] Support torch.mtia.empty_cache() (#141533)
Summary: As title

Test Plan:
Passed a local unit test: `buck2 test //mtia/host_runtime/torch_mtia/tests:test_torch_mtia_api`

https://www.internalfb.com/intern/testinfra/testrun/4785074861101240

Reviewed By: nautsimon

Differential Revision: D66481778

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141533
Approved by: https://github.com/nautsimon
2024-11-28 02:24:19 +00:00
Simon Fan
db4e8a1d8a [ca] expose option to collect sizes as dynamic (#141153)
This is to address recompiles from eager nodes that saved dynamic activations

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141153
Approved by: https://github.com/jansel
ghstack dependencies: #141152
2024-11-22 19:26:27 +00:00
Animesh Jain
fb529c2c84 [dynamo] skip_guard_eval_unsafe stance for power users (#140251)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140251
Approved by: https://github.com/jansel
ghstack dependencies: #140223, #140250
2024-11-21 06:28:58 +00:00
Syed Tousif Ahmed
e0482fdf95 Implements user buffer registration using MemPool (#133603)
This PR implements user buffer registration and demonstrates NVLink Sharp (NVLS) reductions using a combination of allocation special memory using MemPool and registering it with the nccl buffer registration APIs.

Part of https://github.com/pytorch/pytorch/issues/124807.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133603
Approved by: https://github.com/kwen2501, https://github.com/eqy
2024-11-21 01:40:11 +00:00
Animesh Jain
9d229f08f4 [dynamo][guards] Introduce a diff_guard_manager (#140250)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140250
Approved by: https://github.com/jansel
ghstack dependencies: #140223
2024-11-20 17:59:30 +00:00
FFFrog
a9e54f64ee Remove unused Python API named _set_torch_function_mode (#141023)
Detailed description:

As the title stated.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141023
Approved by: https://github.com/Skylion007, https://github.com/ezyang
2024-11-20 09:48:03 +00:00
PyTorch MergeBot
9fac5a16fd Revert "[PGNCCL] Add an API to get the status/error code of each PG (#140087)"
This reverts commit 80aa19a622.

Reverted https://github.com/pytorch/pytorch/pull/140087 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/140087#issuecomment-2486912231))
2024-11-19 22:53:46 +00:00
PyTorch MergeBot
496c1e78c5 Revert "Implements user buffer registration using MemPool (#133603)"
This reverts commit 25d9be37be.

Reverted https://github.com/pytorch/pytorch/pull/133603 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/133603#issuecomment-2486897708))
2024-11-19 22:42:26 +00:00
Animesh Jain
f4ce9ac29d [dynamo] Dont erase the cache line on invalidation (#140821)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140821
Approved by: https://github.com/jansel
2024-11-19 19:11:10 +00:00
Yifu Wang
ab5c8857ef [SymmetricMemory] support specifying group_name at rendezvous time (#139529)
Before this PR, users need to call `empty_strided_p2p()` with a `group_name`:

```python
tensor = _SymmetricMemory.empty_strided_p2p((1024,), (1,), device=device, group_name="0")
symm_mem = _SymmetricMemory.rendezvous(tensor)
```

Users can now omit `group_name` at allocation time and specify it later at rendezvous time:

```python
tensor = _SymmetricMemory.empty_strided_p2p((1024,), (1,), device=device)
symm_mem = _SymmetricMemory.rendezvous(tensor, group_name="0")
```

Rationales for this change:
- This allows the same allocation to establish symmetric memory under different groups
- Specifying `group_name` at rendezvous time instead of allocation time is a more natural UX

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139529
Approved by: https://github.com/lw
2024-11-17 09:31:17 +00:00
Ryan Guo
ac6684ebbc [dynamo] Identify pre-existing captured cells by cell id rather than content id (#140436)
In `match_nested_cell`, Dynamo tried to identify pre-existing captured
cells by `(cell_name, id(cell_contents))`. This works in most cases, but
as the test added in this patch shows, it's not a complete solution.

This patch
1. changes `match_nested_cell` to `lookup_variable_for_captured_cell`,
   and does the lookup based on id of cell objects, not their contents.
   This requires plumbing a tuple of captured cell objects from
   different CPython versions all the way to
   `InstructionTranslator.__init__`, where we store a mapping from the
   ids of these cell objects, and use it later in
   `UserFunctionVariable.bind_args` to look for these unboxed cells.
2. builds off (1) -- rather than using a `VariableTracker` that
   represents the content of the unboxed cells, use `ClosureVariable`,
   which enables codegen in case these cells escape as closure of a
   `NestedUserFunctionVariable`.

The patch adds a regression test for each of the scenarios above:
1. `test_write_to_cells_with_name_shadowing` where Dynamo mistakenly
   thought the program is writing to a cell captured by root frame (which
   it doesn't support atm), which resulted in
```
  File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/symbolic_convert.py", line 3340, in STORE_DEREF
    unimplemented("write to __closure__ while inlining")
  File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/exc.py", line 313, in unimplemented
    raise Unsupported(msg, case_name=case_name)
torch._dynamo.exc.Unsupported: write to __closure__ while inlining
```
2. `test_existing_func_that_creates_capturing_nested_func` where Dynamo
   ended up trying to codegen a `NestedUserFunctionVariable` that
   captures a cell which was also captured by the root frame, so it was
   unboxed and ends up emitting `LOAD_DEREF` rather than
   `LOAD_FAST/LOAD_CLOSURE` during codegen, resulting in
```
  File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/variables/functions.py", line 105, in _create_nested_fn
    func = FunctionType(code, f_globals, name, defaults, closure)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
TypeError: arg 5 (closure) expected cell, found int
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140436
Approved by: https://github.com/jansel, https://github.com/williamwen42
ghstack dependencies: #140330, #140152
2024-11-15 17:17:30 +00:00
Ryan Guo
85dd7b84cf [dynamo] Add a DynamoFrameType type above Python frame object (#140330)
This patch introduces a `DynamoFrameType` to serve as a layer between
Dynamo and different versions of Python frame object. In
`DynamoFrameType`, we only register attributes Dynamo cares about (e.g.,
`f_code`, `f_locals`, etc.

This will be helpful when it comes to adding new attributes to this
`DynamoFrameType`, or dealing with Python version changes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140330
Approved by: https://github.com/jansel, https://github.com/williamwen42
2024-11-15 17:17:30 +00:00
Syed Tousif Ahmed
25d9be37be Implements user buffer registration using MemPool (#133603)
This PR implements user buffer registration and demonstrates NVLink Sharp (NVLS) reductions using a combination of allocation special memory using MemPool and registering it with the nccl buffer registration APIs.

Part of https://github.com/pytorch/pytorch/issues/124807.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133603
Approved by: https://github.com/kwen2501, https://github.com/eqy
2024-11-15 12:47:49 +00:00
Shuqiang Zhang
80aa19a622 [PGNCCL] Add an API to get the status/error code of each PG (#140087)
Summary:
If unhealthy, the user should be able to get the type of errors, e.g.,
timeout,nccl error or remote error.

This API is applied to PG level, compared to the work.get_future_result() API which is applied to Work Level.
Error detection at PG level is much more convenient for users to handle the PG failure as a whole, e.g, restarting the PG.

Error handling at the work level is still useful for users to attach work specific context and debug the RC of the specific failing work/collective

Note it is critical for all ranks in the PG to be notified about an error as soon as it occurs, so we introduce an errorType of REMOTE_ERROR, which is 'broadcasted' from a src rank (which detects a local error) to all other ranks in the PG, the broadcast is done through TCPStore currently

Tags:

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140087
Approved by: https://github.com/kwen2501
2024-11-15 04:11:00 +00:00
Zhengxu Chen
3ef2dfc1ba [export] Implement cpp deserializer. (#136398)
Differential Revision: D63206258

This diff introduces a mechanism to generate a json-compatible deserializer in cpp using nlohmann json (already being used by AOTI).

Why we need this? Because there will be a lot of cases where people don't want to use Python to load the graph (e.g. cpp runtime), and instead they can use this header to deserialize the JSON graph.

Every time we call update_schema.py to update the schema, the header will be auto generated and included into the source files.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136398
Approved by: https://github.com/angelayi
2024-11-14 16:34:59 +00:00
Aaron Orenstein
82597d07aa type annotations for meta_utils (#140203)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140203
Approved by: https://github.com/ezyang
2024-11-13 20:07:47 +00:00
Yu, Guangye
659d2132be Add architecture to XPU device property (#138186)
# Motivation
Add `architecture` to XPU device property.
In some cases, low-level application code can use special features or do specific optimizations depending on the device architecture, and this PR enables such applications.
Modified from https://github.com/pytorch/pytorch/pull/129675/files

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138186
Approved by: https://github.com/ezyang
2024-11-13 03:35:13 +00:00
Yifu Wang
0a0915fb5e [SymmetricMemory] improve the API for stream_write_value32 (#139934)
This PR updates the binding for `stream_write_value32` to be consistent with `memset32` which IMO makes more sense for this type of utilities:
- Changed the API to take a uint32 tensor as argument, instead of a device pointer
- Changed the Python binding to be a static method of `_SymmetricMemory`, instead of a object method
- Use the dispatcher for device dispatching, as opposed to `SymmetricMemory` backends

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139934
Approved by: https://github.com/weifengpy
ghstack dependencies: #139227
2024-11-11 18:49:22 +00:00
PyTorch MergeBot
5f4a21dc58 Revert "[SymmetricMemory] improve the API for stream_write_value32 (#139934)"
This reverts commit 2f3a5a15ef.

Reverted https://github.com/pytorch/pytorch/pull/139934 on behalf of https://github.com/malfet due to Broke distributed tests, see https://github.com/pytorch/pytorch/actions/runs/11770673088/job/32784210441 ([comment](https://github.com/pytorch/pytorch/pull/139934#issuecomment-2468641512))
2024-11-11 17:02:07 +00:00
Yifu Wang
2f3a5a15ef [SymmetricMemory] improve the API for stream_write_value32 (#139934)
This PR updates the binding for `stream_write_value32` to be consistent with `memset32` which IMO makes more sense for this type of utilities:
- Changed the API to take a uint32 tensor as argument, instead of a device pointer
- Changed the Python binding to be a static method of `_SymmetricMemory`, instead of a object method
- Use the dispatcher for device dispatching, as opposed to `SymmetricMemory` backends

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139934
Approved by: https://github.com/weifengpy
ghstack dependencies: #139227
2024-11-11 01:54:35 +00:00
Yifu Wang
1659e241c8 [experimental] async-tp impl with cutlass-based, progress aware kernel (#139227)
This PR introduces the following:

### torch.ops.symm_mem._async_input_mm

`_async_input_mm(Tensor a, Tensor b, Tensor a_chunk_signals, int a_chunk_pivot) -> Tensor`

An mm impl that supports consuming asynchronous input. It guarantees the following rasterization order, and that the corresponding signal arrives before an input chunk is consumed.
```
num_chunks = a_chunks_signals.numel()
for chunk_idx in range(a_chunk_pivot, num_chunks + a_chunk_pivot):
    chunk_idx = chunk_idx % num_chunks
    wait_signal(a_chunk_signals, chunk_idx)
    # Compute output tiles that consumes the input chunk
```

### PersistentAsyncInputScheduler

This is a forked version of PersistentScheduler that supports consuming asynchronous input. This tile scheduler introduces the following arguments:

- `tiles_per_chunk_m` – Specifies the size of an M chunk. Chunks are the granularity at which the asynchronous input becomes ready. It must be an interger multiple of the size of an M tile.
- `chunk_signals` – `chunk_signals[i] == 1` indicates that chunk i is ready. Before returning a work tile, get_current_work() waits for the signal to ensure that the corresponding chunk is ready.
- `tile_idx_pivot_m` – After applying swizzling, apply `pivot(m) => (m + tile_idx_pivot_m) % tiles_m` to `m`. In a distributed setting, this allows different ranks to process different m indices at the same time, thus avoiding communication hotspots.

Note that this scheduler currently only supports the `KernelTmaWarpSpecializedCooperative` kernel schedule. This is enforced via the template argument `KernelSchedule`.

Usage:
```
using GemmKernel = cutlass::gemm::kernel::GemmUniversal<
   Shape<int, int, int, int>,
   CollectiveMainloop,
   CollectiveEpilogue,
   cutlass::gemm::PersistentAsyncInputScheduler<KernelSchedule>>;
```

### _fused_all_gather_matmul_native
An ag-mm impl that combines `torch.ops.symm_mem._async_input_mm` and progress-aware all-gather. This is not yet enabled via the async-tp passes. We will use it as a backend to optimize the current decomposition-based async-tp impl.

## Benchmarks

### 4096x3584x8192
- cublas + nccl: 539us
- decomp-based async-tp w/o cuda graph: 694us
- decomp-based async-tp w/ cuda graph: 478us
- new cutlass kernel: 408us

<img width="478" alt="image" src="https://github.com/user-attachments/assets/39f316ab-36c5-4b41-af77-07854a385dfc">

### 2048x3584x8192
- cublas + nccl: 301us
- decomp-based async-tp w/o cuda graph: 687us
- decomp-based async-tp w/ cuda graph: 356us
- new cutlass kernel: 276us

<img width="441" alt="image" src="https://github.com/user-attachments/assets/9e23ce21-863b-43dd-a562-fb05d3a5a144">

## Next Steps
- Add tuning logic
- Use `_fused_all_gather_matmul_native` as a backend for the decomp-based async-tp impl

Differential temp Revision: [D65623152](https://our.internmc.facebook.com/intern/diff/D65623152)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139227
Approved by: https://github.com/weifengpy, https://github.com/Chillee
2024-11-08 23:28:25 +00:00
Animesh Jain
e6c5a77485 [dynamo][guards] Profile guard manager in C++ (#140110)
This should remove the pybind noise from the profiling.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140110
Approved by: https://github.com/jansel
ghstack dependencies: #139953
2024-11-08 18:44:08 +00:00
Luca Wehrstedt
5f287df422 Add type information for FakeProcessGroup (#133211)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133211
Approved by: https://github.com/Skylion007
2024-11-08 11:18:52 +00:00
PyTorch MergeBot
36e0f119d0 Revert "[experimental] async-tp impl with cutlass-based, progress aware kernel (#139227)"
This reverts commit 5203138483.

Reverted https://github.com/pytorch/pytorch/pull/139227 on behalf of https://github.com/yifuwang due to Need to address internal build failure D65605027 ([comment](https://github.com/pytorch/pytorch/pull/139227#issuecomment-2463204467))
2024-11-07 21:01:36 +00:00
Yifu Wang
5203138483 [experimental] async-tp impl with cutlass-based, progress aware kernel (#139227)
This PR introduces the following:

### torch.ops.symm_mem._async_input_mm

`_async_input_mm(Tensor a, Tensor b, Tensor a_chunk_signals, int a_chunk_pivot) -> Tensor`

An mm impl that supports consuming asynchronous input. It guarantees the following rasterization order, and that the corresponding signal arrives before an input chunk is consumed.
```
num_chunks = a_chunks_signals.numel()
for chunk_idx in range(a_chunk_pivot, num_chunks + a_chunk_pivot):
    chunk_idx = chunk_idx % num_chunks
    wait_signal(a_chunk_signals, chunk_idx)
    # Compute output tiles that consumes the input chunk
```

### PersistentAsyncInputScheduler

This is a forked version of PersistentScheduler that supports consuming asynchronous input. This tile scheduler introduces the following arguments:

- `tiles_per_chunk_m` – Specifies the size of an M chunk. Chunks are the granularity at which the asynchronous input becomes ready. It must be an interger multiple of the size of an M tile.
- `chunk_signals` – `chunk_signals[i] == 1` indicates that chunk i is ready. Before returning a work tile, get_current_work() waits for the signal to ensure that the corresponding chunk is ready.
- `tile_idx_pivot_m` – After applying swizzling, apply `pivot(m) => (m + tile_idx_pivot_m) % tiles_m` to `m`. In a distributed setting, this allows different ranks to process different m indices at the same time, thus avoiding communication hotspots.

Note that this scheduler currently only supports the `KernelTmaWarpSpecializedCooperative` kernel schedule. This is enforced via the template argument `KernelSchedule`.

Usage:
```
using GemmKernel = cutlass::gemm::kernel::GemmUniversal<
   Shape<int, int, int, int>,
   CollectiveMainloop,
   CollectiveEpilogue,
   cutlass::gemm::PersistentAsyncInputScheduler<KernelSchedule>>;
```

### _fused_all_gather_matmul_native
An ag-mm impl that combines `torch.ops.symm_mem._async_input_mm` and progress-aware all-gather. This is not yet enabled via the async-tp passes. We will use it as a backend to optimize the current decomposition-based async-tp impl.

## Benchmarks

### 4096x3584x8192
- cublas + nccl: 539us
- decomp-based async-tp w/o cuda graph: 694us
- decomp-based async-tp w/ cuda graph: 478us
- new cutlass kernel: 408us

<img width="478" alt="image" src="https://github.com/user-attachments/assets/39f316ab-36c5-4b41-af77-07854a385dfc">

### 2048x3584x8192
- cublas + nccl: 301us
- decomp-based async-tp w/o cuda graph: 687us
- decomp-based async-tp w/ cuda graph: 356us
- new cutlass kernel: 276us

<img width="441" alt="image" src="https://github.com/user-attachments/assets/9e23ce21-863b-43dd-a562-fb05d3a5a144">

## Next Steps
- Add tuning logic
- Use `_fused_all_gather_matmul_native` as a backend for the decomp-based async-tp impl

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139227
Approved by: https://github.com/weifengpy, https://github.com/Chillee
2024-11-07 03:43:12 +00:00
CaoE
9e14d86573 [Inductor][CPP] Add oneDNN BRGEMM config for Half cpp gemm template (#136255)
`kernel_micro_gemm` generated using BRGEMM:
```
template <bool accum>
inline void kernel_micro_gemm(
    const half* __restrict__ A,
    const half* __restrict__ B,
    float* __restrict__ C,
    int64_t M,
    int64_t N,
    int64_t K,
    int64_t lda,
    int64_t ldb,
    int64_t ldc
) {
    at::native::cpublas::brgemm(
      M, N, K,
      lda, ldb, ldc,
      1.f, accum ? 1.f : 0.f,
      A,
      B,
      C);
}
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136255
Approved by: https://github.com/jgong5, https://github.com/jansel
2024-11-05 05:33:29 +00:00
Shivam Raikundalia
ac7acfb894 [Profiler] Create Auto-Trace Frontend for Trace ID (#139310)
Summary:
This PR adds Auto-Trace implementation for Trace ID. By default, the python side will generate a uuid in the same format as the one set in the backend by kineto. Upon running an auto-trace, the python generated trace id will overwrite the one set in kineto using the Config variable. Since we don't expect users to generate on-demand traces after an auto-trace we can simply keep overwriting the backend trace id whenever autotrace is ran. If we one day want to eventually do something like this, we simply have to add a call in kineto on the backend to generate a new ID upon start of profiling.

We also implement a custom callback in the frontend such that users can generate their own trace ids if they wish to. This works similarly as the default, only difference being that they have to manually set this callback after a profiler is generated. We use a specific call to set this rather then putting it in the frontend initializer in case users want to change the trace_id for different repeats.

Test Plan: Tested both default and custom callbacks using the verbose prints added. Trace ids on the frontend and the prints on the backend for the manifold upload matched.

Differential Revision: D65178308

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139310
Approved by: https://github.com/shengfukevin
2024-10-31 19:02:57 +00:00
Richard Zou
ef380f7b8e [real tensor prop] Add some asserts for custom ops (#139212)
When we see a custom op:
- check that its mutation annotations are correct
- check that its aliasing constraints matches our constraints for custom
  ops.

Otherwise, there may be undefined behavior.

Test Plan:
- new tests

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139212
Approved by: https://github.com/angelayi
2024-10-30 19:29:11 +00:00
Will Feng
4ee514144b [c10d][Partial-Graph Overlap] Support calling .wait_tensor() on output tensor of eager async_op=True collective if under allow_inflight_collective_as_graph_input_ctx() context manager (#137763)
This PR aims to support the following use case:
```python
def all_reduce_eager(x):
    y = x * x
    req = dist.all_reduce(y, op=dist.ReduceOp.SUM, async_op=True)
    assert isinstance(req, torch.distributed.Work)
    return y

@torch.compile(fullgraph=True)
def all_reduce_wait_compiled(y):
    torch.ops.c10d_functional.wait_tensor(y)
    return y * y

x = torch.ones(1280, 1280, device="cuda") + self.rank
with allow_inflight_collective_as_graph_input_ctx():
    y = all_reduce_eager(x)
    z = all_reduce_wait_compiled(y)
```
where the collective is issued in eager (with `async_op=True`) but waited in compiled region.

This is important for internal use cases such as TorchRec, where we issue collectives in eager for SparseArch all_to_all but want to wait for them in compiled region at beginning of OverArch, so that the all_to_all can be overlapped with the DenseArch compute that runs in parallel.

----

**Update**: Did two items to prevent regression to existing use cases:

1. Added memory-stressed test case to test_c10d_nccl.py `test_unwaited` to cover existing user's "not calling work.wait() for non-functional collective" use case
2. Gated all new `register_work()` / `unregister_work()` calls with `c10d::allow_inflight_collective_as_graph_input()` check, which is a new context manager that requires explicit user enablement (i.e. not on by default, so should not affect existing users).

The risk of this new version of PR causing regression should be very low.

------

Test commands:
- `pytest -rA test/distributed/test_inductor_collectives.py::TestCollectivesMultiProc::test_eager_async_allreduce_inductor_wait`
- `pytest -rA test/test_fx.py::TestDCE::test_keep_collectives`
- `pytest -rA test/test_fx.py::TestDCE::test_keep_collectives_no_overload`
- `pytest -rA test/distributed/test_c10d_functional_native.py::TestWithNCCL::test_wait_tensor`
- `pytest -rA test/distributed/test_c10d_functional_native.py::TestWithNCCL::test_unwaited`
- `pytest -rA test/distributed/test_c10d_nccl.py::CommTest::test_wait_tensor`
- `pytest -rA test/distributed/test_c10d_nccl.py::CommTest::test_unwaited`
- `pytest -rA test/distributed/_tensor/test_tensor_ops.py::DistTensorOpsTest::test_equal`
- `pytest -rA test/distributed/_tensor/test_random_ops.py::DistTensorRandomOpTest::test_manual_seed`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_ddp_baseline_aot_eager_multiprocess`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_aot_eager`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_setattr`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_unspecialized_forced_getattr_inline`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_unspecialized_forced_getattr_no_inline`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_asymmetric_compilation`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_automatic_dynamic_scalar`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_automatic_dynamic_speculation_divergence`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_automatic_dynamic_tensor`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_dim_mismatch`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_graph_break_empty_graph_still_collective`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_missing_source`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_scalar_missing_source`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_type_mismatch`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_ddp_activation_checkpointing`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_ddp_baseline_aot_eager_multiprocess`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_activation_checkpointing`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_aot_eager`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_inductor`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_setattr`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_unspecialized_forced_getattr_inline`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_unspecialized_forced_getattr_no_inline`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_hf_bert_ddp_aot_eager`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_hf_bert_ddp_aot_eager_static_graph`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_hf_bert_ddp_inductor`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_hf_bert_ddp_inductor_static_graph`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_hf_bert_fsdp_activation_checkpointing`
- `pytest -rA test/distributed/_tensor/test_experimental_ops.py::DistOtherOpsTest::test_bernoulli`
- `pytest -rA test/distributed/_tensor/test_dtensor_compile.py::TestDTensorCompileE2E::test_tp_compile_fullgraph_is_seq_parallel_True`
- `pytest -rA test/distributed/test_inductor_collectives.py::TestCollectivesMultiProc::test_allreduce_inductor_cudagraph_trees`
- `python benchmarks/dynamo/torchbench.py --ci --accuracy --timing --explain --inductor --device cuda --inference --bfloat16 --total-partitions 2 --partition-id 1 --output inference_torchbench.csv --only moco`

------

Differential Revision: [D65023311](https://our.internmc.facebook.com/intern/diff/D65023311)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137763
Approved by: https://github.com/yifuwang
2024-10-29 03:31:19 +00:00
Simon Fan
fd9f4e6770 Back out "[compiled autograd] tls access helpers (#138061)" and Back out "[compiled autograd] Compiled autograd configs in TLS (#137821)" (#139086)
Summary:
Original commit changeset: 9bf80c1492d7

Original Phabricator Diff: D64796226

Original commit changeset: aa1d9ef8f6e6

Original Phabricator Diff: D64796212

Differential Revision: D65072644

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139086
Approved by: https://github.com/malfet
2024-10-28 23:37:05 +00:00
William Wen
35be6aef69 [dynamo] add some cpython debugging methods (#138030)
This PR enables you to inspect PyObjects in C using `INSPECT(...)` without requiring https://docs.python.org/3/howto/gdb_helpers.html. `torch._dynamo.eval_frame.raise_sigtrap` can also be used to set gdb breakpoints while running Python code, e.g.

```python
x = x + 1
torch._dynamo.eval_frame.raise_sigtrap();
# can breakpoint on ceval.c:CALL to breakpoint the `sin` call in C.
x = torch.sin(x)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138030
Approved by: https://github.com/jansel
2024-10-28 22:25:21 +00:00
PyTorch MergeBot
e5595f10c8 Revert "[c10d][Partial-Graph Overlap] Support calling .wait_tensor() on output tensor of eager async_op=True collective if under allow_inflight_collective_as_graph_input_ctx() context manager (#137763)"
This reverts commit a688c57033.

Reverted https://github.com/pytorch/pytorch/pull/137763 on behalf of https://github.com/yf225 due to Seems to have bad interaction with latest commits on trunk, reverting to be safe ([comment](https://github.com/pytorch/pytorch/pull/137763#issuecomment-2442527696))
2024-10-28 20:13:46 +00:00
Will Feng
a688c57033 [c10d][Partial-Graph Overlap] Support calling .wait_tensor() on output tensor of eager async_op=True collective if under allow_inflight_collective_as_graph_input_ctx() context manager (#137763)
This PR aims to support the following use case:
```python
def all_reduce_eager(x):
    y = x * x
    req = dist.all_reduce(y, op=dist.ReduceOp.SUM, async_op=True)
    assert isinstance(req, torch.distributed.Work)
    return y

@torch.compile(fullgraph=True)
def all_reduce_wait_compiled(y):
    torch.ops.c10d_functional.wait_tensor(y)
    return y * y

x = torch.ones(1280, 1280, device="cuda") + self.rank
with allow_inflight_collective_as_graph_input_ctx():
    y = all_reduce_eager(x)
    z = all_reduce_wait_compiled(y)
```
where the collective is issued in eager (with `async_op=True`) but waited in compiled region.

This is important for internal use cases such as TorchRec, where we issue collectives in eager for SparseArch all_to_all but want to wait for them in compiled region at beginning of OverArch, so that the all_to_all can be overlapped with the DenseArch compute that runs in parallel.

------

Test commands:
- `pytest -rA test/distributed/test_inductor_collectives.py::TestCollectivesMultiProc::test_eager_async_allreduce_inductor_wait`
- `pytest -rA test/test_fx.py::TestDCE::test_keep_collectives`
- `pytest -rA test/test_fx.py::TestDCE::test_keep_collectives_no_overload`
- `pytest -rA test/distributed/test_c10d_functional_native.py::TestWithNCCL::test_wait_tensor`
- `pytest -rA test/distributed/test_c10d_functional_native.py::TestWithNCCL::test_unwaited`
- `pytest -rA test/distributed/test_c10d_nccl.py::CommTest::test_wait_tensor`
- `pytest -rA test/distributed/test_c10d_nccl.py::CommTest::test_unwaited`
- `pytest -rA test/distributed/_tensor/test_tensor_ops.py::DistTensorOpsTest::test_equal`
- `pytest -rA test/distributed/_tensor/test_random_ops.py::DistTensorRandomOpTest::test_manual_seed`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_ddp_baseline_aot_eager_multiprocess`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_aot_eager`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_setattr`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_unspecialized_forced_getattr_inline`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_unspecialized_forced_getattr_no_inline`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_asymmetric_compilation`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_automatic_dynamic_scalar`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_automatic_dynamic_speculation_divergence`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_automatic_dynamic_tensor`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_dim_mismatch`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_graph_break_empty_graph_still_collective`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_missing_source`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_scalar_missing_source`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_compiler_collectives_type_mismatch`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_ddp_activation_checkpointing`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_ddp_baseline_aot_eager_multiprocess`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_activation_checkpointing`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_aot_eager`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_inductor`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_setattr`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_unspecialized_forced_getattr_inline`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_fsdp_unspecialized_forced_getattr_no_inline`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_hf_bert_ddp_aot_eager`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_hf_bert_ddp_aot_eager_static_graph`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_hf_bert_ddp_inductor`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_hf_bert_ddp_inductor_static_graph`
- `pytest -rA test/distributed/test_dynamo_distributed.py::TestMultiProc::test_hf_bert_fsdp_activation_checkpointing`
- `pytest -rA test/distributed/_tensor/test_experimental_ops.py::DistOtherOpsTest::test_bernoulli`
- `pytest -rA test/distributed/_tensor/test_dtensor_compile.py::TestDTensorCompileE2E::test_tp_compile_fullgraph_is_seq_parallel_True`
- `pytest -rA test/distributed/test_inductor_collectives.py::TestCollectivesMultiProc::test_allreduce_inductor_cudagraph_trees`
- `python benchmarks/dynamo/torchbench.py --ci --accuracy --timing --explain --inductor --device cuda --inference --bfloat16 --total-partitions 2 --partition-id 1 --output inference_torchbench.csv --only moco`

------

Differential Revision: [D65023311](https://our.internmc.facebook.com/intern/diff/D65023311)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137763
Approved by: https://github.com/yifuwang
2024-10-28 18:11:23 +00:00
Wouter Devriendt
bae3426af7 reimport pr137735 due to merging check issues (#138959)
This is  a cherry-pick from #137735 by @mikaylagawarecki , that cannot be merged due to a (wrongly) failing check for codev

@diff-train-skip-merge

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138959
Approved by: https://github.com/mikaylagawarecki
2024-10-27 16:31:34 +00:00
Yu, Guangye
40c098f731 Introduce a device-agnostic runtime API design (#132204)
# Motivation
According to [[RFC]A device-agnostic Python runtime API design for stream-based accelerators](https://github.com/pytorch/pytorch/issues/128403), this PR intends to introduce a device-agnostic runtime API design.
I personally prefer the **Simple Version** APIs that no longer accept the device type as an input argument. It means we will leverage `getAccelerator` to fetch the current accelerator. And it is flexible to expand these APIs to handle multiple types of accelerator scenarios. The design does **NOT** break the previous design philosophies.
I also believe that namespace torch.accelerator is better. It lets users know that the APIs they are calling are running on an accelerator rather than CPU. This is important. Meanwhile, we can follow a simple API design principle:
1. Device-agnostic APIs should be placed under the torch.accelerator namespace and not accept a device_type optional parameter.
2. Device-specific APIs should be placed under device-specific submodules.
3. APIS required by both CPU and accelerators should be placed under the torch namespace and accept a device_type optional parameter.

Also, I list the pros and cons of **Simple Version** here:
Pros:
- `torch.accelerator.foo` will have the same input argument as `torch.xxx.foo`, bringing a better user experience;
- more concise, facilitate the developer to write a device-agnostic code.

Cons:
- no obvious drawbacks.

# Additional Context
I list the new APIs here:
```python
torch.accelerator.is_available() -> bool:
torch.accelerator.current_accelerator() -> torch.device:
torch.accelerator.device_count() -> int:
torch.accelerator.current_device_idx() -> int:
torch.accelerator.set_device_idx(device: Union[torch.device, str, int, None]) -> None:
torch.accelerator.current_stream(device: Union[torch.device, str, int, None]) -> torch.Stream:
torch.accelerator.set_stream(stream: torch.Stream) -> None:
torch.accelerator.synchronize(device: Union[torch.device, str, int, None]) -> None:
```
According to the discussion with Alban, we decide to change the API name `set_device` to `set_device_idx` and `current_device` to `current_device_idx` for more explicit. And will submit other PR to support device and stream context manager.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132204
Approved by: https://github.com/EikanWang, https://github.com/abhilash1910, https://github.com/gujinghui, https://github.com/albanD
2024-10-27 10:37:09 +00:00
Yifu Wang
ed9169df98 Removed the typing information for already deleted ProcessGroupCudaP2P (#138753)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138753
Approved by: https://github.com/weifengpy
2024-10-25 00:32:07 +00:00
Shuqiang Zhang
4c91481656 [c10d] allow sub group to be eagerly inited even if default one is not (#138665)
Summary:
Currently, eager mode is applied either to all PGs or NONE of them.
There are cases where we don't want to initialize the comms for default
PG, but we still want to initialize the comms for sub PG. Now with a
device_id passed to new group, we can achieve this case
Test Plan:
newly added UT

Tags:

Resolves https://github.com/pytorch/pytorch/issues/137018

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138665
Approved by: https://github.com/kwen2501
ghstack dependencies: #138781
2024-10-24 23:51:28 +00:00
Simon Fan
49fa437097 [compiled autograd] Compiled autograd configs in TLS (#137821)
Multithreaded doesn't work yet, this adds python side TLS only for the python side state

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137821
Approved by: https://github.com/jansel, https://github.com/yf225
ghstack dependencies: #137953
2024-10-22 08:03:52 +00:00
Syed Tousif Ahmed
03c72976a5 Properly uses ref-counting for torch.cuda.use_mem_pool (#133600)
This PR refactors some ref-counting functionality out of `beginAllocateToPool` and `releasePool`. The ref-counting logic is then used in construction and destruction of `torch.cuda.MemPool`.

The `use_count` variable in the CUDACachingAllocator is essentially a refcount of how many context managers are using the pool. Since we are now lifting up the MemPool abstraction to the user, the MemPool object itself now needs to hold a an extra reference as well.

Part of https://github.com/pytorch/pytorch/issues/124807.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133600
Approved by: https://github.com/eqy, https://github.com/ezyang
2024-10-22 03:21:53 +00:00
Jeff Daily
3f3b692a00 [ROCm] CK-based GEMM (#131004)
- composable_kernel as a third_party submodule
- "ck" as a `torch.backends.cuda.preferred_linalg_library()`
- reference CK gemm implementations for float, bfloat16, and half types

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131004
Approved by: https://github.com/xw285cornell, https://github.com/pruthvistony

Co-authored-by: Andres Lugo <Andy.LugoReyes@amd.com>
Co-authored-by: Pruthvi Madugundu <pruthvigithub@gmail.com>
2024-10-20 02:57:43 +00:00
Yu, Guangye
8cda774a03 Add torch.xpu.get_arch_list and torch.xpu.get_gencode_flags for XPU (#137773)
# Motivation
Add `torch.xpu.get_arch_list()` and `torch.xpu.get_gencode_flags()` methods that return architecture list and AOT flags to preserve what flags PyTorch XPU was built with.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137773
Approved by: https://github.com/EikanWang, https://github.com/albanD
2024-10-18 02:28:08 +00:00
PyTorch MergeBot
dd32a32cb6 Revert "Expose option to disable CRC-32 computation during torch.save (#137735)"
This reverts commit 534fa96f2d.

Reverted https://github.com/pytorch/pytorch/pull/137735 on behalf of https://github.com/clee2000 due to failing internally D64438525, probably needs gating ([comment](https://github.com/pytorch/pytorch/pull/137735#issuecomment-2417412264))
2024-10-16 17:03:06 +00:00
PyTorch MergeBot
361f42bc42 Revert "[compiled autograd] Compiled autograd configs in TLS (#137821)"
This reverts commit 9aba0b91c8.

Reverted https://github.com/pytorch/pytorch/pull/137821 on behalf of https://github.com/wdvr due to Reverting this for now, it is failing test_public_bindings in trunk ([comment](https://github.com/pytorch/pytorch/pull/137821#issuecomment-2417351788))
2024-10-16 16:38:29 +00:00
William Wen
4c8718d8e7 [dynamo] add torch.compiler.set_stance (#137504)
Attempt # 2 at https://github.com/pytorch/pytorch/pull/132926 to implement https://github.com/pytorch/pytorch/issues/123771.

Implement a new `torch.compiler.set_stance` function that can force `torch.compile` regions to run eagerly.

See added tests for usage examples.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137504
Approved by: https://github.com/yf225, https://github.com/jansel
2024-10-16 16:18:25 +00:00
Simon Fan
9aba0b91c8 [compiled autograd] Compiled autograd configs in TLS (#137821)
Multithreaded doesn't work yet, this adds python side TLS only for the python side state

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137821
Approved by: https://github.com/jansel, https://github.com/yf225
ghstack dependencies: #137953
2024-10-16 09:28:32 +00:00