Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63094
This PR:
- Moves `FileManager` and its dependencies (`assert_never` and other imports) to `utils.py`, and updates all of the call-sites with the fresh imports
- Passes the list of NativeFunction objects into `gen_trace_type` directly, instead of requiring the function to regenerate it (we already have it)
The purpose of the reshuffling is to avoid circular dependencies in the next PR, where I add codegen for the functionalization pass, which gets called from `gen.py` (but depends on some stuff from the autograd codegen - in partulcar, the list of view ops).
Test Plan: Imported from OSS
Reviewed By: albanD
Differential Revision: D31942096
Pulled By: bdhirsh
fbshipit-source-id: 36118facae61f25f8922bb43ad2818c80b53504e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66108
BC-breaking change: intT is now longT (which aligns it more accurately with how
the types are referred to in C++). The benefit for this is we can idiomatically
express all C++ dtypes (with intT now mapping to int32_t). These types are needed
for ufunc codegen in a latter patch.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: albanD
Differential Revision: D31385761
Pulled By: ezyang
fbshipit-source-id: ec6f3a0953794313470dbe14911f23ac116be425
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62186
This file takes 6 minutes on its own to compile and is the limiting factor for
building `libtorch_python` on a 32-core threadripper. This splits the file into
5 shards which take around 50 seconds each to compile.
Test Plan: Imported from OSS
Reviewed By: bdhirsh
Differential Revision: D29962046
Pulled By: albanD
fbshipit-source-id: df13cfaebd54296f10609f67ae74a850c329bd37
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/55334
The goal of this PR is to clean up some of the autograd codegen to compare C++ types using `CType` objects instead of raw strings. My last PR in the stack made that string comparison a little more fragile, since the raw C++ strings needed to be namespace-aware.
I confirmed byte-for-byte no codegen changes vs. the last PR (which added namespaces to the codegen) by running `diff -qr ../pytorch-common_test/torch/csrc/autograd/generated/ ../pytorch-callgrind_test_after2/torch/csrc/autograd/generated/` and `diff -qr ../pytorch-common_test/build/aten/src/ATen/ ../pytorch-callgrind_test_after2/build/aten/src/ATen/`
Note that a better end-state for the autograd codegen would be to do all of its type pattern matching directly off of JIT types, instead of off of CType’s (which are really just generated from JIT types, incorporating C++ specific semantics). That looks like it’ll require a pretty substantial change though, so I’m not doing it in this PR.
As part of this change (and after talking with ezyang), I split off the `CType` data class into a separate `NamedCType` class, which holds a name and a `CType`. This way, `CType` only knows about actual C++ types, making it easier to compare CType’s to each other in the codegen when we only care about the type. The core change is in `types.py`, but it required a bunch of downstream changes to update all of the places where we create `CType`s to create `NamedCType`s instead.
The main change in the autograd codegen was that I updated `SavedAttribute` to store a `NamedCType`. The other autograd changes all pretty much came from that change.
Test Plan: Imported from OSS
Reviewed By: bhosmer
Differential Revision: D27708347
Pulled By: bdhirsh
fbshipit-source-id: 3e07c80569c7b229c638f389e76e319bff6315f9
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/55047
Added namespaces to all of the `CTypes` printed in the codegen. This is pretty much required if we want to use codegen externally, since we can no longer assume that we're inside of the `at::` namespace.
Important changes are in `types.py`.
How do we add the notion of namespaces to C++ types without people having to write "at::Tensor" everywhere? Before this PR, `CType` held a raw string representing the type, i.e. `BaseCType("Tensor", binds)`. This PR introduces a set of singleton base C++ types in `types.py`, that know how to print their namespace. Instead, we'd write `BaseCType(tensorT, binds)`, where printing `tensorT` will properly print out "at::Tensor".
This also means that you can't create arbitrary `CTypes`. If we need a new C++ type in the codegen, we need to add it to the list in `types.py`.
One blip in the design: we don't want to change `RegistrationDeclarations.yaml`, since that'll break external backends that ingest it. I added separate functions to display types without the namespace that are used to create RegistrationDeclarations.yaml`. With an external codegen API though, we can eventually kill it :)
I also didn't realize until this PR that `Declarations.yaml` is still directly in use, by some python/autograd codegen. Rather than keep that yaml byte-for-byte compatible, I just updated the callsites in the autograd codegen to work with namespaces. In the NEXT pr, I try to clean up some of the autograd codegen to stop using raw strings to match against C++ types.
Test Plan: Imported from OSS
Reviewed By: bhosmer
Differential Revision: D27708349
Pulled By: bdhirsh
fbshipit-source-id: 56a4f81fc101795bcb9ee1f722121480fb2356ad
Summary:
Generally wildcard imports are bad for the reasons described here: https://www.flake8rules.com/rules/F403.html
This PR replaces wildcard imports with an explicit list of imported items where possible, and adds a `# noqa: F403` comment in the other cases (mostly re-exports in `__init__.py` files).
This is a prerequisite for https://github.com/pytorch/pytorch/issues/55816, because currently [`tools/codegen/dest/register_dispatch_key.py` simply fails if you sort its imports](https://github.com/pytorch/pytorch/actions/runs/742505908).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/55838
Test Plan: CI. You can also run `flake8` locally.
Reviewed By: jbschlosser
Differential Revision: D27724232
Pulled By: samestep
fbshipit-source-id: 269fb09cb4168f8a51fd65bfaacc6cda7fb87c34
Summary:
When saved variable is of an output, its grad_fn is not saved in SavedVariable, so it must be passed in during `unpack`.
Here, we can always pass in grad_fn (whether or not saved variable is an output) because it is ignored if the saved variable is not an output.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53205
Reviewed By: gchanan, zhangguanheng66
Differential Revision: D26794365
Pulled By: soulitzer
fbshipit-source-id: e039baba20c364c4ab42ff99d0b242dd95c67fb3
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49138
See for details: https://fb.quip.com/QRtJAin66lPN
We need to model optional types explicitly, mostly for schema inference. So we cannot pass a `Tensor?[]` as `ArrayRef<Tensor>`, instead we need to pass it as an optional type. This PR changes it to `torch::List<c10::optional<Tensor>>`. It also makes the ops c10-full that were blocked by this.
## Backwards Compatibility
- This should not break the Python API because the representation in Python is the same and python_arg_parser just transforms the python list into a `List<optional<Tensor>>` instead of into a `List<Tensor>`.
- This should not break serialized models because there's some logic that allows loading a serialized `List<Tensor>` as `List<optional<Tensor>>`, see https://github.com/pytorch/pytorch/pull/49138/files#diff-9315f5dd045f47114c677174dcaa2f982721233eee1aa19068a42ff3ef775315R57
- This will break backwards compatibility for the C++ API. There is no implicit conversion from `ArrayRef<Tensor>` (which was the old argument type) to `List<optional<Tensor>>`. One common call pattern is `tensor.index({indices_tensor})`, where indices_tensor is another `Tensor`, and that will continue working because the `{}` initializer_list constructor for `List<optional<Tensor>>` can take `Tensor` elements that are implicitly converted to `optional<Tensor>`, but another common call pattern was `tensor.index(indices_tensor)`, where previously, the `Tensor` got implicitly converted to an `ArrayRef<Tensor>`, and to implicitly convert `Tensor -> optional<Tensor> -> List<optional<Tensor>>` would be two implicit conversions. C++ doesn't allow chaining. two implicit conversions. So those call sites have to be rewritten to `tensor.index({indices_tensor})`.
ghstack-source-id: 119269131
Test Plan:
## Benchmarks (C++ instruction counts):
### Forward
#### Script
```py
from torch.utils.benchmark import Timer
counts = Timer(
stmt="""
auto t = {{op call to measure}};
""",
setup="""
using namespace torch::indexing;
auto x = torch::ones({4, 4, 4});
""",
language="cpp",
).collect_callgrind(number=1_000)
print(counts)
```
#### Results
| Op call |before |after |delta | |
|------------------------------------------------------------------------|---------|--------|-------|------|
|x[0] = 1 |11566015 |11566015|0 |0.00% |
|x.index({0}) |6807019 |6801019 |-6000 |-0.09%|
|x.index({0, 0}) |13529019 |13557019|28000 |0.21% |
|x.index({0, 0, 0}) |10677004 |10692004|15000 |0.14% |
|x.index({"..."}) |5512015 |5506015 |-6000 |-0.11%|
|x.index({Slice(None, None, None)}) |6866016 |6936016 |70000 |1.02% |
|x.index({None}) |8554015 |8548015 |-6000 |-0.07%|
|x.index({false}) |22400000 |22744000|344000 |1.54% |
|x.index({true}) |27624088 |27264393|-359695|-1.30%|
|x.index({"...", 0, true, Slice(1, None, 2), torch::tensor({1, 2})})|123472000|123463306|-8694|-0.01%|
### Autograd
#### Script
```py
from torch.utils.benchmark import Timer
counts = Timer(
stmt="""
auto t = {{op call to measure}};
""",
setup="""
using namespace torch::indexing;
auto x = torch::ones({4, 4, 4}, torch::requires_grad());
""",
language="cpp",
).collect_callgrind(number=1_000)
print(counts)
```
Note: the script measures the **forward** path of an op call with autograd enabled (i.e. calls into VariableType). It does not measure the backward path.
#### Results
| Op call |before |after |delta | |
|------------------------------------------------------------------------|---------|--------|-------|------|
|x.index({0}) |14839019|14833019|-6000| 0.00% |
|x.index({0, 0}) |28342019|28370019|28000| 0.00% |
|x.index({0, 0, 0}) |24434004|24449004|15000| 0.00% |
|x.index({"..."}) |12773015|12767015|-6000| 0.00% |
|x.index({Slice(None, None, None)}) |14837016|14907016|70000| 0.47% |
|x.index({None}) |15926015|15920015|-6000| 0.00% |
|x.index({false}) |36958000|37477000|519000| 1.40% |
|x.index({true}) |41971408|42426094|454686| 1.08% |
|x.index({"...", 0, true, Slice(1, None, 2), torch::tensor({1, 2})}) |168184392|164545682|-3638710| -2.16% |
Reviewed By: bhosmer
Differential Revision: D25454632
fbshipit-source-id: 28ab0cffbbdbdff1c40b4130ca62ee72f981b76d
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49122
cpparguments_exprs has induced a lot of head scratching in many recent PRs for how to structure the code in a good way. This PR eliminates the old algorithm for an entirely new algorithm inspired by logic programming. The net result is shorter, cleaner and should be more robust to future changes.
This PR is a bit of a whopper. Here is the order to review it.
- tools/codegen/api/types.py
- Deleted CppArgument, CppArgumentPackIface (and subclasses), CppExpr, DispatcherExpr, DispatcherArgument, NativeExpr, NativeArgument, MetaArgument. All things previously called XArgument are now Binding. All things previously called XExpr are now Expr. I deleted the `__str__` implementation on Binding and fixed all call sites not to use it. On Binding, I renamed `str_no_default` and `str_default` to `defn` and `decl` for better symmetry with the corresponding signature concepts, although I'm open to naming them back to their original versions.
- Obviously, things are less type safe without the class distinctions. So I introduce a new ADT called CType. CType represents the *semantic C++ type* of a binding: it is both the C++ type (e.g., `const Tensor&`) as well as the argument name that specifies what the binding denotes (e.g., `other`). Every binding now records its CType. The key observation here is that you don't actually care if a given expression is from the cpp or dispatcher or native API; what you care is having enough information to know what the expression means, so you can use it appropriately. CType has this information. For the most part, ArgNames are just the string names of the arguments as you see them in JIT schema, but there is one case (`possibly_redundant_memory_format`) where we encode a little extra information. Unlike the plain strings we previously used to represent C++ types, CType have a little bit of structure around optional and references, because the translation code needs to work around these concepts.
- I took the opportunity to kill all of the private fields like `_arguments` and `_returns_type` (since the argument types don't make sense anymore). Everything is computed for you on the fly. If this is a perf problem in codegen we can start using `cached_property` decorator.
- All of the heavy lifting in CppSignature.argument_packs has been moved to the cpp module. We'll head over there next. Similarly, all of the exprs methods are now calling translate, the new functionality which we haven't gotten to yet
- tools/codegen/api/cpp.py
- We refactor all of the type computation functions to return CType instead of str. Because CTypes need to know the denotation, there is a new `binds: ArgName` argument to most functions that provides the denotation, so we can slot it in. (An alternative would have been to construct CTypes without denotations and then fill them in post-facto, but I didn't do it this way. One downside is there are some places where I need a CType without denotation, so I fill these in with `__placeholder__` whenever this happens).
- `argument` and `arguments` are now extremely simple. There is no more Pack business, just produce one or more Bindings. The one thing of note is that when both a `memory_format` and `options` are in scope, we label the memory format as `possibly_redundant_memory_format`. This will be used in translation
- tools/codegen/api/dispatcher.py and tools/codegen/api/native.py - same deal as cpp.py. One thing is that `cpparguments_exprs` is deleted; that is in the translator
- tools/codegen/api/translate.py - the translator! It uses a very simple backwards deduction engine to work out how to fill in the arguments of functions. There are comments in the file that explain how it works.
- Everything else: just some small call site tweaks for places when I changed API.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: ljk53
Differential Revision: D25455887
Pulled By: ezyang
fbshipit-source-id: 90dc58d420d4cc49281aa8647987c69f3ed42fa6
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48249
Introduced autograd related data models at tools.codegen.api.autograd.
Migrated load_derivatives.py to produce the new data models from derivatives.yaml.
It has clean mypy-strict result.
Changed both gen_autograd_functions.py and gen_variable_type.py to consume
the new data model.
Added type annotations to gen_autograd_functions.py - it has clean mypy-strict
result except for the .gen_autograd import (so haven't added it to the strict
config in this PR).
To limit the scope of the PR, gen_variable_type.py is not refactored, and the
main structure of load_derivatives.py / gen_autograd_functions.py is kept. We
only make necessary changes to make it work.
Confirmed byte-for-byte compatible with the old codegen:
```
Run it before and after this PR:
.jenkins/pytorch/codegen-test.sh <baseline_output_dir>
.jenkins/pytorch/codegen-test.sh <test_output_dir>
Then run diff to compare the generated files:
diff -Naur <baseline_output_dir> <test_output_dir>
```
Test Plan: Imported from OSS
Reviewed By: ezyang
Differential Revision: D25086561
Pulled By: ljk53
fbshipit-source-id: 1f43ab0931d9814c24683b9a48ca497c5fc3d729
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41947
Previously, if an op took an optional `Tensor?` argument, the C++ frontend (i.e. `at::op()` and `Tensor::op()`)
were generated to take `Tensor`. A previous PR (https://github.com/pytorch/pytorch/pull/41610) changed the kernels
to be written with `c10::optional<Tensor>` instead of `Tensor`, but that did not touch the C++ frontend yet.
This PR changes the C++ frontend API to take `c10::optional<Tensor>` instead of `Tensor` as well.
This should be mostly bc conserving. Since `Tensor` implicitly converts to `c10::optional<Tensor>`, any old code
calling an op with a `Tensor` would still work. There are likely corner cases that get broken though.
For example, C++ only ever does *one* implicit conversion. So if you call an op with a non-tensor object
that gets implicitly converted to a `Tensor`, then that previously worked since the API took a `Tensor` and
C++ allows one implicit conversion. Now it wouldn't work anymore because it would require two implicit conversions
(to `Tensor` and then to `c10::optional<Tensor>`) and C++ doesn't do that.
The main reasons for doing this are
- Make the C++ API more sane. Those arguments are optional and that should be visible from the signature.
- Allow easier integration for XLA and Autocast. Those backends generate code to wrap operators and forward
operator arguments to calls to at::op(). After https://github.com/pytorch/pytorch/pull/41610, there was
a mismatch because they had to implement operators with `optional<Tensor>` but call `at::op()` with `Tensor`,
so they had to manually convert between those. After this PR, they can just forward the `optional<Tensor>`
in their call to `at::op()`.
ghstack-source-id: 108873705
Test Plan: unit tests
Reviewed By: bhosmer
Differential Revision: D22704832
fbshipit-source-id: f4c00d457b178fbc124be9e884a538a3653aae1f
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37175
ghstack-source-id: 106938114
Test Plan: Upcoming diffs use this for upsampling.
Differential Revision: D21209994
fbshipit-source-id: 1a71c07e45e28772a2bbe450b68280dcc0fe2def
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37174
ghstack-source-id: 106938112
Test Plan: Upcoming diffs use this for upsampling.
Differential Revision: D21210002
fbshipit-source-id: d6a55ab6420c05a92873a569221b613149aa0daa
Summary:
Adds the ability for all backward functions to accept undefined output gradient arguments. An undefined gradient is a Tensor that was created by the argumentless constructor `at::Tensor()`, where `tensor.defined() == false`.
Also adds new autograd nodes, UndefinedGrad and UndefinedGradBackward, that can be used from within Python code to inject undefined gradients into a backward function. A new test case is added to the backward function unit tests to use the UndefinedGrad node to ensure that undefined gradients do not break any backward functions.
Closes https://github.com/pytorch/pytorch/issues/33138
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39400
Differential Revision: D21936588
Pulled By: albanD
fbshipit-source-id: eccc5f55c77babe6dadcea4249d0c68a3c64e85d
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33157
This PR enables graph level thread parallelism on CPU for the Autograd
Engine. It replace https://github.com/pytorch/pytorch/pull/29574 for the
reason of task level parallelism drawbacks with the existing autograd
system.
Fixes https://github.com/pytorch/pytorch/issues/18333
The graph level parallelism on CPU design:
1. Remove the single CPU thread that init in the Engine itself and allow
the owning thread (which calls Engine::execute) to drive the Engine
execution so that we could let outer threading to enable thread
parallelism.
2. Maintain a separate ReadyQueue per CPU thread, and stash the
ReadyQueue for different devices/threads into the thread local
shared_ptr, the Engine itself will memorize the shared_ptr of the
ReadyQueue to different devices (other than CPU)
3. The CPU thread local ReadyQueue is initialized per CPU thread
Engine::execute call (or `backward()`, `grad()` call), and memorized
the shared_ptr into the GraphTask since every `backward()` call have
its own GraphTask
4. Cross device NodeTask push is accomplished by 2 and 3. we can refer
to device's ReadyQueue from Engine, and CPU's ReadyQueue from
GraphTask, which means if we can push to a different ReadyQueue
according to the device
5. Termination of the CPU thread: if we mark the graph_task as
completed, we will exit the while loop and terminate the current
backward execution, because it's guranteed that all other NodeTasks
is finished before we mark a GraphTask as complete
6. re-entrant thread logic keeps the same, reentrant thread detection is
similar as before, we set the worker_device to NO_DEVICE initially
and set to CPU afterward to detect if this is a reentrant call or not.
7. we still have the reentrant thread pool that create new threads if it's
a deep reentrant case, and reuse the ReadyQueue with the parent thread
for performance.
Since we introduce the thread parallelism on CPU, we have to ensure the
thread safety of the GraphTask. This is not a problem if we execute all
forward in different threads since we will build separate GraphTask in
different threads, and each GraphTask is a separate instance that share
nothing, i.e. Hogwild training on CPU should be fine on this case.
But there might be case that user would like to do some part of the task in
a single thread, and do the rest of work in several threads
concurrently, so thread safety is crucial in those cases. The thread
safety strategy for the multithread autograd is as follows:
1. Add a mutex to protect thread safety in Autograd Node/Function, and
hold the lock for different data racing cases
2. Lock the mutex during Node::apply(), this is to ensure Node that
writing to the shared variable are not racing across threads (i.e.
AccumulateGrad and custom C++ Autograd Node if writing to shared
variables )
3. Lock the mutex during Node::release_variables(), this serve the
purpose that when we release saved_variables from one thread, no
other threads can call the Node::apply(), this ensures the variable
references from other threads aren't dangling.
4. If we don't release any variables and no shared data read/write in
the Node i.e. purely functional, we don't lock the mutex
This way we could protect the thread safety on Autograd Node, but we
could still not protect the thread safety on Node pre/post C++ hooks
(python hooks are automatically thread safe), we rely on the user to
write thread safe C++ hooks if they want the hook to be correctly
applied in multithreading environment.
**User visiable changes**:
There're not too much user visiable changes, since we use the owning
thread to drive the autograd execution, user could write their own
threading code and does not block on the Autograd engine, some behaviors
that user should be aware of:
**Non-determinism**:
if we are calling backward() on multiple thread concurrently but with
shared inputs (i.e. Hogwild CPU training). Since parameters are automatically shared across threads, gradient accumulation might become non-deterministic on backward calls across threads, because two backward calls might access and try to accumulate the same .grad attribute. This is technically not safe, and it might result in racing condition and the result might be invalid to use.
But this is expected pattern if user are using the multithreading
approach to drive the whole training process but using shared
parameters, user who use multithreading should have the threading model
in mind and should expect this to happen. User should use the functional
interface `torch.autograd.grad()` to calculate the gradients instead of
`backward()` on loss.
**Graph retaining**:
If part of the autograd graph is shared between threads, i.e. run first
part of forward single thread, then run second part in multiple threads,
then the first part of graph is shared. In this case different threads execute grad() or backward() on the same graph might
have issue of destroying the graph on the fly of one thread, and the
other thread will crash in this case. We will error out to the user
similar to what call `backward()` twice with out `retain_graph=True`, and let the user know they should use `retain_graph=True`.
**TODOs**:
[ ] benchmark the PR with example models and datasets to demonstrate
the performance gain in CPU training
[ ] ensure that we don't regress the single thread autograd performance
**Follow ups**:
[ ] a correct and tight integration with distributed autograd
[ ] try to unify the thread pool between JIT and Autograd, and see if
there's unifying pattern that we could apply universally
Test Plan: Imported from OSS
Differential Revision: D20236771
Pulled By: wanchaol
fbshipit-source-id: 1e0bd4eec14ffebeffdb60b763b8d6f0e427eb64
Summary:
This is a fix for https://github.com/pytorch/pytorch/issues/21469
Currently there is no way to define if backward function released variables when variables were added to a vector. This change will set a flag if function has saved variables and they were released. So we will prevent if somebody will call this function again with already released variables.
Functions that do not have saved variables can be called multiple times for BC
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21533
Differential Revision: D15810481
Pulled By: ifedan
fbshipit-source-id: 5663e0c14f1b65727abc0d078aef348078d6a543
Summary:
* adds TORCH_API and AT_CUDA_API in places
* refactor code generation Python logic to separate
caffe2/torch outputs
* fix hip and asan
* remove profiler_cuda from hip
* fix gcc warnings for enums
* Fix PythonOp::Kind
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19554
Differential Revision: D15082727
Pulled By: kostmo
fbshipit-source-id: 83a8a99717f025ab44b29608848928d76b3147a4
Summary:
This only deals with four functions, but is an important first step towards removing BoolTensor and IndexTensor entirely.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17193
Differential Revision: D14157829
Pulled By: cpuhrsch
fbshipit-source-id: a36f16d1d88171036c44cc7de60ac9dfed9d14f2
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16751
This was made more complicated by the fact that ivalue::IntList
is a thing. So I had to fix all of the sites where we referring
to IValue post facto.
The following codemods were run, in this order:
```
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in IntList IntArrayRef
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in IntArrayRef::create IntList::create
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in ivalue::IntArrayRef ivalue::IntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in Tag::IntArrayRef Tag::IntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in isIntArrayRef isIntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in toIntArrayRef toIntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in 'Shared<IntArrayRef>' 'Shared<IntList>'
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in 'intrusive_ptr<IntArrayRef>' 'intrusive_ptr<IntList>'
```
Some manual fixups were done afterwards; they can be reviewed separately
at https://github.com/pytorch/pytorch/pull/16752
Reviewed By: dzhulgakov
Differential Revision: D13954363
fbshipit-source-id: b5c40aacba042402155a2f5a229fa6db7992ac64
Summary:
Enables most of `cppcoreguidelines-*` checks for clang-tidy. Major fixes included:
- Uninitialized members,
- Use of `const_cast`,
- Use of raw `new`
ezyang apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12959
Differential Revision: D11349285
Pulled By: goldsborough
fbshipit-source-id: 9e24d643787dfe7ede69f96223c8c0179bd1b2d6
Summary:
This eliminates the need for any heuristics regarding stack size limits.
This is a re-do #11534 with a fix to properly handle cases where
multiple edges exist between a pair of functions.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11611
Differential Revision: D9991198
Pulled By: resistor
fbshipit-source-id: fecd2c5cac7e78f82a0f20cf33268bb1617bb4a0
Summary:
I'm cramming through clang tidy emitted warnings. This PR addresses the `hi-cpp-override` check which warns that `virtual` + `override` is redundant, since `override` already signifies that a function is overriding and thus virtual.
Where there was `virtual` + `override` I removed the `virtual`, where there was `virtual` and no `override` I removed `virtual` and added `override`.
ezyang apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9335
Differential Revision: D8807082
Pulled By: goldsborough
fbshipit-source-id: e0a261053f6540a22cc56ec160a24aa285af6319
* Back out "Back out "Add support for generating ATen files during fbcode build""
Original commit changeset: 7b8de22d1613
I'm re-sending this diff exactly as it was approved and
committed. Fixes to support @mode/opt will be sent separately for ease
of review.
* Enable building //caffe2:torch with @mode/opt
In @mode/opt, python runs out of a PAR, which breaks a lot of
assumptions in the code about where templates/ folders live relative
to __file__. Rather than introduce hacks with parutil, I simply turn
template_path into a parameter for all the relevant functions and
thread it through from the top level.
Trying to copy all results fails when one of them is a tensor list which
has not been populated. This blew up for CuDNN RNNs when the weights
did not require grad.
Thanks to Sylvain Gugger for reporting!
* Improve Function interface
* Undo tracer changes
* Fix bug in VariableType.set_history
* Rename function_counter and sequence_number to sequence_nr
* Clarify Function documentation
* Replace swap_next_edges with next_edges() getter
* Bring back set_gradient_edge
* Simplify special.cpp
* add_gradient_edge -> create_gradient_edge
* Add mutable getters for pre/post hooks
* Use make_variable with Edge
* Remove remove_gradient_edge in favor of detach_
* Fix documentation and remove create_gradient_edge friend method
* Canonicalize some includes
* Improve Variable interface
* Address comments from @apaszke and @colesbury
* string ::operator= is not noexcept
* Remove ir.h from tracer_state.h to improve build times
* Make Variable a struct and pack SavedVariable fields
* Implement as_variable_ref
* grad_fn_ptr() -> grad_fn_unsafe()
* Reduce hackiness of set_type hack
* Include variable.h and edge.h in tracer_state.h because it uses them
* class Variable -> struct Variable because Windows cant even
* Make Variable::output_nr uint32_t instead of int
* Add comment about tracing state
* Replaced more static_cast<Variable&> and improve docs
* Remove SavedVariable destructor and construct members in init list
* Clarify docs for Variable
* Variable::set_version -> set_version_counter
* Add transpose() to TensorGeometry.
This code is dead; I briefly used it in my RNN patchset but
eventually rewrote it to not be necessary. However, it seemed
like a useful gadget so I kept it. In general, it seems that it
would be useful for TensorGeometry to support all operations that
Tensor does, but it only computes the changes to sizes/strides
instead of actually doing the computation.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Turn on wrap_dim behavior for TensorGeometry
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Support for hard-coded differentiable outputs.
Some outputs of functions are nondifferentiable, and should always
be returned with requires_grad=False. Traditionally, we have used
the presence of 'grad' to signal that only the first output is
differentiable, and the rest are not, but cudnn_rnn (to be
implemented) breaks this pattern; its first three outputs are differentiable,
but its last output is a buffer that is just consumed by backwards.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* TensorGeometry constructor from just sizes
The sizes are assumed to form a contiguous tensor, and we compute
the strides we would get in that case.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Support saving TensorList for backwards.
There is some back story here. Saved TensorList in backwards will
be used by cudnn_rnn, and it is worth asking, why is it necessary to
save a list of tensors? Indeed, *technically* speaking a list of
tensors is not necessary, we only need to save the sizes of each
of the weight tensors. (We need the sizes because cuDNN is only
going to blast the derivative of weights into a flat buffer, but
we need to match the sizes of the views into the buffer when we
eventually return the derivatives.)
However, it was surprisingly awful trying to implement passing just
sizes, because as non-Tensor arguments, the JIT interpreter generation
code is expected to handle all non-Tensor arguments as attributes in the
trace, and our attributes struct doesn't actually know how to do
arrays of arrays. Saved TensorList code was much easier to get working,
so that's what this patch does.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* MatrixRef - an ArrayRef with a stride, making it a 2D ArrayRef.
Like ArrayRef, this class does not own the underlying data, it is expected
to be used in situations where the data resides in some other buffer.
This is intended to be trivially copyable, so it should be passed by
value.
For now, 2D only (so the copies are actually cheap, without having
to write a SmallVector class) and contiguous only (so we can
return non-strided ArrayRef on index).
The intended use-case (not in this commit) is to make it easier to
work with RNN weights, which are num_weights x num_layers matrix of
parameters.
P.S. dimension 0 indexes rows, dimension 1 indexes columns
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Generalize getDataType in Descriptors.h
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Change copy_range to take Tensor, and change cat_tensors_backward accordingly
Should a backward function return a Variable or a Tensor? For the most
part, all of our backward functions return Tensor, except cat_tensors_backward,
which returns a variable_list (which is really the only thing that matters,
because Tensor and Variable are interconvertible). But this is kind of weird,
because it means that you can't implement a backwards in ATen that returns
a std::vector<Tensor>, and then hook it up transparently with the derivatives
code. So I switched it over.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Support 5-ary return Tensor tuple.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Support code generation with mixed Tensor/TensorList in output.
I don't think I ended up using this in cudnn_rnn, but this seems
it might be useful for someone else later.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Support 4-ary boolean array
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Add support for retain_variables in tools/autograd/derivatives.yaml
'retain_variables', a bool which is true if a user has specified
that saved variables should be retained in case the backwards is
run again later. This allows an optimization where we can
destroy saved buffers if we know variables are not going to be retained,
e.g., it is (will be) used by _cudnn_rnn
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Lazily initialize cuDNN descriptors
Previously, cuDNN descriptors were eagerly allocated as soon
as a FooDescriptor object was created. However, in some uses
of TensorDescriptor, this is problematic: some tensors are optional
and cuDNN's API expects to be given a nullptr TensorDescriptor
in this case, not an uninitialized (but allocated) descriptor.
Lazily initializing the descriptors makes it less likely for
us to use uninitialized memory and matches the usual semantics of
unique_ptr. It's good sense!
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Port cuDNN RNNs to ATen.
This brings three new functions:
- _cudnn_rnn_flatten_weight: flatten a matrix of weight tensors into
a single contiguous weight buffer as required by cuDNN
- _cudnn_rnn: run RNN forwards
- _cudnn_rnn_backward: run RNN backwards
RNNs have a lot of parameters, so we restructured what was previously
a single 'fn' object that recorded all the parameters into three
objects: RNNDescriptorParams, TensorDescriptorListParams and
DropoutDescriptorParams.
We make use of MatrixRef to organize the weight tensors (which are
weight/bias x number of layers), but I did not teach the codegen
how to pass these as arguments/return values natively, so instead
a MatrixRef is passed as its constituent ArrayRef and int64_t stride0.
cudnn_rnn has three differentiable outputs and one nondifferentiable
one, so it makes use of the support for hard-coded differentiable outputs.
I haven't deleted all of the descriptor code from Python, because dropout
initialization still goes through this codepath, that should be fixed soon
but I don't see it as essential for this PR.
This commit also removes the last use of NestedIOFunction from PyTorch.
There are some shenanigans with cuDNN dropout descriptor initialization,
see below:
Note [cuDNN dropout descriptor initialization]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In most cases, setting descriptors in cuDNN is cheap (e.g.,
cudnnSetTensorNdDescriptor). However, this is not the case for
cudnnSetDropoutDescriptor: in cuDNN 6/7 (and possibly others) it does an
expensive precomputation to initialize the random number generator states. In
cuDNN 6, this is the ONLY official mechanism to initialize a dropout descriptor,
which means that law-abiding clients were expected to generate a dropout
descriptor once and cache it. However, our ATen interface is (1) stateless (so
we can't cache the descriptors) and (2) does not accept arbitrary user types in
its interface (so we can't pass the descriptor in). This puts us in a pickle.
In cuDNN 7, a new function, cudnnRestoreDropoutDescriptor was added, which
forgoes the expensive initialization process, and can initialize the
descriptor with a pre-initialized state CUDA tensor. This is great, because
it means we can simply pass in the state tensor and then initialize the
descriptor internally. Unfortunately, this function is not available in
cuDNN 6.
To work around this, we break the cuDNN abstraction barrier, and have
the struct layout of the underlaying dropout descriptor. With this struct,
we can reimplement cudnnRestoreDropoutDescriptor from scratch. Great!
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Fix cuDNN 7 behavior.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Delete some unused, controversial methods from MatrixRef.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Add missing filter_dim_a slice
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Replace nested for-loop with itertools.chain.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* CR comment on mut_desc()
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Refactor DropoutDescriptor API.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Use cached CurrentDeviceProperties from Context.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Document _cudnn_rnn outputs.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Improve fmap docs, convert some functions to use it.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Move IndexRange to autograd/function.h
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Elaborate on CUDNN_STATUS_INVALID_VALUE return some more.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Add an all-in-one setter for RNNDescriptorParams.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Print what the unrecognized RNN mode was
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* RNN TensorDescriptor improvements
- Have an explicit size/stride overload for set TensorDescriptor,
so you don't have to create a goofy view to feed in.
- Change the padding to 3D rather than 5D, which is all you actually
need (it's just 2D that is not supported by cuDNN API.)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Fix implementation of cudnnRestoreDropoutDescriptor, plus test.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Better comments about input layout.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Add comment about no-DropoutDescriptor argument RNNDescriptor function.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Rename vocab_size back to input_size.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Don't use backslash in comment.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Bugfix for contiguous TensorGeometry calculation.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Don't allocate a dummy tensor when setting TensorDescriptor for flatten_weight.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Make contiguity errors more user-friendly.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* s/fn.dropout.train/fn_train/
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* s/_cudnn_rnn_backward_grad/_cudnn_rnn_backward_input/
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Make dcx properly undefined when not required.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Remove old TODO.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Add state size check in cudnnRestoreDropoutDescriptor
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Explicitly narrow int64_t to size_t
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Restore copyParams comment.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Update benchmark numbers, and slight engineering improvements.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
* Typofix.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
When generating autograd::Function wrappers for ATen functions, we need
to take derivative expressions in derivatives.yaml (identified by name)
and correlate them with the correct index they should take in
grad_inputs (identified positionally only). Previously, this
computation was done *statically* in load_derivatives.py (set_up_derivatives)
and then we hard-coded indices in the generated Functions.cpp.
This is sufficient for supporting ATen operations which consist solely
of Tensor arguments, or a single TensorList argument. However, this
strategy will not work for mixed Tensor/TensorList arguments, as the
index of any Tensor after a TensorList is not known at codegen time,
since it will vary depending on the length of the TensorList, e.g.,
foo({x1, x2}, y) ==> y is index 2
foo({x1, x2, x3}, y) ==> y is index 3
This commit introduces a new strategy for generating these indices which
pushes index computation to *runtime* (though any decent C++ optimizer
can re-optimize the index computation back into constants; this was
verified in Godbolt.) Instead of hard-coding constants, a small
IndexRangeGenerator object is created and used to generate the correct
index ranges (std::pair<size_t, size_t>) for each argument.
Here is an example of mm rewritten in the new codegen format:
variable_list MmBackward::apply(const variable_list& grads) {
IndexRangeGenerator gen;
auto self_ix = gen.range(1);
auto mat2_ix = gen.range(1);
variable_list grad_inputs(gen.size());
auto& grad = grads[0];
auto self = self_.unpack();
auto mat2 = mat2_.unpack();
if (should_compute_output({ mat2_ix })) {
auto grad_result = mm_mat2_backward(grad, self, mat2_sizes, mat2.strides(), 1);
copy_range(grad_inputs, mat2_ix, grad_result);
}
if (should_compute_output({ self_ix })) {
auto grad_result = mm_mat1_backward(grad, mat2, self_sizes, self.strides(), 1);
copy_range(grad_inputs, self_ix, grad_result);
}
return grad_inputs;
}
Unlike before, where self_ix and mat2_ix were hardcoded as 0 and 1,
we derive them by invoking IndexRangeGenerator (which internally
is just a little counter which bumps up each invocation of 'range').
Each _ix variable actually represents a range, as can be seen here.
variable_list CatBackward::apply(const variable_list& grads) {
IndexRangeGenerator gen;
auto tensors_ix = gen.range(tensors_size_);
variable_list grad_inputs(gen.size());
auto& grad = grads[0];
if (should_compute_output({ tensors_ix })) {
auto grad_result = cat_tensors_backward(grad, tensors_sizes_dim, dim);
copy_range(grad_inputs, tensors_ix, grad_result);
}
return grad_inputs;
}
The invocation of 'copy_range' reads a TensorList returned by the
backward function into the correct entries in grad_inputs.
tensors_size_ is a new member of CatBackward which is filled with
the size of the forward input tensor when cat is originally invoked.
With this new code generation strategy, we can completely eliminate
the special cases for Tensor and TensorList in index selection, and
we can smoothly support mixed Tensor/TensorList by making multiple
invocations of gen.range() with non-one arguments.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
The gen_variable_type.py script now is only responsible for generating
VariableType.h/cpp. The parent script, "gen_autograd.py", delegates to
gen_autograd_functions.py, gen_variable_type.py, and
gen_python_functions.py.
I've removed "fallthrough" functions. It's replaced by
DONT_RECORD_TRACE, DONT_PROFILE, and DONT_REQUIRE_DERIVATIVE.
In preparation for binding the _out variants, I changed some static
types to Tensor (from Variable) and we now unpack and name tuple return
values.