Newer matmul kernels, e.g. those targeting Hopper GPUs, sometime use a "persistent" schedule which consists in launching as many CUDA blocks as there are SMs on the GPU, with each such block then working on multiple output tiles in a row. This allows to eliminate the overhead of starting and finishing each tile, effectively doing cross-tile pipelining. In previous generations these latencies could be hidden by having multiple CUDA blocks per SM but, with blocks becoming larger, only one can run at a time per SM and thus this needs to be taken care of in software.
Persistent kernels become an issue when other kernels are running concurrently. The classical example is a NCCL communication kernel running in the background. In such cases the matmul expects to be able to use all the SMs but is prevented from doing so because some of the are busy. This can lead to its blocks being scheduled as two separate waves on the available SMs. This "wave quantization" can double the latency of the matmul kernels.
While we wait for smarter solutions, such as automatic load balancing among the blocks, an easy way to unblock ourselves is to tell the matmuls to only use a subset of the GPU's SMs. For this, I am introducing a global `sm_carveout` flag which can be used to specify how many SMs should be left available for other kernels.
For now I only change the cuBLAS kernels and the scaled-mm CUTLASS kernel. More kernels can be opted-in later.
I tested this change manually, by using the Kineto profiler to look up the grid size of a scaled-mm kernel with different values of `sm_carveout`, and making sure it changed. Suggestions are welcome for a more automated test.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144974
Approved by: https://github.com/eqy, https://github.com/albanD
# summary
Add blockwise MXFP8 support to `torch._scaled_mm` on CUDA capability 10.0 and higher devices. If the scales for A and B are of dtype `torch.float8_e8m0fnu`, we dispatch to the blockwise kernel from cuBLAS.
This is a skeleton PR where we test basic functionality (numerics of various simple matrices, as well as one end to end quantization + gemm).
- Scales are flipped based on transpose_result
- Handles boundary conditions
Note that MXFP4 is not added in this PR - we can tackle that in a future PR.
This PR was created by taking https://github.com/pytorch/pytorch/pull/145562, switching e8m0 to in-core dtype, removing fp4 for now, and adding test cases.
# test plan
```
pytest test/test_matmul_cuda.py -k blockwise_mxfp8 -s
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147548
Approved by: https://github.com/drisspg
Co-authored-by: drisspg <drisspguessous@gmail.com>
TLDR: Follow up/ Build on top of https://github.com/pytorch/pytorch/pull/144476. add OCP FP8 support for gfx950
refer to https://github.com/pytorch/ao/pull/1677
This pull request includes several changes to improve compatibility and support for new GPU architectures and data types, particularly for ROCm. The key updates involve adding support for new ROCm versions and GPU architectures, updating data type handling, and removing outdated checks.
### Improvements to GPU Architecture and ROCm Version Support:
* [`aten/src/ATen/Context.cpp`](diffhunk://#diff-33de472d304acbe57d693c8567370c638068bedc1aa0ce8e9dc115dad05a7810L323-R326): Added support for new GPU architectures `gfx1200`, `gfx1201`, and `gfx950` based on ROCm version checks.
* [`aten/src/ATen/native/cuda/Blas.cpp`](diffhunk://#diff-e8a569efee1e650172f120a0fdcda024fe3e4703a4ee3336425c8f685af6b3abL196-R199): Updated architecture support in multiple functions to include `gfx1200`, `gfx1201`, and `gfx950` based on ROCm version checks. [[1]](diffhunk://#diff-e8a569efee1e650172f120a0fdcda024fe3e4703a4ee3336425c8f685af6b3abL196-R199) [[2]](diffhunk://#diff-e8a569efee1e650172f120a0fdcda024fe3e4703a4ee3336425c8f685af6b3abL865-R876)
### Updates to Data Type Handling:
* [`aten/src/ATen/cuda/CUDADataType.h`](diffhunk://#diff-9188bb13b1a49f459141f5f9b875593d1c5ce2beb5ad711fdbaf5bc7089ec015L81-L98): Enhanced data type conversion to include new float8 types for both CUDA and ROCm environments.
* [`aten/src/ATen/cuda/tunable/GemmHipblaslt.h`](diffhunk://#diff-bfa1a3b5d4bef1892bf50338775f3b0fd8cd31fc1868148f3968b98aefb68e3fL29-R80): Updated `HipDataTypeFor` template to handle new float8 types and added hard-coded enum values for ROCm versions prior to 6.3.
### Removal of Outdated Checks:
* [`cmake/public/LoadHIP.cmake`](diffhunk://#diff-b98e27b9a5f196a6965a99ee5a7bb15b3fc633d6375b767635b1b04ccb2fd3d5L169-L197): Removed the check for `HIP_NEW_TYPE_ENUMS` as it is no longer necessary with the updated ROCm versions. [[1]](diffhunk://#diff-b98e27b9a5f196a6965a99ee5a7bb15b3fc633d6375b767635b1b04ccb2fd3d5L169-L197) [[2]](diffhunk://#diff-b98e27b9a5f196a6965a99ee5a7bb15b3fc633d6375b767635b1b04ccb2fd3d5L211-R182)
These changes ensure better compatibility and performance on newer hardware and software environments, particularly for users leveraging ROCm and CUDA for deep learning and scientific computing tasks.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146632
Approved by: https://github.com/jeffdaily
Co-authored-by: Jeff Daily <jeff.daily@amd.com>
TLDR: Follow up/ Build on top of https://github.com/pytorch/pytorch/pull/144476. add OCP FP8 support for gfx950
refer to https://github.com/pytorch/ao/pull/1677
This pull request includes several changes to improve compatibility and support for new GPU architectures and data types, particularly for ROCm. The key updates involve adding support for new ROCm versions and GPU architectures, updating data type handling, and removing outdated checks.
### Improvements to GPU Architecture and ROCm Version Support:
* [`aten/src/ATen/Context.cpp`](diffhunk://#diff-33de472d304acbe57d693c8567370c638068bedc1aa0ce8e9dc115dad05a7810L323-R326): Added support for new GPU architectures `gfx1200`, `gfx1201`, and `gfx950` based on ROCm version checks.
* [`aten/src/ATen/native/cuda/Blas.cpp`](diffhunk://#diff-e8a569efee1e650172f120a0fdcda024fe3e4703a4ee3336425c8f685af6b3abL196-R199): Updated architecture support in multiple functions to include `gfx1200`, `gfx1201`, and `gfx950` based on ROCm version checks. [[1]](diffhunk://#diff-e8a569efee1e650172f120a0fdcda024fe3e4703a4ee3336425c8f685af6b3abL196-R199) [[2]](diffhunk://#diff-e8a569efee1e650172f120a0fdcda024fe3e4703a4ee3336425c8f685af6b3abL865-R876)
### Updates to Data Type Handling:
* [`aten/src/ATen/cuda/CUDADataType.h`](diffhunk://#diff-9188bb13b1a49f459141f5f9b875593d1c5ce2beb5ad711fdbaf5bc7089ec015L81-L98): Enhanced data type conversion to include new float8 types for both CUDA and ROCm environments.
* [`aten/src/ATen/cuda/tunable/GemmHipblaslt.h`](diffhunk://#diff-bfa1a3b5d4bef1892bf50338775f3b0fd8cd31fc1868148f3968b98aefb68e3fL29-R80): Updated `HipDataTypeFor` template to handle new float8 types and added hard-coded enum values for ROCm versions prior to 6.3.
### Removal of Outdated Checks:
* [`cmake/public/LoadHIP.cmake`](diffhunk://#diff-b98e27b9a5f196a6965a99ee5a7bb15b3fc633d6375b767635b1b04ccb2fd3d5L169-L197): Removed the check for `HIP_NEW_TYPE_ENUMS` as it is no longer necessary with the updated ROCm versions. [[1]](diffhunk://#diff-b98e27b9a5f196a6965a99ee5a7bb15b3fc633d6375b767635b1b04ccb2fd3d5L169-L197) [[2]](diffhunk://#diff-b98e27b9a5f196a6965a99ee5a7bb15b3fc633d6375b767635b1b04ccb2fd3d5L211-R182)
These changes ensure better compatibility and performance on newer hardware and software environments, particularly for users leveraging ROCm and CUDA for deep learning and scientific computing tasks.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146632
Approved by: https://github.com/jeffdaily
Co-authored-by: Jeff Daily <jeff.daily@amd.com>
This PR is to add `torch._scaled_mm` for CPU backend.
`_scaled_mm_out_cpu` and `_scaled_mm_cpu` are new added and included in `torch._scaled_mm` CPU dispatch. We also add `_scaled_mm_out_cpu_emulated` as a fallback function if the current platform cannot run FP8 matmul using oneDNN. And this PR also updates the various UTs related to FP8 to support CPU tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139975
Approved by: https://github.com/mingfeima, https://github.com/jgong5, https://github.com/malfet
This PR is to add `torch._scaled_mm` for CPU backend.
`_scaled_mm_out_cpu` and `_scaled_mm_cpu` are new added and included in `torch._scaled_mm` CPU dispatch. We also add `_scaled_mm_out_cpu_emulated` as a fallback function if the current platform cannot run FP8 matmul using oneDNN. And this PR also updates the various UTs related to FP8 to support CPU tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139975
Approved by: https://github.com/mingfeima, https://github.com/jgong5, https://github.com/malfet
This PR is to add `torch._scaled_mm` for CPU backend.
`_scaled_mm_out_cpu` and `_scaled_mm_cpu` are new added and included in `torch._scaled_mm` CPU dispatch. We also add `_scaled_mm_out_cpu_emulated` as a fallback function if the current platform cannot run FP8 matmul using oneDNN. And this PR also updates the various UTs related to FP8 to support CPU tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139975
Approved by: https://github.com/mingfeima, https://github.com/jgong5, https://github.com/malfet
This PR
* makes changes to the workflow files and scripts so we can run CI workflows on the MI300 runners
* skips and fixes several tests, failed on MI300, observed in https://github.com/pytorch/pytorch/pull/140989
Skipped due to unsupported Float8_e4m3fn data type on MI300 (need to update test code to use datatypes supported by MI300):
- distributed.tensor.parallel.test_micro_pipeline_tp.py::MicroPipelineTPTest::test_fuse_all_gather_scaled_matmul_A_dims_\*_gather_dim_\* (24 tests across inductor/distributed configs)
- distributed.tensor.parallel.test_micro_pipeline_tp.py::test_fuse_scaled_matmul_reduce_scatter_A_dims_\*_scatter_dim_\* (12 tests across inductor/distributed configs))
- inductor.test_loop_ordering::LoopOrderingTest::test_fp8_cast_and_t
- inductor.test_loop_ordering::LoopOrderingTest::test_fp8_pattern_2
Skipped due to AssertionError on MI300:
- inductor.test_mkldnn_pattern_matcher.py::test_qconv2d_int8_mixed_bf16
- distributed._tools.test_sac_ilp::TestSACILP::test_sac_ilp_case1
Skipped:
- test_cuda.py::TestCudaMallocAsync::test_clock_speed
- test_cuda.py::TestCudaMallocAsync::test_power_draw
- test_torch.py::TestTorchDeviceTypeCUDA::test_deterministic_cumsum_cuda
Skipped flaky tests on MI300:
- distributed.test_c10d_gloo.py::ProcessGroupGlooTest::test_gather_stress_cuda
- inductor.test_cpu_repro::CPUReproTests::test_lstm_packed_unbatched_False* (256 tests)
Fixed:
- test_matmul_cuda.py::TestFP8MatmulCudaCUDA::test_float8_basics_cuda
Features:
- inductor/test_fp8.py - declare a new function to convert FP8 datatypes to ROCm supported FP8 datatypes. It keeps test names for CUDA and ROCm and allows to enable Inductor FP8 tests on CPU
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143673
Approved by: https://github.com/jeffdaily, https://github.com/malfet, https://github.com/pruthvistony
Co-authored-by: saienduri <saimanas.enduri@amd.com>
Co-authored-by: Jithun Nair <jithun.nair@amd.com>
Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
This PR is to add `torch._scaled_mm` for CPU backend.
`_scaled_mm_out_cpu` and `_scaled_mm_cpu` are new added and included in `torch._scaled_mm` CPU dispatch. We also add `_scaled_mm_out_cpu_emulated` as a fallback function if the current platform cannot run FP8 matmul using oneDNN. And this PR also updates the various UTs related to FP8 to support CPU tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139975
Approved by: https://github.com/mingfeima, https://github.com/jgong5, https://github.com/malfet
This PR is to add `torch._scaled_mm` for CPU backend.
`_scaled_mm_out_cpu` and `_scaled_mm_cpu` are new added and included in `torch._scaled_mm` CPU dispatch. We also add `_scaled_mm_out_cpu_emulated` as a fallback function if the current platform cannot run FP8 matmul using oneDNN. And this PR also updates the various UTs related to FP8 to support CPU tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139975
Approved by: https://github.com/mingfeima, https://github.com/jgong5, https://github.com/malfet
ghstack dependencies: #139974
Summary:
Ensures we support dims of size 0 properly in `torch._scaled_mm`. Follows the behavior from `torch.mm`.
For now only enable support for tensorwise, we can tackle rowwise in a future PR.
Test Plan:
```
python test/test_matmul_cuda.py -k test_zero_dim
```
Reviewers:
Subscribers:
Tasks:
Tags:
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140967
Approved by: https://github.com/eqy, https://github.com/drisspg
Summary:
To fix the following failure cases:
For example, when `M, K, N = 245760, 656, 6560`, fp8 with compile fails due to `RuntimeError: mat2 must be col_major`.
---------
From the inductor generated code (https://fburl.com/everpaste/epcagkrd)
```
V0625 01:38:55.551000 140329914449920 torch/_inductor/scheduler.py:1623] [0/0] scheduling ComputedBuffer(name='buf12', layout=FixedLayout('cuda', torch.float8_e4m3fn, size=[656, 6560], stride=[6656, 1]),
... ...
V0625 01:38:56.194000 140329914449920 torch/_inductor/graph.py:1680] [0/0] [__output_code] buf12 = empty_strided_cuda((656, 6560), (6656, 1), torch.float8_e4m3fn)
... ...
V0625 01:38:56.194000 140329914449920 torch/_inductor/graph.py:1680] [0/0] [__output_code] return (buf10, buf2, buf5, buf6, reinterpret_tensor(buf11, (245760, 656), (1, 245760), 0), reinterpret_tensor(buf12, (6560, 656), (1, 6656), 0), )
... ...
V0625 01:39:12.098000 140312968167424 torch/_inductor/graph.py:1680] [1/0_1] [__output_code] assert_size_stride(permute_10, (6560, 656), (1, 6656))
... ...
V0625 01:39:12.098000 140312968167424 torch/_inductor/graph.py:1680] [1/0_1] [__output_code] buf8 = aten._scaled_mm.default(buf6, permute_10, buf7, reciprocal_3, None, None, torch.bfloat16)
```
Inductor gives the mat2 (`permute_10`) a different stride (`6656`) instead of using its shape[0] (`(6560, 656)`).
Therefore, the `stride[1] == shape[0]` condition fails.
To fix the issue, simply modify the `is_col_major` check to exclude this condition as it doesn't hold for all valid cases.
Test Plan:
Run the failed case again. It works with the fix.
-----
Sandcastle / GitHub CI will make sure the existing tests could still pass.
Reviewed By: vkuzo
Differential Revision: D58994704
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129521
Approved by: https://github.com/drisspg
# Summary
First PR got reverted and needed a redo
This pull request introduces an fp8 row-scaling kernel as an optional implementation for `scaled_mm`. The kernel selection is based on the scaling tensors of the inputs. For inputs `x` and `y` of shape `[M, K]` and `[K, N]` respectively, the following conditions must be met:
- `x`'s scale should be a 1-dimensional tensor of length `M`.
- `y`'s scale should be a 1-dimensional tensor of length `N`.
It's important to note that this kernel is not called "rowwise, columnwise" scaling because, although the scales for `y` are semantically along its columns, this implementation only supports the TN format. This means the scaling is along the faster-moving dimension, or the "row".
The following two PRs were required to enable local builds:
- [PR #126185](https://github.com/pytorch/pytorch/pull/126185)
- [PR #125523](https://github.com/pytorch/pytorch/pull/125523)
### Todo
We still do not build our Python wheels with this architecture.
@ptrblck @malfet, should we replace `sm_90` with `sm_90a`?
The NVRTC TMA shadowing feels wrong, but I a not sure the right way to spoof the symbol for this compilation unit:
https://github.com/pytorch/pytorch/pull/125204/files#r1586986954
#### ifdef
I tried to use : `#if !defined(USE_ROCM) && defined(CUDA_VERSION) && CUDA_VERSION >= 12000 && \
defined(__CUDA_ARCH__) && __CUDA_ARCH__ > 900` to gate the building of the kernel. I was having a hell of a time with this.. so I am not really sure the right way to do this
Kernel Credit:
@jwfromm
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128989
Approved by: https://github.com/yangsiyu007, https://github.com/vkuzo
# Summary
The primary reason for the change was lack of current use case and the need to work around an two Inductor issue.
- Tensor arguments as kwarg only
- multiple outputs from triton templates
If the need for the amax return type arises we can consider either adding it, more likely creating a separate op.
In principle PyTorch is moving away from ops that bundle lots of functionality into "mega ops". We instead rely upon the compiler to generate appropriate fused kernels.
### Changes:
- This removes the amax return type from scaled_mm. We have found that the common use case is to return in "high-precision" ( a type with more precision than fp8). This is only relevant when returning in low-precision.
- We currently still allow for fp8 returns and scaled result. Perhaps we should also ban this as well...
New signature:
```Python
def meta_scaled_mm(
self: torch.Tensor,
mat2: torch.Tensor,
scale_a: torch.Tensor,
scale_b: torch.Tensor,
bias: Optional[torch.Tensor] = None,
scale_result: Optional[torch.Tensor] = None,
out_dtype: Optional[torch.dtype] = None,
use_fast_accum: bool = False,
) -> torch.Tensor:
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128683
Approved by: https://github.com/vkuzo
# Summary
This pull request introduces an fp8 row-scaling kernel as an optional implementation for `scaled_mm`. The kernel selection is based on the scaling tensors of the inputs. For inputs `x` and `y` of shape `[M, K]` and `[K, N]` respectively, the following conditions must be met:
- `x`'s scale should be a 1-dimensional tensor of length `M`.
- `y`'s scale should be a 1-dimensional tensor of length `N`.
It's important to note that this kernel is not called "rowwise, columnwise" scaling because, although the scales for `y` are semantically along its columns, this implementation only supports the TN format. This means the scaling is along the faster-moving dimension, or the "row".
The following two PRs were required to enable local builds:
- [PR #126185](https://github.com/pytorch/pytorch/pull/126185)
- [PR #125523](https://github.com/pytorch/pytorch/pull/125523)
### Todo
We still do not build our Python wheels with this architecture.
@ptrblck @malfet, should we replace `sm_90` with `sm_90a`?
The NVRTC TMA shadowing feels wrong, but I a not sure the right way to spoof the symbol for this compilation unit:
https://github.com/pytorch/pytorch/pull/125204/files#r1586986954
#### ifdef
I tried to use : `#if !defined(USE_ROCM) && defined(CUDA_VERSION) && CUDA_VERSION >= 12000 && \
defined(__CUDA_ARCH__) && __CUDA_ARCH__ > 900` to gate the building of the kernel. I was having a hell of a time with this.. so I am not really sure the right way to do this
Kernel Credit:
@jwfromm
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125204
Approved by: https://github.com/lw, https://github.com/malfet
# Summary
This pull request introduces an fp8 row-scaling kernel as an optional implementation for `scaled_mm`. The kernel selection is based on the scaling tensors of the inputs. For inputs `x` and `y` of shape `[M, K]` and `[K, N]` respectively, the following conditions must be met:
- `x`'s scale should be a 1-dimensional tensor of length `M`.
- `y`'s scale should be a 1-dimensional tensor of length `N`.
It's important to note that this kernel is not called "rowwise, columnwise" scaling because, although the scales for `y` are semantically along its columns, this implementation only supports the TN format. This means the scaling is along the faster-moving dimension, or the "row".
The following two PRs were required to enable local builds:
- [PR #126185](https://github.com/pytorch/pytorch/pull/126185)
- [PR #125523](https://github.com/pytorch/pytorch/pull/125523)
### Todo
We still do not build our Python wheels with this architecture.
@ptrblck @malfet, should we replace `sm_90` with `sm_90a`?
The NVRTC TMA shadowing feels wrong, but I a not sure the right way to spoof the symbol for this compilation unit:
https://github.com/pytorch/pytorch/pull/125204/files#r1586986954
#### ifdef
I tried to use : `#if !defined(USE_ROCM) && defined(CUDA_VERSION) && CUDA_VERSION >= 12000 && \
defined(__CUDA_ARCH__) && __CUDA_ARCH__ > 900` to gate the building of the kernel. I was having a hell of a time with this.. so I am not really sure the right way to do this
Kernel Credit:
@jwfromm
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125204
Approved by: https://github.com/lw
Recently there has been work in an experimental repo to start implementing the intrinsics necessary handle F8 workloads. (see: https://github.com/pytorch-labs/float8_experimental)
A recent PR was submitted to add support for AMD F8 types (fnuz). This PR uncovered a bug in the rocm code that caused unit tests to fail due to numerical inaccuracy. This PR fixes that bug by swapping `abs_()` with `abs()` as the former performs elementwise absolute value on the tensor in-place causing the final assertion to fail due to the tensor only containing positive values.
Important to note, this fix is part of a workaround as hipblasLT does not yet support amax (HIPBLASLT_MATMUL_DESC_AMAX_D_POINTER). This functionality has been implemented internally and is going through the proper channels to propagate to the community.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123275
Approved by: https://github.com/drisspg, https://github.com/jeffdaily
scaled_gemm for ROCm using hipblaslt. As of ROCm 6.0, HIPBLASLT_MATMUL_DESC_AMAX_D_POINTER is not supported. A work-around is provided, performing the absmax operation on the output buffer, but this results in some loss of accuracy for the absmax result. For this reason the feature should be considered beta/preview.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117822
Approved by: https://github.com/jianyuh, https://github.com/xw285cornell