Commit Graph

247 Commits

Author SHA1 Message Date
Spandan Tiwari
aeefe2ce31 [ONNX] ONNX dev branch merge 01-06-2021 (#50163)
Summary:
[ONNX] ONNX dev branch merge 01-06-2021
- [ONNX] Support onnx if/loop sequence output in opset 13 - (https://github.com/pytorch/pytorch/issues/49270)
- Symbolic function for torch.square (https://github.com/pytorch/pytorch/issues/49446)
- [ONNX] Add checks in ONNXSetDynamicInputShape (https://github.com/pytorch/pytorch/issues/49783) …
- [ONNX] Enable export af aten::__derive_index (https://github.com/pytorch/pytorch/issues/49514) …
- [ONNX] Update symbolic for unfold (https://github.com/pytorch/pytorch/issues/49378) …
- [ONNX] Update the sequence of initializers in exported graph so that it is as same as inputs. (https://github.com/pytorch/pytorch/issues/49798)
- [ONNX] Enable opset 13 ops (https://github.com/pytorch/pytorch/issues/49612) …
- [ONNX] Improve error message for supported model input types in ONNX export API. (https://github.com/pytorch/pytorch/issues/50119)
- [ONNX] Add a post-pass for If folding (https://github.com/pytorch/pytorch/issues/49410)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/50163

Reviewed By: pbelevich

Differential Revision: D25821059

Pulled By: SplitInfinity

fbshipit-source-id: 9f511a93d9d5812d0ab0a49d61ed0fa5f8066948
2021-01-13 13:51:21 -08:00
Thomas Zhang
d78b638a31 Convert string => raw strings so char classes can be represented in Python regex (#50239)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50239

Convert regex strings that have character classes (e.g. \d, \s, \w, \b, etc) into raw strings so they won't be interpreted as escape characters.

References:
Python RegEx - https://www.w3schools.com/python/python_regex.asp
Python Escape Chars - https://www.w3schools.com/python/gloss_python_escape_characters.asp
Python Raw String - https://www.journaldev.com/23598/python-raw-string
Python RegEx Docs - https://docs.python.org/3/library/re.html
Python String Tester - https://www.w3schools.com/python/trypython.asp?filename=demo_string_escape
Python Regex Tester - https://regex101.com/

Test Plan: To find occurrences of regex strings with the above issue in VS Code, search using the regex \bre\.[a-z]+\(['"], and under 'files to include', use /data/users/your_username/fbsource/fbcode/caffe2.

Reviewed By: r-barnes

Differential Revision: D25813302

fbshipit-source-id: df9e23c0a84c49175eaef399ca6d091bfbeed936
2021-01-08 11:17:17 -08:00
Richard Barnes
5acb1cc1df Drop unused imports from scripts (#49956)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49956

From
```
./python/libcst/libcst codemod remove_unused_imports.RemoveUnusedImportsWithGlean --no-format caffe2/
```

Test Plan: Standard sandcastle tests

Reviewed By: xush6528

Differential Revision: D25727347

fbshipit-source-id: 74d0a08aa0cfd0f492688a2b8278a0c65fd1deba
2021-01-04 16:08:28 -08:00
Jane Xu
52fe73a39e Enable Python code coverage for onnx runs (#47387)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/44120

Pull Request resolved: https://github.com/pytorch/pytorch/pull/47387

Reviewed By: heitorschueroff

Differential Revision: D24737378

Pulled By: janeyx99

fbshipit-source-id: 79e3d0b62f7da0617330f312fb1ed548c6be2a3b
2020-11-09 20:52:14 -08:00
Ksenija Stanojevic
7a599870b0 [ONNX] Update peephole pass for prim::ListUnpack (#46264)
Summary:
Update pass that handles prim::ListUnpack in peephole file, so that it also covers the case when input to the node is of ListType.

Fixes https://github.com/pytorch/pytorch/issues/45816

Pull Request resolved: https://github.com/pytorch/pytorch/pull/46264

Reviewed By: mrshenli

Differential Revision: D24566070

Pulled By: bzinodev

fbshipit-source-id: 32555487054f6a7fe02cc17c66bcbe81ddf9623e
2020-11-05 09:42:24 -08:00
Alban Desmaison
68954fe897 Add release note scripts (#47360)
Summary:
First commit contains the initial code from Richard's branch.
Second commit are the changes that I made during the writing process
Third commit is the update to support category/topic pair for each commit

Pull Request resolved: https://github.com/pytorch/pytorch/pull/47360

Reviewed By: ejguan

Differential Revision: D24741003

Pulled By: albanD

fbshipit-source-id: d0fcc6765968dc1732d8a515688d11372c7e653d
2020-11-05 06:43:24 -08:00
Jane Xu
4189c3ca76 Fix onnx test-reports path in CI (#47315)
Summary:
Currently, no test reports are uploaded to CI because the paths for the `onnx` runs are incorrect. This PR attempts to change that.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/47315

Reviewed By: malfet

Differential Revision: D24727607

Pulled By: janeyx99

fbshipit-source-id: f6d91698fdb15a39e01ef812032d4cd30621f864
2020-11-04 10:30:52 -08:00
Tao Xu
bf1ea14fbc [CI][IOS] Add a arm64 ios job for Metal (#46646)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/46646

Test Plan: Imported from OSS

Reviewed By: seemethere, linbinyu

Differential Revision: D24459597

Pulled By: xta0

fbshipit-source-id: e93a3a26897614c66768804c71658928cd26ede7
2020-10-22 16:54:46 -07:00
Tao Xu
04e5fcc0ed [GPU] Introduce USE_PYTORCH_METAL (#46383)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46383

The old `USE_METAL` is actually being used by Caffe2. Here we introduce a new macro to enable metal in pytorch.
ghstack-source-id: 114499392

Test Plan:
- Circle CI
- The Person Segmentation model works

Reviewed By: linbinyu

Differential Revision: D24322018

fbshipit-source-id: 4e5548afba426b49f314366d89b18ba0c7e745ca
2020-10-16 18:19:32 -07:00
Tao Xu
a277c097ac [iOS][GPU] Add Metal/MPSCNN support on iOS (#46112)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46112

### Summary

This PR adds the support of running torchscript models on iOS GPU via Metal (Inference only). The feature is currently in prototype state, API changes are expected. The tutorial and the documents will be added once it goes to beta.

allow-large-files

- Users API

```
  auto module = torch::jit::load(model);
  module.eval();
  at::Tensor input = at::ones({1,3,224,224}, at::ScalarType::Float).metal();
  auto output = module.forward({input}).toTensor().cpu();
```
- Supported Models
    - Person Segmentation v106 (FB Internal)
    - Mobilenetv2

- Supported Operators
    - aten::conv2d
    - aten::addmm
    - aten::add.Tensor
    - aten::sub.Tensor
    - aten::mul.Tensor
    - aten::relu
    - aten::hardtanh
    - aten::hardtanh_
    - aten::sigmoid
    - aten::max_pool2d
    - aten::adaptive_avg_pool2d
    - aten::reshape
    - aten::t
    - aten::view
    - aten::log_softmax.int
    - aten::upsample_nearest2d.vec

- Supported Devices
    - Apple A9 and above
    - iOS 10.2 and above

- CMake scripts
    - `IOS_ARCH=arm64 ./scripts/build_ios.sh -DUSE_METAL=ON`

### Test Plan

- Circle CI

ghstack-source-id: 114155638

Test Plan:
1. Sandcastle CI
2. Circle CI

Reviewed By: dreiss

Differential Revision: D23236555

fbshipit-source-id: 98ffc48b837e308bc678c37a9a5fd8ae72d11625
2020-10-13 01:46:56 -07:00
Tao Xu
0de5824f36 [iOS][CI] Upgrade xcode version to 12.0 (#45677)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/45677

Test Plan: Imported from OSS

Reviewed By: husthyc

Differential Revision: D24065647

Pulled By: xta0

fbshipit-source-id: f2535b1d93e58cf79e7075bf56b0613a3ded16eb
2020-10-01 16:53:18 -07:00
BowenBao
3da4cea658 [ONNX] Add dim_param support in export with onnx shape inference (#44920)
Summary:
* Support propagating `dim_param` in ONNX by encoding as `ShapeSymbol` in `SymbolicShape` of outputs. If export is called with `dynamic_axes` provided, shape inference will start with these axes set as dynamic.
* Add new test file `test_pytorch_onnx_shape_inference.py`, reusing all test cases from `test_pytorch_onnx_onnxruntime.py`, but focus on validating shape for all nodes in graph. Currently this is not enabled in the CI, since there are still quite some existing issues and corner cases to fix. The test is default to run only at opset 12.
* Bug fixes, such as div, _len, and peephole.cpp passes for PackPadded, and LogSoftmaxCrossEntropy.
* This PR depends on existing PR such as 44332.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/44920

Reviewed By: eellison

Differential Revision: D23958398

Pulled By: bzinodev

fbshipit-source-id: 00479d9bd19c867d526769a15ba97ec16d56e51d
2020-09-30 21:56:24 -07:00
Bugra Akyildiz
27c7158166 Remove __future__ imports for legacy Python2 supports (#45033)
Summary:
There is a module called `2to3` which you can target for future specifically to remove these, the directory of `caffe2` has the most redundant imports:

```2to3 -f future -w caffe2```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/45033

Reviewed By: seemethere

Differential Revision: D23808648

Pulled By: bugra

fbshipit-source-id: 38971900f0fe43ab44a9168e57f2307580d36a38
2020-09-23 17:57:02 -07:00
Xiang Gao
20ac736200 Remove py2 compatible future imports (#44735)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/44735

Reviewed By: mruberry

Differential Revision: D23731306

Pulled By: ezyang

fbshipit-source-id: 0ba009a99e475ddbe22981be8ac636f8a1c8b02f
2020-09-16 12:55:57 -07:00
Eli Uriegas
d62994a94d ci: Add anaconda pruning to CI pipeline (#44651)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44651

Adds pruning for our anaconda channels (pytorch-nightly, pytorch-test)
into our CI pipeline so that it gets run on a more consistent basis.

Signed-off-by: Eli Uriegas <eliuriegas@fb.com>

Test Plan: Imported from OSS

Reviewed By: walterddr

Differential Revision: D23692851

Pulled By: seemethere

fbshipit-source-id: fa69b506b73805bf2ffbde75d221aef1ee3f753e
2020-09-15 10:51:05 -07:00
Rong Rong
105132b891 Move ONNX circle ci build to torch and remove all caffe2 CI job/workflows (#44595)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/44595

Reviewed By: seemethere

Differential Revision: D23670280

Pulled By: walterddr

fbshipit-source-id: b32633912f6c8b4606be36b90f901e636567b355
2020-09-14 09:50:13 -07:00
Alex
208ad45b4b fix scripts (#44464)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/44464

Reviewed By: agolynski

Differential Revision: D23624921

Pulled By: colesbury

fbshipit-source-id: 72bed69edcf467a99eda9a3b97e894015c992dce
2020-09-10 08:13:48 -07:00
Jiakai Liu
3a0e35c9f2 [pytorch] deprecate static dispatch (#43564)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43564

Static dispatch was originally introduced for mobile selective build.

Since we have added selective build support for dynamic dispatch and
tested it in FB production for months, we can deprecate static dispatch
to reduce the complexity of the codebase.

Test Plan: Imported from OSS

Reviewed By: ezyang

Differential Revision: D23324452

Pulled By: ljk53

fbshipit-source-id: d2970257616a8c6337f90249076fca1ae93090c7
2020-08-27 14:52:48 -07:00
Nikita Shulga
38580422bb Allow specifying PYTHON executable to build_android (#41927)
Summary:
build_android.sh should check PYTHON environment variable before trying to use default python executable.
Even in that case, try to pick python3 over python2 when available.

Closes https://github.com/pytorch/pytorch/issues/41795

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41927

Reviewed By: seemethere

Differential Revision: D22696850

Pulled By: malfet

fbshipit-source-id: be236c2baf54a1cd111e55ee7743cdc93cb6b9d7
2020-07-24 18:34:42 -07:00
Kimish Patel
d6feb6141f [Vec256][neon] Add neon backend for vec256 (#39341)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39341

This PR introduces neon backend for vec256 class for float datatype.
For now only aarch64 is enabled due to few issues with enabling in
aarch32 bit.

Test Plan:
vec256_test

Imported from OSS

Differential Revision: D21822399

fbshipit-source-id: 3851c4336d93d1c359c85b38cf19904f82bc7b8d
2020-07-09 16:25:09 -07:00
Kimish Patel
bddba1e336 Add benchmark for add op. (#40059)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40059

This benchmark is added specifically for mobile to see if compiler is
autovectorizing and thus we have no advantage of neon backend for vec256
for add op.

Test Plan:
CI

Imported from OSS

Differential Revision: D22055146

fbshipit-source-id: 43ba6c4ae57c6f05d84887c2750ce21ae1b0f0b5
2020-07-09 16:22:55 -07:00
David Reiss
b7e044f0e5 Re-apply PyTorch pthreadpool changes
Summary:
This re-applies D21232894 (b9d3869df3) and D22162524, plus updates jni_deps in a few places
to avoid breaking host JNI tests.

Test Plan: `buck test @//fbandroid/mode/server //fbandroid/instrumentation_tests/com/facebook/caffe2:host-test`

Reviewed By: xcheng16

Differential Revision: D22199952

fbshipit-source-id: df13eef39c01738637ae8cf7f581d6ccc88d37d5
2020-06-23 19:26:21 -07:00
Kate Mormysh
92d3182c11 Revert D21232894: Unify PyTorch mobile's threadpool usage.
Test Plan: revert-hammer

Differential Revision:
D21232894 (b9d3869df3)

Original commit changeset: 8b3de86247fb

fbshipit-source-id: e6517cfec08f7dd0f4f8877dab62acf1d65afacd
2020-06-23 17:09:14 -07:00
Ashkan Aliabadi
b9d3869df3 Unify PyTorch mobile's threadpool usage. (#37243)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37243

*** Why ***

As it stands, we have two thread pool solutions concurrently in use in PyTorch mobile: (1) the open source pthreadpool library under third_party, and (2) Caffe2's implementation of pthreadpool under caffe2/utils/threadpool.  Since the primary use-case of the latter has been to act as a drop-in replacement for the third party version so as to enable integration and usage from within NNPACK and QNNPACK, Caffe2's implementation is intentionally written to the exact same interface as the third party version.

The original argument in favor of C2's implementation has been improved performance as a result of using spin locks, as opposed to relinquishing the thread's time slot and putting it to sleep - a less expensive operation up to a point.  That seems to have given C2's implementation the upper hand in performance, hence justifying the added maintenance complexity, until the third party version improved in parallel surpassing the efficiency of C2's implementation as I have verified in benchmarks.  With that advantage gone, there is no reason to continue using C2's implementation in PyTorch mobile either from the perspective of performance or code hygiene.  As a matter of fact, there is considerable performance benefit to be had as a result of using the third party version as it currently stands.

This is a tricky change though, mainly because in order to avoid potential performance regressions, of which I have witnessed none but just in abundance of caution, we have decided to continue using the internal C2's implementation whenever building for Caffe2.  Again, this is mainly to avoid potential performance regressions in production C2 use cases even if doing so results in reduced performance as far as I can tell.

So to summarize, today, and as it currently stands, we are using C2's implementation for (1) NNPACK, (2) PyTorch QNNPACK, and (3) ATen parallel_for on mobile builds, while using the third party version of pthreadpool for XNNPACK as XNNPACK does not provide any build options to link against an external implementation unlike NNPACK and QNNPACK do.

The goal of this PR then, is to unify all usage on mobile to the third party implementation both for improved performance and better code hygiene.  This applies to PyTorch's use of NNPACK, QNNPACK, XNNPACK, and mobile's implementation of ATen parallel_for, all getting routed to the
exact same third party implementation in this PR.

Considering that NNPACK, QNNPACK, and XNNPACK are not mobile specific, these benefits carry over to non-mobile builds of PyTorch (but not Caffe2) as well.  The implementation of ATen parallel_for on non-mobile builds remains unchanged.

*** How ***

This is where things get tricky.

A good deal of the build system complexity in this PR arises from our desire to maintain C2's implementation intact for C2's use.

pthreadpool is a C library with no concept of namespaces, which means two copies of the library cannot exist in the same binary or symbol collision will occur violating ODR.  This means that somehow, and based on some condition, we must decide on the choice of a pthreadpool implementation.  In practice, this has become more complicated as a result of all the possible combinations that USE_NNPACK, USE_QNNPACK, USE_PYTORCH_QNNPACK, USE_XNNPACK, USE_SYSTEM_XNNPACK, USE_SYSTEM_PTHREADPOOL and other variables can result in.  Having said that, I have done my best in this PR to surgically cut through this complexity in a way that minimizes the side effects, considering the significance of the performance we are leaving on the table, yet, as a result of this combinatorial explosion explained above I cannot guarantee that every single combination will work as expected on the first try.  I am heavily relying on CI to find any issues as local testing can only go that far.

Having said that, this PR provides a simple non mobile-specific C++ thread pool implementation on top of pthreadpool, namely caffe2::PThreadPool that automatically routes to C2's implementation or the third party version depending on the build configuration.  This simplifies the logic at the cost of pushing the complexity to the build scripts.  From there on, this thread pool is used in aten parallel_for, and NNPACK and family, again, routing all usage of threading to C2 or third party pthreadpool depending on the build configuration.

When it is all said or done, the layering will look like this:

a) aten::parallel_for, uses
b) caffe2::PThreadPool, which uses
c) pthreadpool C API, which delegates to
    c-1) third_party implementation of pthreadpool if that's what the build has requested, and the rabbit hole ends here.
    c-2) C2's implementation of pthreadpool if that's what the build has requested, which itself delegates to
    c-2-1) caffe2::ThreadPool, and the rabbit hole ends here.

NNPACK, and (PyTorch) QNNPACK directly hook into (c). They never go through (b).

Differential Revision: D21232894

Test Plan: Imported from OSS

Reviewed By: dreiss

Pulled By: AshkanAliabadi

fbshipit-source-id: 8b3de86247fbc3a327e811983e082f9d40081354
2020-06-23 16:34:51 -07:00
Ivan Kobzarev
c1dfc05cc9 [android][test_app][reland] test_app example linking to pytorch_android aar content (#40313)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/40313

Test Plan: Imported from OSS

Differential Revision: D22147079

Pulled By: IvanKobzarev

fbshipit-source-id: c70a0a9dda8834376ed304a461318d4c6ef84582
2020-06-20 07:34:42 -07:00
Ilia Cherniavskii
cdbf78fba0 Revert D22118945: [android] test_app example linking to pytorch_android aar content
Test Plan: revert-hammer

Differential Revision:
D22118945 (52a2adb3f4)

Original commit changeset: 31c54b49b1f2

fbshipit-source-id: 0c4929d4441572debbbc49f8674b9fc49b726599
2020-06-19 12:16:18 -07:00
Nikita Shulga
a11870b45d Revert D22118971: [android] gradle version update
Test Plan: revert-hammer

Differential Revision:
D22118971 (262ad8e6ab)

Original commit changeset: 566e45e8f6f7

fbshipit-source-id: 74cfec0c978b724d84460a6d0c98f97b389811f7
2020-06-19 08:48:21 -07:00
Ivan Kobzarev
262ad8e6ab [android] gradle version update (#40176)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/40176

Test Plan: Imported from OSS

Differential Revision: D22118971

Pulled By: IvanKobzarev

fbshipit-source-id: 566e45e8f6f7aa357c98976ad9981c76d4c66a7f
2020-06-18 16:28:34 -07:00
Ivan Kobzarev
52a2adb3f4 [android] test_app example linking to pytorch_android aar content (#39587)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39587

Example of using direct linking to pytorch_jni library from aar and updating android/README.md with the tutorial how to do it.

Adding `nativeBuild` dimension to `test_app`, using direct aar dependencies, as headers packaging is not landed yet, excluding `nativeBuild` from building by default for CI.

Additional change to `scripts/build_pytorch_android.sh`:

Skipping clean task here as android gradle plugin 3.3.2 exteralNativeBuild has problems with it when abiFilters are specified.

Will be returned back in the following diffs with upgrading of gradle and android gradle plugin versions.

Test Plan: Imported from OSS

Differential Revision: D22118945

Pulled By: IvanKobzarev

fbshipit-source-id: 31c54b49b1f262cbe5f540461d3406f74851db6c
2020-06-18 16:26:25 -07:00
Ivan Kobzarev
0891764e80 [android] ANDROID_STL=c++_shared (#39588)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39588

Before this diff we used c++_static linking.
Users will dynamically link to libpytorch_jni.so and have at least one more their own shared library that probably uses stl library.

We must have not more than one stl per app. ( https://developer.android.com/ndk/guides/cpp-support#one_stl_per_app )

To have only one stl per app changing ANDROID_STL way to  c++_shared, that will add libc++_shared.so to packaging.

Test Plan: Imported from OSS

Differential Revision: D22118031

Pulled By: IvanKobzarev

fbshipit-source-id: ea1e5085ae207a2f42d1fa9f6ab8ed0a21768e96
2020-06-18 13:50:05 -07:00
Tao Xu
6de6041585 [iOS] Disable NNPACK on iOS builds (#39868)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39868

### Summary

why disable NNPACK on iOS

- To stay consistency with our internal version
- It's currently blocking some external users due to its lack support of x86 architecture
    - https://github.com/pytorch/pytorch/issues/32040
    - https://discuss.pytorch.org/t/undefined-symbols-for-architecture-x86-64-for-libtorch-in-swift-unit-test/84552/6
- NNPACK uses fast convolution algorithms (FFT, winograd) to reduce the computational complexity of convolutions with large kernel size. The algorithmic speedup is limited to specific conv params which are unlikely to appear in mobile networks.
- Since XNNPACK has been enabled, it performs much better than NNPACK on depthwise-separable convolutions which is the algorithm being used by most of mobile computer vision networks.

### Test Plan

- CI Checks

Test Plan: Imported from OSS

Differential Revision: D22087365

Pulled By: xta0

fbshipit-source-id: 89a959b0736c1f8703eff10723a8fbd02357fd4a
2020-06-17 01:39:56 -07:00
Jiakai Liu
bcb44796ba [pytorch] consolidate android gradle build scripts (#39999)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39999

Cleaned up the android build scripts. Consolidated common functions into
common.sh. Also made a few minor fixes:

- We should trust build_android.sh doing right about reusing existing
  `build_android_$abi` directory;

- We should clean up `pytorch_android/src/main/jniLibs/` to remove
  broken symbolic links in case custom abi list changes since last build;

Test Plan: Imported from OSS

Differential Revision: D22036926

Pulled By: ljk53

fbshipit-source-id: e93915ee4f195111b6171cdabc667fa0135d5195
2020-06-15 23:55:21 -07:00
Ivan Kobzarev
928e99b9bb [vulkan] jni build support USE_VULKAN (#39188)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39188

Extracting Vulkan_LIBS and Vulkan_INCLUDES setup from `cmake/Dependencies.cmake` to `cmake/VulkanDependencies.cmake` and reuse it in android/pytorch_android/CMakeLists.txt

Adding control to build with Vulkan setting env variable `USE_VULKAN` for `scripts/build_android.sh` `scripts/build_pytorch_android.sh`

We do not use Vulkan backend in pytorch_android, but with this build option we can track android aar change with `USE_VULKAN` added.

Currently it is 88Kb.

Test Plan: Imported from OSS

Differential Revision: D21770892

Pulled By: IvanKobzarev

fbshipit-source-id: a39433505fdcf43d3b524e0fe08062d5ebe0d872
2020-05-28 15:39:02 -07:00
Negin Raoof
7f1c9886cd [ONNX] Enable models tests (#38791)
Summary:
PR to enable model tests which are fixed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38791

Reviewed By: hl475

Differential Revision: D21732498

Pulled By: houseroad

fbshipit-source-id: f417f9d4124ef5a663dc666d5c2ed6ba013b26a4
2020-05-27 09:09:59 -07:00
Eli Uriegas
5dd65ba634 .circleci: Add simple backup and restore solution for RCs (#38690)
Summary:
* Does a basic upload of release candidates to an extra folder within our
S3 bucket.
* Refactors AWS promotion to allow for easier development of restoration
of backups

Backup restoration usage:
```
RESTORE_FROM=v1.6.0-rc3 restore-backup.sh
```
Requires:
  * AWS credentials to upload / download stuff
  * Anaconda credentials to upload
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38690

Differential Revision: D21691033

Pulled By: seemethere

fbshipit-source-id: 31118814db1ca701c55a3cb0bc32caa1e77a833d
2020-05-21 13:09:12 -07:00
Parth Agarwal
201ba13911 Correct $ANDROID_HOME string empty check (#37064)
Summary:
Updated file to correct shell code to test whether $ANDROID_HOME env variable is empty or not.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37064

Differential Revision: D21181787

Pulled By: IvanKobzarev

fbshipit-source-id: 40c1d79d0fb730c7f68aa7472ce9b2398e91f2a2
2020-04-27 11:16:51 -07:00
Alex Balik
4ab46f6baf [pytorch] Delete unneeded scripts
Summary: These aren't needed

Test Plan: Look closely

Differential Revision: D21191456

fbshipit-source-id: d9921afb5363106406a0f6432612586ff4be4290
2020-04-22 17:23:52 -07:00
Eli Uriegas
73bffeff62 scripts: Distinguish between platforms in conda promote (#37089)
Summary:
Files that were named the same within the anaconda repository, i.e.
pytorch_1.5.0-cpu.bz2, were found to be clobbering each other,
especially amongst different platforms.

This lead to similarly named packages for different platforms to not get
promoted.

This also adds "--skip" to our anaconda upload so that we don't end up
overwriting our releases just in case this script gets run twice.

Also, conda search ends up erroring out if it doesn't find anything for
the current platform being searched for so we should just continue
forward if we don't find anything since we want to be able to use this
script for all of the packages we support which also do not release
packages for all of the same platforms. (torchtext for example only has
"noarch")

This should also probably be back-ported to the `release/1.5` branch since this changeset was used to release `v1.5.0`

Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37089

Differential Revision: D21184768

Pulled By: seemethere

fbshipit-source-id: dbe12d74df593b57405b178ddb2375691e128a49
2020-04-22 13:29:56 -07:00
Lara Haidar
728c7dcea3 ONNX Update training ops and training amenable export API (#35567)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/35567

Reviewed By: hl475

Differential Revision: D20715339

Pulled By: houseroad

fbshipit-source-id: ad88097e76b169035ab5814b769dc1bed54c6008
2020-03-29 23:14:25 -07:00
Alban Desmaison
45e1be9762 Revert D19710370: [pytorch][PR] ONNX Update training ops and training amenable export API
Test Plan: revert-hammer

Differential Revision:
D19710370

Original commit changeset: e5e79d385529

fbshipit-source-id: d0114dc561a3415869805d3fbf43b92730bbcf54
2020-03-27 06:51:05 -07:00
Lara Haidar
025a0abe5a ONNX Update training ops and training amenable export API (#32950)
Summary:
- Update Dropout and Batchnorm in opset 12 : https://github.com/onnx/onnx/pull/2568
- Update api logic for exporting to ONNX training amenable models
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32950

Reviewed By: hl475

Differential Revision: D19710370

Pulled By: houseroad

fbshipit-source-id: e5e79d38552936966662c41d39ddf33be1ba3e35
2020-03-27 00:39:39 -07:00
Eli Uriegas
c957580133 Add promotion pipeline for S3 and conda artifacts (#34993)
Summary:
Adds a new promotion pipeline for both our wheel packages hosted on S3
as well as our conda packages hosted on anaconda.

Promotion is only run on tags that that match the following regex:

    /v[0-9]+(\.[0-9]+)*/

Example:

    v1.5.0

The promotion pipeline is also only run after a manual approval from
someone within the CircleCI security context "org-member"

> NOTE: This promotion pipeline does not cover promotion of packages that
>      are published to PyPI, this is an intentional choice as those
>      packages cannot be reverted after they have been published.

TODO: Write a proper testing pipeline for this

Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34993

Differential Revision: D20539497

Pulled By: seemethere

fbshipit-source-id: 104772d3c3898d77a24ef9bf25f7dbd2496613df
2020-03-19 13:36:51 -07:00
Eli Uriegas
4a599f47fb scripts: Add script to promote conda packages (#34659)
Summary:
How this actually works:
  1. Get's a list of URLs from anaconda for pkgs to download, most
  likely from pytorch-test
  2. Download all of those packages locally in a temp directory
  3. Upload all of those packages, with a dry run upload by default

This, along with https://github.com/pytorch/pytorch/issues/34500 basically completes the scripting work for the eventual promotion pipeline.

Currently testing with:
```
TEST_WITHOUT_GIT_TAG=1 TEST_PYTORCH_PROMOTE_VERSION=1.4.0 PYTORCH_CONDA_FROM=pytorch scripts/release/promote/conda_to_conda.sh
```

Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34659

Differential Revision: D20432687

Pulled By: seemethere

fbshipit-source-id: c2a99f6cbc6a7448e83e666cde11d6875aeb878e
2020-03-13 12:14:58 -07:00
Eli Uriegas
c78eacb5ee scripts: Add promotion script for s3 to pypi (#34500)
Summary:
Is reliant on scripts for promotion from s3 to s3 to have already run.

A continuation of the work done in https://github.com/pytorch/pytorch/issues/34274

Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34500

Test Plan: yeah_sandcastle

Differential Revision: D20389101

Pulled By: seemethere

fbshipit-source-id: 5e5b554cff964630c5414d48be35f14ba6894021
2020-03-12 17:21:23 -07:00
Meghan Lele
52787388d2 [tools] Add clang_format_new.py to download, verify and run clang-format binary (#34566)
Summary:
**Summary**
This commit adds `tools/clang_format_new.py`, which downloads a platform-appropriate
clang-format binary to a `.gitignored` location, verifies the binary by comparing its
SHA1 hash to a reference hash (also included in this commit), and runs it on all files
matched a specific regex in a list of whitelisted subdirectories of pytorch.

This script will eventually replace `tools/clang_format.py`.

**Testing**
Ran the script.

*No Args*
```
pytorch > ./tools/clang_format.py
Downloading clang-format to /Users/<user>/Desktop/pytorch/.clang-format-bin
0% |################################################################| 100%
Using clang-format located at /Users/<user>/Desktop/pytorch/.clang-format-bin/clang-format
> echo $?
0
> git status
<bunch of files>
```

`--diff` *mode*
```
> ./tools/clang_format.py --diff
Using clang-format located at /Users/<user>/Desktop/pytorch/.clang-format-bin/clang-format
Some files are not formatted correctly
> echo $?
1

<format files using the script>

> ./tools/clang_format.py --diff
Using clang-format located at /Users/<user>/Desktop/pytorch/.clang-format-bin/clang-format
All files are formatted correctly
> echo $?
0
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34566

Differential Revision: D20431290

Pulled By: SplitInfinity

fbshipit-source-id: 3966f769cfb923e58ead9376d85e97127415bdc6
2020-03-12 17:08:54 -07:00
Gemfield
70f3298684 Fix SELECTED_OP_LIST file path issue (#33942)
Summary:
If SELECTED_OP_LIST is specified as a relative path in command line, CMake build will fail.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33942

Differential Revision: D20392797

Pulled By: ljk53

fbshipit-source-id: dffeebc48050970e286cf263bdde8b26d8fe4bce
2020-03-11 13:19:31 -07:00
Syoyo Fujita
12fb8148e4 Disable ROCM when building mobile libtorch. (#34478)
Summary:
When a system has ROCm dev tools installed, `scripts/build_mobile.sh` tried to use it.
This PR fixes looking up unused ROCm library when building libtorch mobile.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34478

Differential Revision: D20388147

Pulled By: ljk53

fbshipit-source-id: b512c38fa2d3cda9ac20fe47bcd67ad87c848857
2020-03-11 11:28:32 -07:00
Tao Xu
8294db8f15 [iOS][CI] Remove org-member from iOS Simulator Builds (#34410)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34410

### Summary

Currently, the iOS jobs are not being run on PRs anymore. This is because all iOS jobs have specified the `org-member` as a context which used to include all pytorch members. But seems like recently this rule has changed. It turns out that only users from the admin group or builder group can have access right to the context values. https://circleci.com/gh/organizations/pytorch/settings#contexts/2b885fc9-ef3a-4b86-8f5a-2e6e22bd0cfe

This PR will remove `org-member` from the iOS simulator build which doesn't require code signing. For the arm64 builds, they'll only be run on master, not on PRs anymore.

### Test plan

- The iOS simulator job should be able to appear in the PR workflow

Test Plan: Imported from OSS

Differential Revision: D20347270

Pulled By: xta0

fbshipit-source-id: 23f37d40160c237dc280e0e82f879c1d601f72ac
2020-03-09 13:22:54 -07:00
Eli Uriegas
0489b8da42 Add scripts to promote S3 artifacts from test channels to stable channels (#34274)
Summary:
Currently testing against the older release `1.4.0` with:
```
PYTORCH_S3_FROM=nightly TEST_WITHOUT_GIT_TAG=1 TEST_PYTORCH_PROMOTE_VERSION=1.4.0 scripts/release/promote/libtorch_to_s3.sh
PYTORCH_S3_FROM=nightly TEST_WITHOUT_GIT_TAG=1 TEST_PYTORCH_PROMOTE_VERSION=1.4.0 scripts/release/promote/wheel_to_s3.sh
```

These scripts can also be used for `torchvision` as well which may make the release process better there as well.

Later on this should be made into a re-usable module that can be downloaded from anywhere and used amongst all pytorch repositories.

Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34274

Test Plan: sandcastle_will_deliver

Differential Revision: D20294419

Pulled By: seemethere

fbshipit-source-id: c8c31b5c42af5096f09275166ac43d45a459d25c
2020-03-06 12:18:16 -08:00
Jiakai Liu
9a5e9d8cec [pytorch][mobile] change mobile build scripts to build PyTorch by default (#34203)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34203

Currently cmake and mobile build scripts still build libcaffe2 by
default. To build pytorch mobile users have to set environment variable
BUILD_PYTORCH_MOBILE=1 or set cmake option BUILD_CAFFE2_MOBILE=OFF.

PyTorch mobile has been released for a while. It's about time to change
CMake and build scripts to build libtorch by default.

Changed caffe2 CI job to build libcaffe2 by setting BUILD_CAFFE2_MOBILE=1
environment variable. Only found android CI for libcaffe2 - do we ever
have iOS CI for libcaffe2?

Test Plan: Imported from OSS

Differential Revision: D20267274

Pulled By: ljk53

fbshipit-source-id: 9d997032a599c874d62fbcfc4f5d4fbf8323a12e
2020-03-05 23:40:47 -08:00