### Description
Enables jiterator for ROCm builds. This includes necessary porting when hiprtc and nvrtc behavior differed. This also ported ROCm versus CUDA differences w.r.t. MAX_DIMS and NUM_THREADS from the non-jiterator code paths into jiterator.
### Testing
CI with ciflow/trunk label to force running ROCm workflows that are currently trunk-only.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77982
Approved by: https://github.com/ngimel
You can now do a lot of crazy things about redefining the behavior of an operator, and still be fast in cuda !!!
Example 1: swapping where's branches
```
code_string = "template <typename T> T inverted_where(bool cond, T a, T b){ return !cond ? a : b; }"
jitted_fn = torch.cuda.jiterator._create_jit_fn(code_string)
my_lib = torch.library.Library("aten", "IMPL")
my_lib.impl('aten::where.self', jitted_fn, "CUDA")
# torch.where is now overridden
```
Example 2: approximate gelu with relu
```
code_string = "template <typename T> T fast_gelu(T a){ return a > 0 ? a : 0;}"
jitted_fn = torch.cuda.jiterator._create_jit_fn(code_string)
my_lib = torch.library.Library("aten", "IMPL")
my_lib.impl('aten::gelu', jitted_fn, "CUDA")
# torch.nn.GELU and torch.nn.function.gelu are now overridden
```
Example 3: clipping output for numerical unstable kernels
```
code_string = "template <typename T> T clipped_exp(T a){ return a > T(10.0) ? T(22026.4657948) : exp(a); }"
jitted_fn = torch.cuda.jiterator._create_jit_fn(code_string)
my_lib = torch.library.Library("aten", "IMPL")
my_lib.impl('aten::exp', jitted_fn, "CUDA")
# torch.exp(x) and x.exp() are now overridden
```
Example 4: Simulate buggy hardware behaviors
```
code_string = "template <typename T> T buggy_add(T a, T b){ return a + b + T(1); }"
jitted_fn = torch.cuda.jiterator._create_jit_fn(code_string)
my_lib = torch.library.Library("aten", "IMPL")
my_lib.impl('aten::add.Tensor', jitted_fn, "CUDA")
torch.add(x, y), "x + y" and x.add(y) are now overridden
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77121
Approved by: https://github.com/anjali411
This PR allows user to author a CUDA kernel in python.
```
from torch.cuda.jiterator import create_jit_fn
code_string = "template <typename T> T my_kernel(T x, T y, T alpha) { return -x * y + x - y + alpha; }"
jitted_fn = create_jit_fn(code_string, alpha=0)
a = torch.rand(3, device='cuda')
b = torch.rand(3, device='cuda')
result = jitted_fn(a, b, alpha=1.0)
```
Limitations:
- Only supports elementwise kernel
- 1~8 tensor inputs (empty input, e.g. factory methods, is not supported)
- inputs tensors must live in cuda device
- cpu Scalar is not supported
- kwargs must be pre-declared when calling create_jit_fn
- kwargs must be convertible to at::Scalar, one of float64, int64_t, bool. (complex not support for now)
TODOs:
- [x] consolidate union and c10::variant implementation
- [x] plug into existing op testing framework
- [ ] rename files, place files in the right folder
- [ ] place util functions in the right file
- [x] enforce assumptions in python interface e.g <8 inputs, kwargs types
- [x] Add user-facing documentation
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76394
Approved by: https://github.com/mruberry