Commit Graph

659 Commits

Author SHA1 Message Date
vishwakftw
ad47788647 Add Polygamma to the docs (#27696)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/25347
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27696

Differential Revision: D17916790

Pulled By: ezyang

fbshipit-source-id: ac2635a300b1ef0ab437e3ffac152239754fe828
2019-10-15 07:00:57 -07:00
Dmytro Dzhulgakov
169327f557 Add note that cuda quantization is not supported (#27829)
Summary:
People get confused with partial support otherwise: https://github.com/pytorch/pytorch/issues/27811 #27729

Suggestions on where else put warnings are welcomed (probably in tutorials - cc SethHWeidman )
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27829

Differential Revision: D17910931

Pulled By: dzhulgakov

fbshipit-source-id: 37a169a4bef01b94be59fe62a8f641c3ec5e9b7c
2019-10-14 11:25:51 -07:00
StandbyMe
a23edd6b9c Fix Type Errors in Examples about Named Tensor (#27828)
Summary:
`names` should be `tuple`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27828

Differential Revision: D17908112

Pulled By: zou3519

fbshipit-source-id: bd1454c5d6e6b690955f49380e34c4b0ddaf879b
2019-10-14 09:24:45 -07:00
vishwakftw
82a69a690f Add documentation for torch.lgamma (#27812)
Summary:
Changelog:
- Add doc string in _torch_docs.py, _tensor_docs.py
- Expose in docs/source/torch.rst, docs/source/tensors.rst
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27812

Test Plan:
- Remove `lgamma`, `lgamma_` from the blacklist

Fixes https://github.com/pytorch/pytorch/issues/27783

Differential Revision: D17907630

Pulled By: ezyang

fbshipit-source-id: 14e662a4e5262126889a437e5c4bfb21936730e8
2019-10-14 08:47:04 -07:00
zou3519
23bffc4f14 Fix most documentation warnings (#27782)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27782

Warnings show up when running `make html` to build documentation. All of
the warnings are very reasonable and point to bugs in our docs. This PR
attempts to fix most of those warnings.

In the future we will add something to the CI that asserts that there
are no warnings in our docs.

Test Plan: - build and view changes locally

Differential Revision: D17887067

Pulled By: zou3519

fbshipit-source-id: 6bf4d08764759133b20983d6cd7f5d27e5ee3166
2019-10-13 10:34:01 -07:00
BowenBao
907ce80321 Update onnx landing page for 1.3 (#27581)
Summary:
* Update supported operator list.
* Update FAQ on implicit scalar casting. Traced models are now more robust.

cc spandantiwari lara-hdr neginraoof Please feel free to add any missing points. Thank you!

cc houseroad for review.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27581

Reviewed By: hl475

Differential Revision: D17882147

Pulled By: houseroad

fbshipit-source-id: c1d745ca647fce2daf897bbb6d1ff8c283f18839
2019-10-11 20:53:50 -07:00
Chris Gottbrath
f35d7d4614 Pr v130 doc changes oct10 take2 (#27721)
Summary:
resolves issues:
https://github.com/pytorch/pytorch/issues/27703

Updates to index for v1.3.0
* add javasphinx to the required sphinx plugins
* Update "Package Reference" to "Python API"
* Add in torchaudio and torchtext reference links so they show up across all docs not just the main page
* Add "Other Languages" section, add in C++ docs, add in Javadocs
* Add link to XLA docs under Notes: http://pytorch.org/xla/

this includes changes to:
docs/source/conf.py
docs/source/index.rst
docs/source/nn.rst
docs/requirements.txt
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27721

Differential Revision: D17881973

Pulled By: jlin27

fbshipit-source-id: ccc1e9e4da17837ad99d25df997772613f76aea8
2019-10-11 11:49:14 -07:00
Elias Ellison
5d495a11cb add unused and is_scripting to docs
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/27630

Differential Revision: D17868856

Pulled By: eellison

fbshipit-source-id: 7cf183d5c0d5436fbaa549a02e6b8fd47fa15b67
2019-10-10 17:02:17 -07:00
Michael Suo
9bc8fb8dfd Revert D17850696: [pytorch][PR] Updates to quantization related files, index.rst, and javadocs
Test Plan: revert-hammer

Differential Revision:
D17850696

Original commit changeset: 3de146f06522

fbshipit-source-id: 565fef87fcf6021362ec3e540be78641d47ef9a7
2019-10-10 09:23:33 -07:00
Edward Yang
9d925c1d6f Revert D17851047: [pytorch][PR] Add javasphinx extension
Test Plan: revert-hammer

Differential Revision:
D17851047

Original commit changeset: 8ed7e3c44f20

fbshipit-source-id: 9021436a7c84f7582c3d4d3e29fb5f7b0887e88c
2019-10-10 07:36:42 -07:00
Dmytro Dzhulgakov
d931c8bf75 substantially restructure all quantized docs to group logically (#27677)
Summary:
Make everything clickable
Organize APIs logically in subsections
Fix many typos
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27677

Differential Revision: D17850650

Pulled By: dzhulgakov

fbshipit-source-id: 060f6ed988d1c4beecba6bc8daf55626961fac98
2019-10-10 00:50:02 -07:00
Jessica Lin
91959aa3d3 Add javasphinx extension
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/27681

Differential Revision: D17851047

Pulled By: brianjo

fbshipit-source-id: 8ed7e3c44f2055d2b8577686aff1d13548f45688
2019-10-09 23:20:33 -07:00
Jessica Lin
1118ea5866 Updates to quantization related files, index.rst, and javadocs (#27676)
Summary:
- Update torch.rst to remove certain autofunction calls
- Add reference to Quantization Functions section in nn.rst
- Update javadocs for v1.3.0
- Update index.rst:
  - Update "Package Reference" to "Python API"
  - Add in torchaudio and torchtext reference links so they show up across all docs not just the main page
  - Add "Other Languages" section, add in C++ docs, add in Javadocs
  - Add link to XLA docs under Notes: http://pytorch.org/xla/
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27676

Differential Revision: D17850696

Pulled By: brianjo

fbshipit-source-id: 3de146f065222d1acd9a33aae3b543927a63532a
2019-10-09 22:52:19 -07:00
Michael Suo
17a54e1b3d Revert D17840343: [pytorch][PR] changes to the documentation in support of quantization
Test Plan: revert-hammer

Differential Revision:
D17840343

Original commit changeset: 06bf3da6012b

fbshipit-source-id: 35f96fac299a0f9dd8ad864f475f606317c46823
2019-10-09 19:20:44 -07:00
Michael Suo
971f773886 Revert D17750005: [jit] Add doc copy-edits from review
Test Plan: revert-hammer

Differential Revision:
D17750005

Original commit changeset: 230d1d33efb0

fbshipit-source-id: 12d22567b99286a8c4f719c3a384cb3665f7ba54
2019-10-09 19:12:58 -07:00
Jessica Lin
18d5210de9 changes to the documentation in support of quantization (#27603)
Summary:
this includes changes to

docs/source/conf.py
docs/source/index.rst
docs/source/nn.rst
docs/source/torch.rst
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27603

Differential Revision: D17840343

Pulled By: gottbrath

fbshipit-source-id: 06bf3da6012b334e3246a6a2cad42358462e2630
2019-10-09 17:13:34 -07:00
Chris Gottbrath
e049e0b027 adding quantization.rst file for quantization feature (#27559)
Summary:
This was written by Raghu, Jessica, Dmytro and myself.

This PR will accumulate additional changes (there are a few more things we need to add to this actual rst file). I'll probably add the related image files to this PR as well.

I'm breaking draft PR https://github.com/pytorch/pytorch/pull/27553 into more easily digestible pieces.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27559

Differential Revision: D17843414

Pulled By: gottbrath

fbshipit-source-id: 434689f255ac1449884acf81f10e0148d0d8d302
2019-10-09 16:45:09 -07:00
Jessica Lin
0eccd05ab4 Add javadoc rst files
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/27646

Differential Revision: D17844860

Pulled By: brianjo

fbshipit-source-id: 9b3ddf8dab2f63345b73436aeb245eea1686c350
2019-10-09 16:40:02 -07:00
davidriazati
e7c9c8098a Add doc copy-edits from review (#26322)
Summary:
Add edits from doc review
](https://our.intern.facebook.com/intern/diff/17750005/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26322

Pulled By: driazati

Differential Revision: D17750005

fbshipit-source-id: 230d1d33efb015e40327373a05a1d3eced7c5c00
2019-10-09 14:16:48 -07:00
Dylan Bespalko
7c472ec597 Vectorized complex unary and binary op support. (#26500)
Summary:
Added Complex support with AVX to unary ops and binary ops.

I need to add nan propagation to minimum() and maximum() in the future.
In-tree changes to pytorch to support complex numbers are being submitted here.
Out-of-tree support for complex numbers is here: pytorch-cpu-strided-complex extension

Preliminary Benchmarks are here.

I tried rrii and riri and found that riri is better in most situations.
Divide is very slow because you can't reduce 1/(x+y)
Sqrt is also very slow.
Reciprocal could be sped up after I add conj()
Everything else is typically within 20% of the real number performance.
Questions:

Why does macOS not support mil? #if AT_MKL_ENABLED() && !defined(__APPLE__) in vml.h. MKL does support some complex operations like Abs, so I was curious about trying it.
Is MKL just calling AVX?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26500

Differential Revision: D17835431

Pulled By: ezyang

fbshipit-source-id: 6746209168fbeb567af340c22bf34af28286bd54
2019-10-09 12:49:21 -07:00
Hong Xu
987e37b9c2 Enable EXE001 flake8 check. (#27560)
Summary:
According to https://github.com/pytorch/pytorch/issues/27285 , seems we do not intend to use shebang as an indication of Python version, thus
we enable EXE001 flake8 check.
For violations, we either remove shebang from non-executable Python scripts or grant them executable permission.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27560

Differential Revision: D17831782

Pulled By: ezyang

fbshipit-source-id: 6282fd3617b25676a6d959af0d318faf05c09b26
2019-10-09 09:15:29 -07:00
zou3519
59b14a7620 Documentation for named tensors (#27173)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27173

`docs/source/named_tensor.rst` is the entry point; most users will land
either here or the named tensor tutorial when looking to use named
tensors. We should strive to make this as readable, concise, and understandable
as possible.

`docs/source/name_inference.rst` lists all of the name inference rules.
It should be clear but it's hard to make it concise.

Please let me know if anything doesn't make sense and please propose
alternative wordings and/or restructuring to improve the documentation.
This should ultimately get cherry-picked into the 1.3 branch as one
monolithic commit so it would be good to get all necessary changes made
in this PR and not have any follow ups.

Test Plan: - built and reviewed locally with `cd docs/ && make html`.

Differential Revision: D17763046

Pulled By: zou3519

fbshipit-source-id: c7872184fc4b189d405b18dad77cad6899ae1522
2019-10-08 22:22:30 -07:00
Jerry Ma
1610ea8ef8 Comprehensive-ish instrumentation for CUDA memory allocator (#27361)
Summary:
Adds comprehensive memory instrumentation to the CUDA caching memory allocator.

# Counters

Added comprehensive instrumentation for the following stats:
  - Allocation requests (`allocation`)
  - Allocated memory (`allocated_bytes`)
  - Reserved segments from cudaMalloc (`segment`)
  - Reserved memory (`reserved_bytes`)
  - Active memory blocks (`active`)
  - Active memory (`active_bytes`)
  - Inactive, non-releasable blocks (`inactive_split`)
  - Inactive, non-releasable memory (`inactive_split_bytes`)
  - Number of failed cudaMalloc calls that result in a cache flush and retry (`cuda_malloc_retries`)
  - Number of OOMs (`num_ooms`)

Except for the last two, these stats are segmented between all memory, large blocks, and small blocks. Along with the current value of each stat, historical counts of allocs/frees as well as peak usage are tracked by the allocator.

# Snapshots

Added the capability to get a "memory snapshot" – that is, to generate a complete dump of the allocator block/segment state.

# Implementation: major changes

- Added `torch.cuda.memory_stats()` (and associated C++ changes) which returns all instrumented stats as a dictionary.
- Added `torch.cuda.snapshot()` (and associated C++ changes) which returns a complete dump of the allocator block/segment state as a list of segments.
- Added memory summary generator in `torch.cuda.memory_summary()` for ease of client access to the instrumentation stats. Potentially useful to dump when catching OOMs. Sample output here: https://pastebin.com/uKZjtupq

# Implementation: minor changes

- Add error-checking helper functions for Python dicts and lists in `torch/csrc/utils/`.
- Existing memory management functions in `torch.cuda` moved from `__init__.py` to `memory.py` and star-imported to the main CUDA module.
- Add various helper functions to `torch.cuda` to return individual items from `torch.cuda.memory_stats()`.
- `torch.cuda.reset_max_memory_cached()` and `torch.cuda.reset_max_memory_allocated()` are deprecated in favor of `reset_peak_stats`. It's a bit difficult to think of a case where only one of those stats should be reset, and IMO this makes the peak stats collectively more consistent.
- `torch.cuda.memory_cached()` and `torch.cuda.max_memory_cached()` are deprecated in favor of `*memory_reserved()`.
- Style (add access modifiers in the allocator class, random nit fixes, etc.)

# Testing

- Added consistency check for stats in `test_cuda.py`. This verifies that the data from `memory_stats()` is faithful to the data from `snapshot()`.
- Ran on various basic workflows (toy example, CIFAR)

# Performance

Running the following speed benchmark: https://pastebin.com/UNndQg50

- Before this PR: 45.98 microseconds per tensor creation
- After this PR: 46.65 microseconds per tensor creation
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27361

Differential Revision: D17758747

Pulled By: jma127

fbshipit-source-id: 5a84e82d696c40c505646b9a1b4e0c3bba38aeb6
2019-10-08 15:42:48 -07:00
davidriazati
a6bb8b52d4 Reduce error context from 10 -> 3 (#26765)
Summary:
10 lines of error context (on both sides) is overkill, especially now
that we have line numbers. With a compilation stack of a couple
functions, it becomes a pain to scroll to the top of the stack to see
the real error every time.

This also fixes class names in the compilation stack to a format of
`ClassName.method_name` instead of the the full qualified name
Old output
```
clip_boxes_to_image(Tensor boxes, (int, int) size) -> (Tensor):
Expected a value of type 'Tuple[int, int]' for argument 'size' but instead found type 'Tuple[int, int, int]'.
:
at /home/davidriazati/dev/vision/torchvision/models/detection/rpn.py:365:20
        top_n_idx = self._get_top_n_idx(objectness, num_anchors_per_level)
        batch_idx = torch.arange(num_images, device=device)[:, None]
        objectness = objectness[batch_idx, top_n_idx]
        levels = levels[batch_idx, top_n_idx]
        proposals = proposals[batch_idx, top_n_idx]

        final_boxes = []
        final_scores = []
        for boxes, scores, lvl, img_shape in zip(proposals, objectness, levels, image_shapes):
            boxes = box_ops.clip_boxes_to_image(boxes, img_shape)
                    ~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
            keep = box_ops.remove_small_boxes(boxes, self.min_size)
            boxes, scores, lvl = boxes[keep], scores[keep], lvl[keep]
            # non-maximum suppression, independently done per level
            keep = box_ops.batched_nms(boxes, scores, lvl, self.nms_thresh)
            # keep only topk scoring predictions
            keep = keep[:self.post_nms_top_n]
            boxes, scores = boxes[keep], scores[keep]
            final_boxes.append(boxes)
            final_scores.append(scores)
'RegionProposalNetwork.filter_proposals' is being compiled since it was called from 'RegionProposalNetwork.forward'
at /home/davidriazati/dev/vision/torchvision/models/detection/rpn.py:446:8
        num_images = len(anchors)
        num_anchors_per_level = [o[0].numel() for o in objectness]
        objectness, pred_bbox_deltas = \
            concat_box_prediction_layers(objectness, pred_bbox_deltas)
        # apply pred_bbox_deltas to anchors to obtain the decoded proposals
        # note that we detach the deltas because Faster R-CNN do not backprop through
        # the proposals
        proposals = self.box_coder.decode(pred_bbox_deltas.detach(), anchors)
        proposals = proposals.view(num_images, -1, 4)
        boxes, scores = self.filter_proposals(proposals, objectness, images.image_sizes, num_anchors_per_level)
        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE

        losses = {}
        if self.training:
            assert targets is not None
            labels, matched_gt_boxes = self.assign_targets_to_anchors(anchors, targets)
            regression_targets = self.box_coder.encode(matched_gt_boxes, anchors)
            loss_objectness, loss_rpn_box_reg = self.compute_loss(
                objectness, pred_bbox_deltas, labels, regression_targets)
            losses = {
'RegionProposalNetwork.forward' is being compiled since it was called from 'MaskRCNN.forward'
at /home/davidriazati/dev/vision/torchvision/models/detection/generalized_rcnn.py:53:8
        """
        if self.training and targets is None:
            raise ValueError("In training mode, targets should be passed")
        original_image_sizes = [(img.shape[-2], img.shape[-3])  for img in images]

        images, targets = self.transform(images, targets)
        features = self.backbone(images.tensors)
        if isinstance(features, torch.Tensor):
            features = OrderedDict([(0, features)])
        proposals, proposal_losses = self.rpn(images, features, targets)
        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
        detections, detector_losses = self.roi_heads(features, proposals, images.image_sizes, targets)
        detections = self.transform.postprocess(detections, images.image_sizes, original_image_sizes)

        losses = {}
        losses.update(detector_losses)
        losses.update(proposal_losses)

        # TODO: multiple return types??
        # if self.training:
```

New output

```
RuntimeError:

clip_boxes_to_image(Tensor boxes, (int, int) size) -> (Tensor):
Expected a value of type 'Tuple[int, int]' for argument 'size' but instead found type 'Tuple[int, int, int]'.
:
at /home/davidriazati/dev/vision/torchvision/models/detection/rpn.py:365:20
        final_scores = []
        for boxes, scores, lvl, img_shape in zip(proposals, objectness, levels, image_shapes):
            boxes = box_ops.clip_boxes_to_image(boxes, img_shape)
                    ~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
            keep = box_ops.remove_small_boxes(boxes, self.min_size)
            boxes, scores, lvl = boxes[keep], scores[keep], lvl[keep]
'RegionProposalNetwork.filter_proposals' is being compiled since it was called from 'RegionProposalNetwork.forward'
at /home/davidriazati/dev/vision/torchvision/models/detection/rpn.py:446:8
        proposals = self.box_coder.decode(pred_bbox_deltas.detach(), anchors)
        proposals = proposals.view(num_images, -1, 4)
        boxes, scores = self.filter_proposals(proposals, objectness, images.image_sizes, num_anchors_per_level)
        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE

        losses = {}
'RegionProposalNetwork.forward' is being compiled since it was called from 'MaskRCNN.forward'
at /home/davidriazati/dev/vision/torchvision/models/detection/generalized_rcnn.py:53:8
        if isinstance(features, torch.Tensor):
            features = OrderedDict([(0, features)])
        proposals, proposal_losses = self.rpn(images, features, targets)
        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
        detections, detector_losses = self.roi_heads(features, proposals, images.image_sizes, targets)
        detections = self.transform.postprocess
```
](https://our.intern.facebook.com/intern/diff/17560963/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26765

Pulled By: driazati

Differential Revision: D17560963

fbshipit-source-id: e463548744b505ca17f0158079b80e08fda47d49
2019-10-04 11:24:52 -07:00
Orion Reblitz-Richardson
cc964765a5 Add method add_hparams to API doc (#27344)
Summary:
Adds the method `add_hparams` to `torch.utils.tensorboard` API docs. Will want to have this in PyTorch 1.3 release.

cc sanekmelnikov lanpa natalialunova
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27344

Differential Revision: D17753689

Pulled By: orionr

fbshipit-source-id: cc8636e0bdcf3f434444cd29471c62105491039d
2019-10-03 17:07:45 -07:00
Brian Vaughan
0c6a18de8d Add torch.promote_types function
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/26655

Test Plan: Imported from OSS

Differential Revision: D17556196

Pulled By: nairbv

fbshipit-source-id: eeebce8968bfb2ffd25c066595bc19e5dee6ea6f
2019-09-27 16:48:38 -07:00
Brian Vaughan
2a43b74196 Add torch.can_cast(from, to) function (#26805)
Summary:
https://github.com/pytorch/pytorch/issues/25472
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26805

Differential Revision: D17628434

Pulled By: nairbv

fbshipit-source-id: 6af8031ac3afda1505d338075c0637ad043f8b7e
2019-09-27 08:40:34 -07:00
Ailing Zhang
0f1fbc0eb2 Hub improvements (#26723)
Summary:
Resubmit of https://github.com/pytorch/pytorch/pull/25980.
Our old serialization was in tar (like `resnet18-5c106cde.pth` was in this format) so let's only support automatically unzip if checkpoints are zipfiles.
We can still manage to get it work with tarfile, but let's delay it when there's an ask.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26723

Differential Revision: D17551795

Pulled By: ailzhang

fbshipit-source-id: 00b4e7621f1e753ca9aa07b1fe356278c6693a1e
2019-09-25 08:21:50 -07:00
Brian Vaughan
002c250139 Expose a torch.result_type and simplify tensor iterator
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/26012

Test Plan: Imported from OSS

Differential Revision: D17556197

Pulled By: nairbv

fbshipit-source-id: c0be3ac9e99fecc26a181e301defc1942bc6708c
2019-09-25 06:52:23 -07:00
Karl Ostmo
839e636fa1 Revert D17495679: [pytorch][PR] A few hub improvements
Test Plan: revert-hammer

Differential Revision:
D17495679

Original commit changeset: 695df3e803ad

fbshipit-source-id: 6c85bc980991971b08714f05155dd23147eed233
2019-09-23 23:38:19 -07:00
Ailing Zhang
1eaaf8b68b A few hub improvements (#25980)
Summary:
This PR does a few small improvements to hub:
- add support `verbose` option in `torch.load`. Note that this mutes hitting cache message but keeps the message of first download as suggested. fixes https://github.com/pytorch/pytorch/issues/24791
- add support loading state dict from tar file or zip file in `torch.hub.load_state_dict_from_url`.
- add `torch.hub.download_url_to_file` as public API, and add BC bit for `_download_url_to_file`.
- makes hash check in filename optional through `check_hash`, many users don't have control over the naming, relaxing this constraint could potentially avoid duplicating download code on user end.
- move pytorch CI off `pytorch/vision` and use `ailzhang/torchhub_example` as a dedicated test repo. fixes https://github.com/pytorch/pytorch/issues/25865
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25980

Differential Revision: D17495679

Pulled By: ailzhang

fbshipit-source-id: 695df3e803ad5f9ca33cfbcf62f1a4f8cde0dbbe
2019-09-23 17:24:19 -07:00
vishwakftw
15b506068b Remove deprecated torch.gels (#26480)
Summary:
Changelog:
- Remove `torch.gels` which was deprecated in v1.2.0
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26480

Test Plan: - No tests were changed and all callsites for `torch.gels` where modified to `torch.lstsq` when `torch.lstsq` was introduced

Differential Revision: D17527207

Pulled By: zou3519

fbshipit-source-id: 28e2fa3a3bf30eb6b9029bb5aab198c4d570a950
2019-09-23 07:15:39 -07:00
Dmytro Dzhulgakov
8c1354c31b Implement more support for per-channel quantization (#26240)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26240

In particular adds support for empty/empty_like which is needed for memory layouts to work.

Test Plan: Imported from OSS

Differential Revision: D17443220

Pulled By: dzhulgakov

fbshipit-source-id: 9c9e25981999c0edaf40be104a5741e9c62a1333
2019-09-19 13:39:17 -07:00
Elias Ellison
7ab4ad7b6d add torch.jit.is_scripting() api (#25263)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25263

This adds an api to return true in script and false in eager, which together with ignore allows guarding of not yet supported JIT features. Bikeshedding requested please.

cc zou3519

```
def foo():
   if not torch.jit.is_scripting():
      return torch.linear(...)
   else:
      return addmm(...)
```

Test Plan: Imported from OSS

Differential Revision: D17272443

Pulled By: eellison

fbshipit-source-id: de0f769c7eaae91de0007b98969183df93a91f42
2019-09-09 20:24:36 -07:00
M. Doosti Lakhani
1777eb2ed9 fix typo: toDense --> to_dense #25706 (#25832)
Summary:
Only fixes a minor typo in [torch.sparse.FloatTensor docs](https://pytorch.org/docs/stable/sparse.html#torch.sparse.FloatTensor.toDense).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25832

Differential Revision: D17276700

Pulled By: soumith

fbshipit-source-id: cf3d550d5756b000a4e864170ecd4b31826b40f8
2019-09-09 18:27:03 -07:00
TortillasAlfred
38e4766349 Add CosineAnnealingWarmRestarts to optim documentation (#25421)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/20028.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25421

Differential Revision: D17221542

Pulled By: soumith

fbshipit-source-id: 9c83c9ad6bf34ba59713c61485e4ef4b782a2792
2019-09-05 19:06:18 -07:00
Brian Vaughan
88e4cee3e7 Improve handling of mixed-type tensor operations (#22273)
Summary:
Improve handling of mixed-type tensor operations.

This PR affects the arithmetic (add, sub, mul, and div) operators implemented via TensorIterator (so dense but not sparse tensor ops).

For these operators, we will now promote to reasonable types where possible, following the rules defined in https://github.com/pytorch/pytorch/issues/9515, and error in cases where the cast would require floating point -> integral or non-boolean to boolean downcasts.

The details of the promotion rules are described here:
https://github.com/nairbv/pytorch/blob/promote_types_strict/docs/source/tensor_attributes.rst

Some specific backwards incompatible examples:
* now `int_tensor * float` will result in a float tensor, whereas previously the floating point operand was first cast to an int. Previously `torch.tensor(10) * 1.9` => `tensor(10)` because the 1.9 was downcast to `1`. Now the result will be the more intuitive `tensor(19)`
* Now `int_tensor *= float` will error, since the floating point result of this operation can't be cast into the in-place integral type result.

See more examples/detail in the original issue (https://github.com/pytorch/pytorch/issues/9515), in the above linked tensor_attributes.rst doc, or in the test_type_promotion.py tests added in this PR:
https://github.com/nairbv/pytorch/blob/promote_types_strict/test/test_type_promotion.py
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22273

Reviewed By: gchanan

Differential Revision: D16582230

Pulled By: nairbv

fbshipit-source-id: 4029cca891908cdbf4253e4513c617bba7306cb3
2019-09-05 18:26:09 -07:00
davidriazati
0be29ee2ba Finish testing code examples in the docs (#25668)
Summary:
All of the code examples should now run as unit tests, save for those
that require interaction (i.e. show `pdb` usage) and those that use
CUDA.

`save` had to be moved before `load` in `jit/__init__.py` so `load`
could use the file generated by `save`
](https://our.intern.facebook.com/intern/diff/17192417/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25668

Pulled By: driazati

Differential Revision: D17192417

fbshipit-source-id: 931b310ae0c3d2cc6affeabccae5296f53fe42bc
2019-09-05 16:13:37 -07:00
Michael Suo
11eb8ac2a9 Revert D17199043: [JIT] preserve ignored function return value type
Test Plan: revert-hammer

Differential Revision:
D17199043

Original commit changeset: 1196fd94c207

fbshipit-source-id: 49789ae1f128262bc40a9d5b0d2b7bfbbf0b7e1e
2019-09-05 15:51:06 -07:00
Elias Ellison
df043cd49d preserve ignored function return value type (#25262)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25262

Preserve the type of ignore'd functions on serialization. Currently we first compile an ignore'd function with it's annotated type when first compiling, but do not preserve it. This is important for being able to compile models with not-yet-supported features in JIT.

```
torch.jit.ignore
def unsupported(x):
    return x

def foo():
   if not torch.jit._is_scripting():
      return torch.linear(...)
   else:
      return unsupported(...)
```

Test Plan: Imported from OSS

Reviewed By: driazati

Differential Revision: D17199043

Pulled By: eellison

fbshipit-source-id: 1196fd94c207b9fbee1087e4b2ef7d4656a6647f
2019-09-05 11:21:55 -07:00
Jessica Lin
0cc8ac75c9 Alphabetize Package Reference section in Docs
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/25666

Differential Revision: D17190766

Pulled By: soumith

fbshipit-source-id: 836305062b0195b2f11be069447e05008c128d21
2019-09-04 14:31:16 -07:00
Igor Fedan
896cd1c510 Documentation for cdist (#25221)
Summary:
https://github.com/pytorch/pytorch/issues/21730
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25221

Differential Revision: D17073908

Pulled By: ifedan

fbshipit-source-id: 19e2534183d6a2a7e9cdfcee4734cff1b124e05a
2019-09-03 14:16:07 -07:00
Brian Johnson
832c72a2d6 Update index.rst (#24245)
Summary:
Adds links to torchaudio and torchtext to docs index. We should eventually evolve this to bring the audio and text docs builds in like torchvision.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24245

Differential Revision: D17163539

Pulled By: soumith

fbshipit-source-id: 5754bdf7579208e291e53970b40f73ef119b758f
2019-09-03 09:28:19 -07:00
Horace He
71c97d3747 Fixed flatten docs (I think) (#25544)
Summary:
I think...

I'm having issues building the site, but it appears to get rid of the error.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25544

Differential Revision: D17157327

Pulled By: ezyang

fbshipit-source-id: 170235c52008ca78ff0d8740b2d7f5b67397b614
2019-09-02 11:34:56 -07:00
BowenBao
bbf84c1a9f Fix dead link and syntax in ONNX landing page
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/25126

Differential Revision: D17129237

Pulled By: dzhulgakov

fbshipit-source-id: 80fab457387d357ddcfc23710cb4493ce94cab5e
2019-08-29 23:58:34 -07:00
davidriazati
fe922a2e84 Fix item() call in docs
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/25404

Pulled By: driazati

Differential Revision: D17116098

fbshipit-source-id: e365f254f38a3134898817d75201dd9ae009ecb4
2019-08-29 13:50:04 -07:00
Vincent Quenneville-Belair
05f1fed693 Add OneCycleLR (#25324)
Summary:
Squash rebase of https://github.com/pytorch/pytorch/issues/21258

ghstack-source-id: 7d3ce522ac4dd3050bc6c6bbda1eaaeb8bc4b2c1
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25324
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25325

Differential Revision: D17095722

Pulled By: vincentqb

fbshipit-source-id: 7fe69b210924ee3b39223dd78122aea61267234a
2019-08-28 16:59:40 -07:00
Tzu-Wei Huang
cd14518ee8 hyperparameter plugin (#23134)
Summary:
closes https://github.com/pytorch/pytorch/issues/16838

example usage:
```python
writer.add_hparam(hparam_dict= {'lr': 0.1, 'bsize': 12}, metrics= {'accuracy': 0.987, 'loss': 10})

```
cc orionr
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23134

Reviewed By: orionr

Differential Revision: D16807300

Pulled By: sanekmelnikov

fbshipit-source-id: 4072c529076f423b34b00b68be2d6eec444423fe
2019-08-26 10:40:34 -07:00
Daya Khudia
12ea1d74f0 Add missing functions and methods for channelwise quantization (#24934)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24934

1) Functions and methods to get scales and zero_points for channelwise quantization were missing. Adding these.
2) Correctly print quantized tensors for channelwise quantization.
ghstack-source-id: 88868339

Test Plan:
buck test mode/dev caffe2/test:quantized -- 'test_qtensor\ \(test_quantized_tensor.TestQuantizedTensor\)'  --print-passing-details

```
Running 1 tests
Started new test run: https://our.intern.facebook.com/intern/testinfra/testrun/1970324844629541
      ✓ caffe2/test:quantized - test_qtensor (test_quantized_tensor.TestQuantizedTensor) 0.161 1/1 (passed)
Test output:
> test_qtensor (test_quantized_tensor.TestQuantizedTensor) ... ok
>
> ----------------------------------------------------------------------
> Ran 1 test in 0.161s
>
> OK
Finished test run: https://our.intern.facebook.com/intern/testinfra/testrun/1970324844629541
Summary (total time 6.61s):
  PASS: 1
  FAIL: 0
  SKIP: 0
  FATAL: 0
  TIMEOUT: 0
  OMIT: 0
```
To be added in a followup diff.
Current output for printing qtensors:
print(W_q.int_repr())
print(W_q)

```
> tensor([[[[-3,  0,  0],
>           [ 4, -2, -4],
>           [-1, -3, -2]],
>
>          [[-3,  1,  3],
>           [-3, -3,  3],
>           [-3, -5, -1]]],
>
>
>         [[[ 4, -3, -4],
>           [ 4, -3, -3],
>           [ 4, -1, -1]],
>
>          [[ 2, -3,  0],
>           [ 3,  1,  1],
>           [ 2, -4,  0]]]], dtype=torch.int8)
> tensor([[[[-0.9273, -0.2318, -0.2318],
>           [ 0.6955, -0.6955, -1.1592],
>           [-0.4637, -0.9273, -0.6955]],
>
>          [[-0.9273,  0.0000,  0.4637],
>           [-0.9273, -0.9273,  0.4637],
>           [-0.9273, -1.3910, -0.4637]]],
>
>
>         [[[ 0.3938, -0.1575, -0.2363],
>           [ 0.3938, -0.1575, -0.1575],
>           [ 0.3938,  0.0000,  0.0000]],
>
>          [[ 0.2363, -0.1575,  0.0788],
>           [ 0.3150,  0.1575,  0.1575],
>           [ 0.2363, -0.2363,  0.0788]]]], size=(2, 2, 3, 3), dtype=torch.qint8,
>        quantization_scheme=torch.per_channel_affine,
>        scale=tensor([0.2318, 0.0788]), zero_point=tensor([ 1, -1]))
```

Differential Revision: D16659715

fbshipit-source-id: f8d3eeaff8f618aa0cca4fd076db73318e6df946
2019-08-23 15:44:16 -07:00
davidriazati
1c4495d8ac Clean up after running doc tests (#25036)
Summary:
](https://our.intern.facebook.com/intern/diff/16965612/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25036

Pulled By: driazati

Differential Revision: D16965612

fbshipit-source-id: 494a734c27c1330ea0917397efbad6bc4f40be73
2019-08-23 12:52:48 -07:00