This patch addresses the renaming part of #133027, specifically, it
renames the following and adds documentation for relevant classes.
1. `VariableTracker.mutable_local` to `mutation_type`
2. `MatableLocal `to `ValueMutationNew`
3. `MutableSideEffects `to `ValueMutationExisting`
4. `MutableLocalSource` to `SourceType`
5. `MutableLocalSource.Local` to `New`
Note that (2), (3) and (5) are mainly to bring consistency between them
and `AttributeMutationNew`, `AttributeMutationExisting`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139339
Approved by: https://github.com/jansel, https://github.com/mlazos, https://github.com/anijain2305
Code refactoring only. We move the wrap_to_fake_tensor_logic out of wrap_fx_proxy for placeholders to provide the invariant that **all graph inputs must set their example values when creating the inputs**. This invariant helps us to identify all the free symbols in the graph in top-level and sub-graphs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138428
Approved by: https://github.com/ezyang, https://github.com/zou3519
ghstack dependencies: #138345
Fixes issue with timm models where
example_value = 0.09999
proxy.node.target = <built-in function sub>
would fall through to
```
unimplemented(
"torch.* op returned non-Tensor "
+ f"{typestr(example_value)} {proxy.node.op} {proxy.node.target}",
case_name="unsupported_operator",
)
```
and graph break
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139482
Approved by: https://github.com/ezyang
ghstack dependencies: #139451
During the work to dedup graphs for hierarchical compilation I tried to tame the `wrap_fx_proxy_cls` mess by separating the wrapping into three distinct scenarios (vs a jumble of conditionals). These are:
1) wrapping a preexisting tensor (`_wrap_fx_preexisting_tensor`
2) wrapping and tracing a new op into the graph (`_wrap_fx_proxy`)
3) handling a value that is some other proxyable data structure
See `wrap_fx_proxy_cls` for the conditional tree handling these three cases.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138933
Approved by: https://github.com/williamwen42
While working on automatic dynamic PGO (https://github.com/pytorch/pytorch/pull/138052) one abstract property I was looking for out of profile information is that it formed a semilattice: I could join together two profiles and get a merged profile that is consistent with the profiles that I saw in both cases. While working on this data structure that supported joins, I realized that the base automatic dynamic algorithm could be implemented in this way, therefore this refactor.
The basic recipe is that we now support a join operation on FrameStateSizeEntry. Intuitively, if you join two sizes that are equal, you get back that size (join(2, 2) == 2), but if you join two different sizes you get a special singleton auto_dynamic indicating that the size of the tensor is dynamic (join(2, 3) == auto_dynamic). So now, the automatic dynamic algorithm is: (1) compute the FrameStateSizeEntry that corresponds to the concrete values we've seen, and (2) join it into the ambient FrameStateSizeEntry. As a bonus, compiler collectives can buy into the same abstraction (we're simply distributing FrameStateSizeEntry from each node to every other node). For convenience, I also added the necessary `auto_unset` extra state which is the identity element (which makes our semilattice bounded from both top and bottom). Here, join(2, auto_unset) == 2.
While doing this, there was a complication: the infer stride algorithm wasn't technically a semilattice. Here, I did what I suggested in the original code review https://github.com/pytorch/pytorch/pull/130232 which is stop using a heuristic, and instead replicate the stride inference algorithm in automatic dynamic. This means that when I join strides together, I don't join their concrete values, instead, if a stride can be inferred as the contiguous stride for a particular inner dimension, then you represent it as InferStride(dim). There's an example in code which I recommend looking at.
Some other extra things that are happening in this PR:
* I tried to deduplicate the size/stride automatic dynamic logic as much as possible. So hopefully less code to review here.
* I had to reimplement all the logging. For the most part I tried to track the logging as closely to the original as possible, but I think we could be emitting less Chrome events here
* The `marked_dynamic` handling is still preserved as is, but I kind of don't like it and we should figure out how to put it somewhere else
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138717
Approved by: https://github.com/bobrenjc93
ghstack dependencies: #138693
Previously we'd been raising UserErrors when `Dim()` and DimHints (`Dim.AUTO/Dim.DYNAMIC`) were both specified in `dynamic_shapes`, this PR stops that, and uses `Dim()` objects to guide DimHints.
The key to this was making the `EqualityConstraint` class happy when it checks that inferred equivalence relations were specified in the original `dynamic_shapes` spec, and this introduces a `RelaxedConstraint` object to mark the hinted dimensions, so equality checks between `RelaxedConstraints` and other constraints are treated as valid.
Current behavior is that:
```
class Foo(torch.nn.Module):
def forward(self, x, y):
return x - y
inputs = (torch.randn(4, 4), torch.randn(4, 4))
shapes = {
"x": (Dim.AUTO, Dim("d1", min=3)),
"y": (Dim("d0", max=8), Dim.DYNAMIC),
}
ep = export(Foo(), inputs, dynamic_shapes=shapes)
```
The dimensions marked `AUTO` and `DYNAMIC` will have max & min ranges of 8 & 3 respectively. Note that inferred equality between `Dim()` objects & `Dim.STATIC` will still raise errors - `Dim()` suggests not specializing to a constant.
Differential Revision: D64636101
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138490
Approved by: https://github.com/avikchaudhuri
This adds Dynamo tracing support for the host-side Triton TMA API (see `create_2d_tma_descriptor` calls on the host in the [Triton tutorial](https://triton-lang.org/main/getting-started/tutorials/09-persistent-matmul.html#sphx-glr-getting-started-tutorials-09-persistent-matmul-py)). A few notes:
- Here we assume the availability of the host-side TMA API added to upstream Triton in https://github.com/triton-lang/triton/pull/4498. As of time of writing, this is not a part of the PT2 OSS Triton pin (although back-ported internally). OSS Triton pin update should be done in December 2024.
- To capture the chain of calls `t.data_ptr() --> create_{1d,2d}_tma_descriptor(ptr, ...) --> kernel[grid](tma_desc, ...)`, we add three new variable trackers: `DataPtrVariable`, `CreateTMADescriptorVariable` (for the function), `TMADescriptorVariable` (for TMA descriptor object). This is to maintain the path back from the Triton kernel to the Tensor from which the TMA descriptor has been created.
- The newly introduced variables have `reconstruct` methods used in case of graph breaks.
- The `tma_descriptor_metadata` extracted from the captured `create_{1d,2d}_tma_descriptor` calls is propagated through the HOPs in Dynamo and AOTAutograd to be used by the downstream compiler (e.g., Inductor). See the unit tests for how the captured HOP arguments look like.
- In the Dynamo-captured fx graph, we replace the TMA descriptor arguments of the Triton kernel by the underlying Tensors, to be able to track the input/output relationships in terms of Tensors.
- In the Triton kernel mutation analysis pass (in AOTAutograd), we use the `tt.experimental_descriptor_store` TTIR op to detect mutations of the underlying tensors via TMA descriptors. So that downstream AOTAutograd can perform functionalizations as required.
- JIT Inductor and AOT Inductor support will be implemented in follow-up PRs.
Differential Revision: [D64404928](https://our.internmc.facebook.com/intern/diff/D64404928)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137677
Approved by: https://github.com/zou3519
This PR implements tracing of with contexts with TorchFunction modes which have the default enter/exit behavior (ie pushing/popping the mode)
Typically the bytecode for a context manager looks like this during a graph break:
1. graph call
2. enter context
3. unsupported code
4. exit context
5. resume call
resume fn structure:
1. enter context
2. jump
...
3. exit context
The issue with torch function modes is that side effects will replay any mutations to the torch function stack performed during tracing. So, we do not need to enter and exit around the unsupported code in the original function (doing so would result in a duplicate torch function mode entry during execution of the unsupported code), and we don't need to enter again in the resume function (the mode that was pushed from the side effects bytecode would still be on the stack).
So for torch function modes the structure of our output code is this:
1. graph call
2. mutate tf mode stack to replay mutations
4. unsupported code
5. on exception restore stack
6. resume function
Then our resume fn looks like this:
1. no-op enter torch function mode
2. jump
3. exit tf mode
To implement the no-op enter of the torch function mode I added torch function mode in polyfill which no-op enters, but normally exits. This is needed because we still want to trace the with context in the resume function, and exit properly (the exit instructions will still be in the function, so we need to generate instructions to set up the context).
Separately from the bytecode, dynamo also tracks contexts on the block stack, which is how the SETUP_* instructions are implemented. Naturally at a graph break, we exit these block stacks to properly reset the contexts entirely, so that we can re-enter around the unsupported code soundly. However once again, in the torch function mode case, in the event of a graph we do not want to perform any exit side effects because we want to preserve the state of the mode stack as is so that we will properly update the stack with bytecode mentioned in the first section. If we exited here, dynamo would pop the mode off of the symbolic stack, and not update the true python torch function mode stack with the suffix bytecode. All in all, for torch function modes we enter exactly once, update the global torch function mode stack with side effects bytecode, re-read this stack when compiling the resume function, and exit exactly once in the resume function. This matches the semantics of eager exactly.
Approved by: https://github.com/williamwen42
ghstack dependencies: #134732, #133137, #135443, #135444
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137114
Approved by: https://github.com/yanboliang
This PR implements tracing of with contexts with TorchFunction modes which have the default enter/exit behavior (ie pushing/popping the mode)
Typically the bytecode for a context manager looks like this during a graph break:
1. graph call
2. enter context
3. unsupported code
4. exit context
5. resume call
resume fn structure:
1. enter context
2. jump
...
3. exit context
The issue with torch function modes is that side effects will replay any mutations to the torch function stack performed during tracing. So, we do not need to enter and exit around the unsupported code in the original function (doing so would result in a duplicate torch function mode entry during execution of the unsupported code), and we don't need to enter again in the resume function (the mode that was pushed from the side effects bytecode would still be on the stack).
So for torch function modes the structure of our output code is this:
1. graph call
2. mutate tf mode stack to replay mutations
4. unsupported code
5. on exception restore stack
6. resume function
Then our resume fn looks like this:
1. no-op enter torch function mode
2. jump
3. exit tf mode
To implement the no-op enter of the torch function mode I added torch function mode in polyfill which no-op enters, but normally exits. This is needed because we still want to trace the with context in the resume function, and exit properly (the exit instructions will still be in the function, so we need to generate instructions to set up the context).
Separately from the bytecode, dynamo also tracks contexts on the block stack, which is how the SETUP_* instructions are implemented. Naturally at a graph break, we exit these block stacks to properly reset the contexts entirely, so that we can re-enter around the unsupported code soundly. However once again, in the torch function mode case, in the event of a graph we do not want to perform any exit side effects because we want to preserve the state of the mode stack as is so that we will properly update the stack with bytecode mentioned in the first section. If we exited here, dynamo would pop the mode off of the symbolic stack, and not update the true python torch function mode stack with the suffix bytecode. All in all, for torch function modes we enter exactly once, update the global torch function mode stack with side effects bytecode, re-read this stack when compiling the resume function, and exit exactly once in the resume function. This matches the semantics of eager exactly.
Approved by: https://github.com/williamwen42
ghstack dependencies: #134732, #133137, #135443, #135444
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137114
Approved by: https://github.com/yanboliang
This reverts commit 7743149b2b.
Reverts
* https://github.com/pytorch/pytorch/pull/135503
* https://github.com/pytorch/pytorch/pull/135502
* https://github.com/pytorch/pytorch/pull/135422
This passes this test. Earlier, the getitem would stay like a getitem in the Fx graph. But now the fake tensor propagations fails saying that .item is called. It seems that torch function is not getting triggered while fake tensor propagation.
```
import torch
from torch.nn.attention.flex_attention import BlockMask, _mask_mod_signature, _score_mod_signature, flex_attention
from torch._inductor.lowering import make_pointwise, register_lowering
from torch._inductor.virtualized import ops
from torch.nn.attention.flex_attention import create_block_mask
torch.set_default_device('cuda')
flex_attention = torch.compile(flex_attention, dynamic=False)
prefix_lengths = torch.arange(8)
def prefix_lm(b, h, q, kv):
return prefix_lengths[b] >= kv
mask = create_block_mask(prefix_lm, 8, None, 512, 512, _compile=True)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136590
Approved by: https://github.com/Chillee
PR changes how `reconstruct` is done for a ConstDict. As of today, it works as follow:
(1) codegen(...) each pair of key/value
(2) create a new dictionary to hold the new items
(3) clear the original dictionary
(4) update the original dict with the one created in (2)
We do a micro optimization in the generated bytecode to:
- Only codegen the items that changed.
- Only clear the original dictionary if a key was removed.
Fixes: #133487
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134876
Approved by: https://github.com/zou3519
PR changes how `reconstruct` is done for a ConstDict. As of today, it works as follow:
(1) codegen(...) each pair of key/value
(2) create a new dictionary to hold the new items
(3) clear the original dictionary
(4) update the original dict with the one created in (2)
We do a micro optimization in the generated bytecode to:
- Only codegen the items that changed.
- Only clear the original dictionary if a key was removed.
Fixes: #133487
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134876
Approved by: https://github.com/zou3519
This PR implements tracing of with contexts with TorchFunction modes which have the default enter/exit behavior (ie pushing/popping the mode)
Typically the bytecode for a context manager looks like this during a graph break:
1. graph call
2. enter context
3. unsupported code
4. exit context
5. resume call
resume fn structure:
1. enter context
2. jump
...
3. exit context
The issue with torch function modes is that side effects will replay any mutations to the torch function stack performed during tracing. So, we do not need to enter and exit around the unsupported code in the original function (doing so would result in a duplicate torch function mode entry during execution of the unsupported code), and we don't need to enter again in the resume function (the mode that was pushed from the side effects bytecode would still be on the stack).
So for torch function modes the structure of our output code is this:
1. graph call
2. mutate tf mode stack to replay mutations
4. unsupported code
5. on exception restore stack
6. resume function
Then our resume fn looks like this:
1. no-op enter torch function mode
2. jump
3. exit tf mode
To implement the no-op enter of the torch function mode I added torch function mode in polyfill which no-op enters, but normally exits. This is needed because we still want to trace the with context in the resume function, and exit properly (the exit instructions will still be in the function, so we need to generate instructions to set up the context).
Separately from the bytecode, dynamo also tracks contexts on the block stack, which is how the SETUP_* instructions are implemented. Naturally at a graph break, we exit these block stacks to properly reset the contexts entirely, so that we can re-enter around the unsupported code soundly. However once again, in the torch function mode case, in the event of a graph we do not want to perform any exit side effects because we want to preserve the state of the mode stack as is so that we will properly update the stack with bytecode mentioned in the first section. If we exited here, dynamo would pop the mode off of the symbolic stack, and not update the true python torch function mode stack with the suffix bytecode. All in all, for torch function modes we enter exactly once, update the global torch function mode stack with side effects bytecode, re-read this stack when compiling the resume function, and exit exactly once in the resume function. This matches the semantics of eager exactly.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135422
Approved by: https://github.com/williamwen42
ghstack dependencies: #134732, #133137, #135443, #135444
This PR implements tracing of with contexts with TorchFunction modes which have the default enter/exit behavior (ie pushing/popping the mode)
Typically the bytecode for a context manager looks like this during a graph break:
1. graph call
2. enter context
3. unsupported code
4. exit context
5. resume call
resume fn structure:
1. enter context
2. jump
...
3. exit context
The issue with torch function modes is that side effects will replay any mutations to the torch function stack performed during tracing. So, we do not need to enter and exit around the unsupported code in the original function (doing so would result in a duplicate torch function mode entry during execution of the unsupported code), and we don't need to enter again in the resume function (the mode that was pushed from the side effects bytecode would still be on the stack).
So for torch function modes the structure of our output code is this:
1. graph call
2. mutate tf mode stack to replay mutations
4. unsupported code
5. on exception restore stack
6. resume function
Then our resume fn looks like this:
1. no-op enter torch function mode
2. jump
3. exit tf mode
To implement the no-op enter of the torch function mode I added torch function mode in polyfill which no-op enters, but normally exits. This is needed because we still want to trace the with context in the resume function, and exit properly (the exit instructions will still be in the function, so we need to generate instructions to set up the context).
Separately from the bytecode, dynamo also tracks contexts on the block stack, which is how the SETUP_* instructions are implemented. Naturally at a graph break, we exit these block stacks to properly reset the contexts entirely, so that we can re-enter around the unsupported code soundly. However once again, in the torch function mode case, in the event of a graph we do not want to perform any exit side effects because we want to preserve the state of the mode stack as is so that we will properly update the stack with bytecode mentioned in the first section. If we exited here, dynamo would pop the mode off of the symbolic stack, and not update the true python torch function mode stack with the suffix bytecode. All in all, for torch function modes we enter exactly once, update the global torch function mode stack with side effects bytecode, re-read this stack when compiling the resume function, and exit exactly once in the resume function. This matches the semantics of eager exactly.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135422
Approved by: https://github.com/williamwen42
ghstack dependencies: #134732, #133137, #135443, #135444
This PR implements tracing of with contexts with TorchFunction modes which have the default enter/exit behavior (ie pushing/popping the mode)
Typically the bytecode for a context manager looks like this during a graph break:
1. graph call
2. enter context
3. unsupported code
4. exit context
5. resume call
resume fn structure:
1. enter context
2. jump
...
3. exit context
The issue with torch function modes is that side effects will replay any mutations to the torch function stack performed during tracing. So, we do not need to enter and exit around the unsupported code in the original function (doing so would result in a duplicate torch function mode entry during execution of the unsupported code), and we don't need to enter again in the resume function (the mode that was pushed from the side effects bytecode would still be on the stack).
So for torch function modes the structure of our output code is this:
1. graph call
2. mutate tf mode stack to replay mutations
4. unsupported code
5. on exception restore stack
6. resume function
Then our resume fn looks like this:
1. no-op enter torch function mode
2. jump
3. exit tf mode
To implement the no-op enter of the torch function mode I added torch function mode in polyfill which no-op enters, but normally exits. This is needed because we still want to trace the with context in the resume function, and exit properly (the exit instructions will still be in the function, so we need to generate instructions to set up the context).
Separately from the bytecode, dynamo also tracks contexts on the block stack, which is how the SETUP_* instructions are implemented. Naturally at a graph break, we exit these block stacks to properly reset the contexts entirely, so that we can re-enter around the unsupported code soundly. However once again, in the torch function mode case, in the event of a graph we do not want to perform any exit side effects because we want to preserve the state of the mode stack as is so that we will properly update the stack with bytecode mentioned in the first section. If we exited here, dynamo would pop the mode off of the symbolic stack, and not update the true python torch function mode stack with the suffix bytecode. All in all, for torch function modes we enter exactly once, update the global torch function mode stack with side effects bytecode, re-read this stack when compiling the resume function, and exit exactly once in the resume function. This matches the semantics of eager exactly.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135422
Approved by: https://github.com/williamwen42
ghstack dependencies: #134732, #133137, #135443, #135444
Fixes https://github.com/pytorch/pytorch/issues/133858
Details: Previously Dynamo would treat dataclasses as UserDefinedVariables. This was non-desirable if we would like to proxy the value into the graph, which is needed for TensorSubclassMetadata. To rectify this, frozen dataclasses are now able to be proxied similarly to NamedTuples. We require the object to be frozen, because if arbitrary mutation were allowed, we would need to replay those mutations in the graph after construction of the object.
For tracing construction of the variable, the generated `__init__` for the dataclass uses `object.__setattr__` because frozen dataclasses throw errors on the usual `__setattr__` invocation. With this treatment, no special handling is needed in dynamo for frozen dataclass construction.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134846
Approved by: https://github.com/bdhirsh, https://github.com/anijain2305
TLDR; this PR supports exporting cond x inine_inbuilt nn modules flag by inling into tracing code in proxy_tensor.py _symbolic_trace.py (internally, the pattern is make_fx(record_module_stack)(torch.compile(f))).
We have two special treatments for following cases:
1. _ModuleStackTracer will wrap all the nn modules into _AttrProxy. This _AttrProxy has several subtiles which make it hard to inline in dynamo like overriding _modules with a property method and overrides the `__getattr__`, which mutates captured states when calling `__getattr__`.
Solution to this is that we unwrap the _AttrProxy and get its corresponding nn_module (a 1-1 correspondence). So that dynamo symbolically traces the original nn module instead of tracing _AttrProxy.
2. The tracer applies a bunch of patches the `__getattr__` and `__call__` of nn.Module for tracking reasons. This doesn't work well with dynamo. The immediate error we see is `torch._dynamo.exc.Unsupported: 'inline in skipfiles: WeakKeyDictionary.__contains__ | __contains__ /home/yidi/.conda/envs/pytorch/lib/python3.10/weakref.py` caused by a weakdict in PythonKeyTracer.
Solution to this is that we remove the patches during dynamo symbolic convert temporally. So that dynamo has a clean environment. make_fx will be trace the transformed bytecode of dynamo and patches nn modules there instead.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133731
Approved by: https://github.com/anijain2305
ghstack dependencies: #134775
Fixes issue seen in https://github.com/pytorch/pytorch/issues/132872#issuecomment-2314574656
With this API, we can mark the offending module as static in detectron2.
Today's world - Consider user defined nn module int attributes automatic dynamic. Use the API in this PR to make them static if you want.
Alternative work - Consider all int attributes of any user defined nn module class static. And then introduce an API - `torch._dynamo.mark_nn_module_attribute_dynamic`. The default being static is worrying if users have `counter` in their model which is updated in each forward invocation.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134713
Approved by: https://github.com/jansel
ghstack dependencies: #134653