Summary:
Check for Tuple Matching in isSubvalueOf, since they may contain container types that need to be recursed within isSubvalueOf
Fix for https://github.com/pytorch/pytorch/issues/17650
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17687
Differential Revision: D14324642
Pulled By: eellison
fbshipit-source-id: 7f1e019875286b2640a3b9c003d1635dda8cf543
Summary:
Fixes https://github.com/pytorch/pytorch/issues/16326
Previously we didn't handle module inputs which included Generic Lists. When checking whether a generic list if a subvalue of the input arg type, I currently recurse on every element of the list. This shouldn't be too slow since the innermost list will be specialized and we won't have to check it's elements.
E.g. Tensor[][] -> GenericList [TensorList ].
The error message could be improved, but extracting the complete type of nested lists would have to deal with unifying types across lists / empty lists & typevars so I'm going to save that for a follow up PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16482
Differential Revision: D13882582
Pulled By: eellison
fbshipit-source-id: 3609bc572f0ee9ebf20a77ea5ebc8fa3b165e24b
Summary:
(otherwise len is not resolvable using torch::jit::compile)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15488
Differential Revision: D13539991
Pulled By: zdevito
fbshipit-source-id: 3ba85fa7b1adb163f9229c568f7997d22321903d
Summary:
In TorchScript and C++ extensions we currently advocate a mix of `torch::` and `at::` namespace usage. In the C++ frontend I had instead exported all symbols from `at::` and some from `c10::` into the `torch::` namespace. This is far, far easier for users to understand, and also avoid bugs around creating tensors vs. variables. The same should from now on be true for the TorchScript C++ API (for running and loading models) and all C++ extensions.
Note that since we're just talking about typedefs, this change does not break any existing code.
Once this lands I will update stuff in `pytorch/tutorials` too.
zdevito ezyang gchanan
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13523
Differential Revision: D12942787
Pulled By: goldsborough
fbshipit-source-id: 76058936bd8707b33d9e5bbc2d0705fc3d820763
Summary:
This PR is a large codemod to rewrite all C++ API tests with GoogleTest (gtest) instead of Catch.
You can largely trust me to have correctly code-modded the tests, so it's not required to review every of the 2000+ changed lines. However, additional things I changed were:
1. Moved the cmake parts for these tests into their own `CMakeLists.txt` under `test/cpp/api` and calling `add_subdirectory` from `torch/CMakeLists.txt`
2. Fixing DataParallel tests which weren't being compiled because `USE_CUDA` wasn't correctly being set at all.
3. Updated README
ezyang ebetica
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11953
Differential Revision: D9998883
Pulled By: goldsborough
fbshipit-source-id: affe3f320b0ca63e7e0019926a59076bb943db80
Summary:
In order to comply with Python's rules on implicit casting of
non-booleans to booleans, this PR removes implicit casting in favor of
explicit casts via `bool()`
cc zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11503
Differential Revision: D9780869
Pulled By: driazati
fbshipit-source-id: c753acaca27f4e79dddf424c6b04674f44a6aad9
Summary:
This lets you compile builtin functions from C++ without having a dependence on Python
```cpp
auto module = torch::jit::compile(JIT"(
def my_script_method(x, y):
return torch.relu(x) + y
)");
IValue result = module->run_method("my_script_method", 1, 2);
```
goldsborough zdevito apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10847
Differential Revision: D9543461
Pulled By: driazati
fbshipit-source-id: 6160dae094030ca144a0df93cb9f26aa78c8cf27