Commit Graph

85 Commits

Author SHA1 Message Date
PyTorch MergeBot
ab761605ae Revert "[export] Constraints API (#98433)"
This reverts commit 1510eb4072.

Reverted https://github.com/pytorch/pytorch/pull/98433 on behalf of https://github.com/izaitsevfb due to Breaks internal tests, asked by author to revert
2023-04-12 23:37:19 +00:00
PyTorch MergeBot
629377ea8b Revert "Replace _dynamo.config with an object instead of module (#96455)"
This reverts commit 420104a886.

Reverted https://github.com/pytorch/pytorch/pull/96455 on behalf of https://github.com/jansel due to BC breaking, was landed prematurely
2023-04-12 15:06:14 +00:00
Angela Yi
1510eb4072 [export] Constraints API (#98433)
Wrapper for users to insert constraints into model code.

The constraints will not be maintained in the graph after tracing through make_fx so retracing with dynamo/make_fx will not work. This will be supported after torch._assert supported is implemented. Then we can convert the constrain_range calls to torch._asserts.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98433
Approved by: https://github.com/avikchaudhuri, https://github.com/tugsbayasgalan
2023-04-12 01:32:44 +00:00
Han Qi
420104a886 Replace _dynamo.config with an object instead of module (#96455)
Summary:
    Replace _dynamo.config with an object instead of module

    Current usage patterns of setting and reading fields on config will work
    unchanged.

    Only changes needed going forward:
    1. import torch._dynamo.config will not work. However, just doing
       import torch._dynamo is sufficient to access dynamo config
       as torch._dynamo.config.

    2. Files inside of _dynamo folder need to access config via
       from torch._dynamo.config_util import config instead of
       from torch._dynamo import config. Because _dynamo/__init__.py
       imports some of the files so it would be circular import.

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/96455
Approved by: https://github.com/williamwen42
2023-04-11 21:23:32 +00:00
Edward Z. Yang
b8b840be3d Convert logging f-strings to use % format, part five (#98765)
This does some annoying but simple cases by hand.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98765
Approved by: https://github.com/wanchaol
2023-04-11 13:17:59 +00:00
Edward Z. Yang
822464567f Lazily format graphs for debug printing (#98776)
The current code unconditionally formats the graphs, which is a
waste of CPU if no one looks at them.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98776
Approved by: https://github.com/albanD, https://github.com/mlazos
2023-04-10 22:41:33 +00:00
Edward Z. Yang
b09722f540 Convert logging f-strings to use % format, part two (#98700)
This hits multi-line logging strings

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98700
Approved by: https://github.com/voznesenskym
2023-04-10 12:19:31 +00:00
Edward Z. Yang
9a8f71f23e Convert logging f-strings to use % format (#98697)
Codemod done with
https://gist.github.com/ezyang/2e8b0463cdc6be278478495b23ff0530 with
assistance from ChatGPT.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98697
Approved by: https://github.com/voznesenskym
2023-04-10 12:19:31 +00:00
YJ Shi
5ceae85f1c [Dynamo] Include UserDict in clone_inputs (#97725)
Fixes #97724

Pull Request resolved: https://github.com/pytorch/pytorch/pull/97725
Approved by: https://github.com/yanboliang
2023-04-08 00:19:35 +00:00
Horace He
c75dd7c413 grab bag of changes (#98572)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98572
Approved by: https://github.com/shunting314, https://github.com/mlazos
2023-04-07 20:02:59 +00:00
Will Constable
390c51bf87 Skip nnmodule hook guards by default (#98371)
This PR makes basic nnmodule forward hooks work by default, without any overhead.  But it leaves silent correctness issues if users modify/remove their hooks later, thus also emits a warning.

- the usual case is to not use hooks, so avoid guard overhead here
- registering any hook before compile will trigger a warning about hook support
- registering a hook later (or removing one) requires user knowledge and opting in,
  currently this isn't warnable (but maybe we can observe compiled nnmodules to make it
  warnable).

Why skip hook guards by default instead of not tracing __call__/hooks by default?
- avoid having a mode flag that alters dynamo tracing behavior (harder to test both codepaths
  in CI with full coverage)
- the most basic hook usecase (registering a hook before compile, and never removing it)
  will work by default with this PR, while it would require enablement and incur overhead
  in the 'not tracing __call__' proposal.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98371
Approved by: https://github.com/jansel
2023-04-07 15:10:51 +00:00
Edward Z. Yang
d01ee10b25 Add detect_fake_mode (#98321)
This replaces fake_mode_from_tensors but it preferentially looks for
fake_mode in TracingContext and also if there is an active fake mode
on the dispatch stack, before groveling in tensors to find it.

This advances PegasusForCausalLM, which was previously failing because
we generated a graph that had a parameter (non-fake) and a SymInt,
and thus previously we failed to detect the correct fake mode.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98321
Approved by: https://github.com/voznesenskym
2023-04-05 22:15:16 +00:00
Yanbo Liang
b1c2925493 [Dynamo] Support typing.Union and typing.Optional (#98384)
Fixes #98265

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98384
Approved by: https://github.com/ezyang
2023-04-05 21:31:52 +00:00
Michael Voznesensky
b1e60bfb6a Pass f_locals as a dict rather than kwargs (#98107)
Fixes https://github.com/pytorch/pytorch/issues/97688

One big problem is that instead of printing x < y we now print
`E["x"] < E["y"]` and now all of the tests wobbled and I'm mad.

Signed-off-by: Edward Z. Yang <ezyangmeta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98107
Approved by: https://github.com/ezyang
2023-04-04 00:30:08 +00:00
Yanbo Liang
a6bd21d935 [Dynamo] Eagerly initializing Lazy Module to reduce graph breaks (#97946)
Fixes Meta internal user case.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/97946
Approved by: https://github.com/wconstab
2023-04-03 22:24:43 +00:00
Jason Ansel
35b3309539 Fix graph break from inline patched init (#98150)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98150
Approved by: https://github.com/anijain2305, https://github.com/yanboliang
2023-04-03 01:11:30 +00:00
Michael Lazos
ee9a9b7add Remove old logging callsites (#98095)
Get around GH first issue, OSS only changes for https://github.com/pytorch/pytorch/pull/97182

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98095
Approved by: https://github.com/anijain2305
2023-04-01 00:57:37 +00:00
William Wen
14ef91cea6 [dynamo 3.11] small bug fixes (#96508)
Bugs fixed:
	- CALL_FUNCTION_EX expects null pop in symbolic_convert
	- make_function_with_closure codegen requires a push_null
	- copy over the closure in eval_frame.c
	- add JUMP_FORWARD to terminal opcodes
	- enum repr fix in utils.py
	- fix symbolic_convert's break_graph_if_unsupported wrapper

Pull Request resolved: https://github.com/pytorch/pytorch/pull/96508
Approved by: https://github.com/jansel
2023-03-31 18:18:12 +00:00
David Berard
c218309f88 [dynamo] profiler.record_function on all dynamo_timed functions (#96495)
**Summary**: profiler.record_function inserts an event into the chrome trace generated by the pytorch profiler. This PR adds record_function everywhere that @dynamo_timed is annotated.

dynamo_timed and the CLI viewer torch._dynamo.utils.compile_times() are already useful on their own; but for identifying _when_ these get called, it's nice to be able to view in the profiler chrome trace.

Why not just turn on python stack traces in the profiler to get this information? Dynamo compilation is implemented in python and therefore produces a huge amount of events when it records compilation steps. The resulting trace files are often too large to load in chrome://tracing, and they take a long time to generate. Additionally, the stack traces are deep enough that they are often hard to read. This approach produces much more readable traces with lower overhead.

**Tests**:
- Added in test/dynamo/test_profiler.py. Verified in https://github.com/pytorch/pytorch/actions/runs/4559322864/jobs/8043307798?pr=96495 that the tests are actually running.
- Performance run with `ciflow/inductor-perf-compare` shows no noticeable change in compilation time or speedup numbers. Geomean speedup changes from 1.275 -> 1.277. Geomean compilation times change from 54.2s -> 53.8s. That's likely just due to noise. All individual benchmark numbers regressed by no more than 5% between the two runs; and we see improvements of around the same magnitude, suggesting this is, again, just noise. For meta employees, you can see the results in a google sheets here: https://docs.google.com/spreadsheets/d/1Ki69XvcgxcA3ZnqC5n_jav5KiD4u7Wojlad3VTnIdlk/edit?usp=sharing

**Example**:

Run this:

```python
import torch

def gn(x):
    return x.sin().cos()

def fn(x, y):
    return x.sin() * y.cos()

x, y = [torch.rand((2, 2), device='cuda') for _ in range(2)]

# just to clear out any lazy initialization
with torch.profiler.profile() as prof:
    torch.compile(gn)(x)

with torch.profiler.profile() as prof:
    torch.compile(fn)(x, y)

prof.export_chrome_trace("./dynamo_timed_profile.json")
```

and we can see that the resulting trace shows important dynamo steps, even when python tracing is turned off.

<img width="867" alt="Screenshot 2023-03-29 at 7 26 15 PM" src="https://user-images.githubusercontent.com/5067123/228712263-8ae67ab9-1a52-4765-a9c2-7c5cf0abe2f5.png">

Pull Request resolved: https://github.com/pytorch/pytorch/pull/96495
Approved by: https://github.com/ngimel, https://github.com/mlazos
2023-03-30 21:49:02 +00:00
Edward Z. Yang
fb7f983357 Graph break on operators that fake tensor doesn't support (#97708)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/97708
Approved by: https://github.com/eellison
2023-03-28 19:49:54 +00:00
vfdev
0f424f7f05 Fixed broken link to troubleshooting.html docs page (#97330)
Seen first in error message:
```
[2023-03-22 10:30:39,786] torch._dynamo.convert_frame: [WARNING] torch._dynamo hit config.cache_size_limit (64)
   function: '<resume in paste_mask_in_image>' (/vision/torchvision/models/detection/roi_heads.py:407)
   reasons:  w == 857
to diagnose recompilation issues, see https://pytorch.org/docs/master/dynamo/troubleshooting.html.
[2023-03-22 10:30:40,036] torch._dynamo.convert_frame: [WARNING] torch._dynamo hit config.cache_size_limit (64)
   function: '<resume in paste_mask_in_image>' (/vision/torchvision/models/detection/roi_heads.py:406)
   reasons:  ___stack0 == 207
to diagnose recompilation issues, see https://pytorch.org/docs/master/dynamo/troubleshooting.html.
```

Broken link:
- https://pytorch.org/docs/master/dynamo/troubleshooting.html.

Good link:
- https://pytorch.org/docs/master/compile/troubleshooting.html

Pull Request resolved: https://github.com/pytorch/pytorch/pull/97330
Approved by: https://github.com/zou3519
2023-03-22 16:40:21 +00:00
Will Constable
141a2ebcf1 Clean up Compilation Profiler (#97029)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/97029
Approved by: https://github.com/voznesenskym
2023-03-21 06:24:22 +00:00
Michael Voznesensky
722c4e59a4 Replace source check with assert (#95640)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/95640
Approved by: https://github.com/ezyang
2023-03-19 21:51:59 +00:00
Michael Lazos
a1c46e5f8f component-level configurable logging for dynamo, inductor, aot (#94858)
Summary:

Adds NNC-like logging that is configured through an env var `TORCH_COMPILE_LOGS`
Examples:
`TORCH_LOGS="dynamo,guards" python script.py` - prints dynamo logs at level INFO with guards of all functions that are compiled

`TORCH_LOGS="+dynamo,guards,graph" python script.py` - prints dynamo logs at level DEBUG with guards and graphs (in tabular) format of all graphs that are compiled

[More examples with full output](https://gist.github.com/mlazos/b17f474457308ce15e88c91721ac1cce)

Implementation:
The implementation parses the log settings from the environment, finds any components (aot, dynamo, inductor) or other loggable objects (guards, graph, etc.) and generates a log_state object. This object contains all of the enabled artifacts, and a qualified log name -> level mapping. _init_logs then adds handlers to the highest level logs (the registered logs), and sets any artifact loggers to level DEBUG if the artifact is enabled.

Note: set_logs is an alternative for manipulating the log_state, but if the environment contains TORCH_LOGS, the environment settings will be prioritized.

Adding a new log:
To add a new log, a dev should add their log name to torch._logging._registrations (there are examples there already).

Adding a new artifact:
To add a new artifact, a dev should add their artifact name to torch._logging._registrations as well.
Additionally, wherever the artifact is logged, `torch._logging.getArtifactLogger(__name__, <artifact_name>)` should be used instead of the standard logging implementation.

[design doc](https://docs.google.com/document/d/1ZRfTWKa8eaPq1AxaiHrq4ASTPouzzlPiuquSBEJYwS8/edit#)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94858
Approved by: https://github.com/ezyang
2023-03-18 04:17:31 +00:00
Edward Z. Yang
384d3ec2b6 Extra CR comments from #95621 (#96043)
Specifically:
063e441471 (r1120306196)
https://github.com/pytorch/pytorch/pull/95621#discussion_r1125015510

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/96043
Approved by: https://github.com/Chillee, https://github.com/albanD
2023-03-10 01:10:48 +00:00
Horace He
5bbec680d7 Fix usages of contextmanager without finally (#96170)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96170
Approved by: https://github.com/ngimel, https://github.com/malfet
2023-03-08 20:59:27 +00:00
Edward Z. Yang
d303665d33 Make int unspecialization actually work (#95621)
OK, so this PR used to be about reducing the number of constants we specialize on, but it turns out that unspecialization was ~essentially never used (because we still constant specialized way too aggressively) and I ended up having to fix a bunch of issues to actually get tests to pass. So this PR is now "make int unspecialization actually work". As part of this, I have to turn off unspecialization by default, as there are still latent bugs in inductor.

The general strategy is that an unspecialized int is represented as a SymInt. Representing it as a 0d tensor (which is what the code used to do) is untenable: (1) we often need unspecialized ints to participate in size computations, but we have no way of propagating sympy expressions through tensor compute, and (2) a lot of APIs work when passed SymInt, but not when passed a Tensor. However, I continue to represent Numpy scalars as Tensors, as they are rarely used for size computation and they have an explicit dtype, so they are more accurately modeled as 0d tensors.

* I folded in the changes from https://github.com/pytorch/pytorch/pull/95099 as I cannot represent unspecialized ints as SymInts without also turning on dynamic shapes. This also eliminates the necessity for test_unspec.py, as toggling specialization without dynamic shapes doesn't do anything. As dynamic shapes defaults to unspecializing, I just deleted this entirely; for the specialization case, I rely on regular static shape tests to catch it. (Hypothetically, we could also rerun all the tests with dynamic shapes, but WITH int/float specialization, but this seems... not that useful? I mean, I guess export wants it, but I'd kind of like our Source heuristic to improve enough that export doesn't have to toggle this either.)
* Only 0/1 integers get specialized by default now
* A hodgepodge of fixes. I'll comment on the PR about them.

Fixes https://github.com/pytorch/pytorch/issues/95469

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/95621
Approved by: https://github.com/jansel, https://github.com/Chillee
2023-03-04 01:22:08 +00:00
Michael Voznesensky
34a7c79eac Rename func (#95639)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/95639
Approved by: https://github.com/ezyang
2023-03-01 23:03:09 +00:00
Edward Z. Yang
835122c89f Add missing f-string specifiers (#95707)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/95707
Approved by: https://github.com/Skylion007, https://github.com/albanD
2023-02-28 20:20:05 +00:00
Kazuaki Ishizaki
46385b3e48 Fix typos under torch/_dynamo directory (#95599)
This PR fixes typos in comments and messages of `.py` files under `torch/_dynamo` directory

Pull Request resolved: https://github.com/pytorch/pytorch/pull/95599
Approved by: https://github.com/ezyang
2023-02-28 03:44:24 +00:00
Michael Voznesensky
eff5ae8746 Better mark_dynamic assertions (#95566)
This PR allows us to reuse the static per tensor decision making we make at fake tensorification time. We can use this to avoid setting up dynamic dim guards later if the tensor was never a candidate.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/95566
Approved by: https://github.com/ezyang
2023-02-28 00:02:22 +00:00
David Berard
a4085ab837 [dynamo] support custom __getattr__ on torch.nn.Modules (#94658)
**Summary**: torch.nn.Module implementations previously did not support custom implementations of `__getattr__`; if a torch.nn.Module subclass implemented `__getattr__` and we tried to access an attribute that was expected to be present in `__getattr__`, dynamo would not check `__getattr__` and would error out with an AttributeError. This PR copies the functionality from UserDefinedObjectVariable into torch.nn.Module so that it also supports `__getattr__`

Example of a module which previously would fail:

```python
class MyMod(torch.nn.Module):
		def __init__(self):
				super().__init__()
				self.custom_dict = {"queue": [torch.rand((2, 2)) for _ in range(3)]}
				self.other_attr = torch.rand((2, 2))

		def __getattr__(self, name):
				custom_dict = self.custom_dict
				if name in custom_dict:
						return custom_dict[name]
				return super().__getattr__(name)

		def forward(self, x):
				return x @ self.other_attr + self.queue[-1]
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94658
Approved by: https://github.com/yanboliang, https://github.com/jansel
2023-02-16 04:00:51 +00:00
jon-chuang
d1d5d16df3 dynamo: handle straight-line graph breaks for autocast context manager with constant args (#94137)
Fixes https://github.com/pytorch/pytorch/issues/93890

We do the following:
1. fix __init__constructor for `AutocastModeVariable` with exisiting `mode` while copying
2. `resume_execution` is made aware of constant args (`target_values`), by storing said args in `ReenterWith`. To propagate between subgraphs (in straightline code), we also store the constant args in the downstream's `code_options["co_consts"]` if not already.

---

Future work:
1. handle instantiating context manager in non-inlineable functions. Simultaneously fix nested grad mode bug.
2. generalize to general `ContextManager`s
3. generalize to variable arguments passed to context manager, with guards around the variable.

---

Actually, if we look at the repro: 74592a43d0/test/dynamo/test_repros.py (L1249), we can see that the method in this PR doesn't work for graph breaks in function calls, in particular, in function calls that don't get inlined.

Why inlining functions with graph breaks is hard:
- When we handle graph breaks, we create a new code object for the remainder of the code. It's hard to imagine doing this when you are inside a function, then we need a frame stack. And we just want to deal with the current frame as a sequence of straight line codes.

Why propagating context manager information is hard:
- If we do not inline the function, the frame does not contain any information about the parent `block_stack` or `co_consts`. So we cannot store it on local objects like the eval frame. It has to be a global object in the output_graph.

---

Anyway, I'm starting to see clearly that dynamo must indeed be optimized for torch use-case. Supporting more general cases tends to run into endless corner-cases and caveats.

One direction that I see as viable to handle function calls which have graph breaks and `has_tensor_in_frame` is stick with not inlining them, while installing a global `ContextManagerManager`, similar to the `CleanupManager` (which cleans up global variables). We can know which context managers are active at any given point, so that we can install their setup/teardown code on those functions and their fragments.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94137
Approved by: https://github.com/yanboliang
2023-02-14 14:00:37 +00:00
Aaron Gokaslan
67d9790985 [BE] Apply almost all remaining flake8-comprehension checks (#94676)
Applies the remaining flake8-comprehension fixes and checks. This changes replace all remaining unnecessary generator expressions with list/dict/set comprehensions which are more succinct, performant, and better supported by our torch.jit compiler. It also removes useless generators such as 'set(a for a in b)`, resolving it into just the set call.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94676
Approved by: https://github.com/ezyang
2023-02-12 01:01:25 +00:00
Aaron Gokaslan
3d82d8d0ed [BE] Enable more flake8-comprehensions checks (#94601)
I applied some flake8 fixes and enabled checking for them in the linter. I also enabled some checks for my previous comprehensions PR.

This is a follow up to #94323 where I enable the flake8 checkers for the fixes I made and fix a few more of them.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94601
Approved by: https://github.com/ezyang
2023-02-10 23:40:29 +00:00
Xiaodong Wang
88e16849db [pt2] Fix multiple races in log folder (#93407)
Summary:
There are a few races/permission errors in file creation, fixing
OSS:
1. caffe2/torch/_dynamo/utils.py, get_debug_dir: multiple process may conflict on it even it's using us. Adding pid to it
2. caffe2/torch/_dynamo/config.py: may not be a right assumption that we have permission to cwd

Test Plan: sandcastle

Differential Revision: D42905908

Pull Request resolved: https://github.com/pytorch/pytorch/pull/93407
Approved by: https://github.com/soumith, https://github.com/mlazos
2023-02-09 21:10:14 +00:00
Aaron Gokaslan
8fce9a09cd [BE]: pyupgrade Python to 3.8 - imports and object inheritance only (#94308)
Apply parts of pyupgrade to torch (starting with the safest changes).
This PR only does two things: removes the need to inherit from object and removes unused future imports.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94308
Approved by: https://github.com/ezyang, https://github.com/albanD
2023-02-07 21:10:56 +00:00
Jason Ansel
ee2729890c Refactor dynamo register_backend/BACKENDS (#93389)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/93389
Approved by: https://github.com/voznesenskym
2023-02-02 19:41:48 +00:00
Edward Z. Yang
ca9ebf9e2b Delete dynamo_import and inductor_import (#93851)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/93851
Approved by: https://github.com/albanD, https://github.com/jansel
2023-02-02 01:51:29 +00:00
Edward Z. Yang
902b4dba75 Change capture_scalar_outputs to use SymInt/SymFloat rather than Tensor to model scalars (#93150)
Previously, Dynamo faked support for item() when `capture_scalar_outputs` was True by representing it internally as a Tensor. With dynamic shapes, this is no longer necessary; we can represent it directly as a SymInt/SymFloat. Do so. Doing this requires you to use dynamic shapes; in principle we could support scalar outputs WITHOUT dynamic shapes but I won't do this unless someone hollers for it.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Differential Revision: [D42885775](https://our.internmc.facebook.com/intern/diff/D42885775)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/93150
Approved by: https://github.com/voznesenskym
2023-01-31 21:23:23 +00:00
Edward Z. Yang
e5235fb62c Convert GuardOnDataDependentSymNode into graph break (#93373)
Extracted from https://github.com/pytorch/pytorch/pull/93150 because
I need it earlier in trunk.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/93373
Approved by: https://github.com/Skylion007
2023-01-31 19:31:44 +00:00
Yanbo Liang
304d8dd6c8 [Dynamo] Support enum.Enum type as dict key (#93026)
Fixes Meta internal user case of using ```enum.Enum``` type as dict key, pleaser refer the added test case for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/93026
Approved by: https://github.com/mlazos
2023-01-29 06:37:10 +00:00
David Berard
58acab4616 [dynamo] support [tensor].type(torch.FloatTensor) (#93043)
for some tensor x, x.type(torch.FloatTensor) will essentially do the same thing as x.to(torch.float). x.type can be called with at least 3 types of inputs:
* a string "torch.FloatTensor"
* a dtype torch.float
* a tensor type torch.FloatTensor

the third option (torch.FloatTensor) fails in fx, because fx cannot trace torch.FloatTensor objects.  So this PR will replace the torch.FloatTensor type with a string "torch.FloatTensor"

Why not fix this in fx? Well, it's possible, but I'm not sure a nice way to do it. We would want to update [torch.fx.node.BaseArgumentTypes](d88bc38b0c/torch/fx/node.py (L17)) to contain torch.FloatTensor etc. We could hard-code a list of tensor types there (the types vary depending on build type, e.g. whether or not cuda tensors are available), but that's not great in case our hardcoded list differs from the actual list registered by python_tensor.cpp. Another option is to dynamically populate the list of types with `Union[tuple(...)])`, and fill the tuple with `torch._tensor_classes` (which is directly populated by python_tensor.cpp), but apparently this breaks most typecheckers.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/93043
Approved by: https://github.com/jansel
2023-01-27 21:27:13 +00:00
Michael Voznesensky
d322f82b05 Add @count util to torch, use it to track benchmark stats (#93013)
<img width="1333" alt="image" src="https://user-images.githubusercontent.com/4755252/214687911-f766f072-c162-4298-9aed-c889f1375336.png">

Pull Request resolved: https://github.com/pytorch/pytorch/pull/93013
Approved by: https://github.com/ezyang
2023-01-26 03:09:12 +00:00
Michael Voznesensky
5778c04a15 Add --timing flag, phase timing to @dynamo_timed (#92637)
Ex output:
```
 TIMING:
 entire_frame_compile:8.574629999999999
 backend_compile:5.26806
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/92637
Approved by: https://github.com/ezyang
2023-01-21 10:52:13 +00:00
PyTorch MergeBot
44132cc4b0 Revert "Add --timing flag, phase timing to @dynamo_timed (#92637)"
This reverts commit 773b513435.

Reverted https://github.com/pytorch/pytorch/pull/92637 on behalf of https://github.com/malfet due to Broke lint
2023-01-20 16:23:20 +00:00
Edward Z. Yang
387357539f Log accuracy failure in more cases (#92645)
Fixes https://github.com/pytorch/torchdynamo/issues/1910

But not durably, it's easy to forget if you add more cases.  I'd like
someone else to do that refactor.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/92645
Approved by: https://github.com/Chillee
2023-01-20 15:23:35 +00:00
Michael Voznesensky
773b513435 Add --timing flag, phase timing to @dynamo_timed (#92637)
Ex output:
```
 TIMING:
 entire_frame_compile:8.574629999999999
 backend_compile:5.26806
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/92637
Approved by: https://github.com/ezyang
2023-01-20 05:01:21 +00:00
Michael Lazos
cac217c80a Fix key error formatting and move exc code to exc.py (#92593)
Fixes https://github.com/pytorch/torchdynamo/issues/1953 and moves exception formatting code from convert_frame.py to exc.py

Pull Request resolved: https://github.com/pytorch/pytorch/pull/92593
Approved by: https://github.com/ezyang
2023-01-19 02:54:00 +00:00
lezcano
77b8aa6e43 Wrap a few more functions to ease their tracking during debugging (#92004)
Yup

Pull Request resolved: https://github.com/pytorch/pytorch/pull/92004
Approved by: https://github.com/ezyang
2023-01-17 16:53:36 +00:00