We don't have any coverage for meta tensor correctness for backwards
because torch function mode can only allow us to interpose on
Python torch API calls, but backwards invocations happen from C++.
To make this possible, I add torch_dispatch_meta test which runs the
tests with __torch_dispatch__
While doing this, I needed to generate fresh expected failure / skip
lists for the new test suite, and I discovered that my original
scaffolding for this purpose was woefully insufficient. So I rewrote
how the test framework worked, and at the same time rewrote the
__torch_function__ code to also use the new logic. Here's whats
new:
- Expected failure / skip is now done on a per function call basis,
rather than the entire test. This means that separate OpInfo
samples for a function don't affect each other.
- There are now only two lists: expect failure list (where the test
consistently fails on all runs) and skip list (where the test
sometimes passes and fails.
- We explicitly notate the dtype that failed. I considered detecting
when something failed on all dtypes, but this was complicated and
listing everything out seemed to be nice and simple. To keep the
dtypes short, I introduce a shorthand notation for dtypes.
- Conversion to meta tensors is factored into its own class
MetaConverter
- To regenerate the expected failure / skip lists, just run with
PYTORCH_COLLECT_EXPECT and filter on a specific test type
(test_meta or test_dispatch_meta) for whichever you want to update.
Other misc fixes:
- Fix max_pool1d to work with BFloat16 in all circumstances, by making
it dispatch and then fixing a minor compile error (constexpr doesn't
work with BFloat16)
- Add resolve_name for turning random torch API functions into string
names
- Add push classmethod to the Mode classes, so that you can more easily
push a mode onto the mode stack
- Add some more skips for missing LAPACK
- Added an API to let you query if there's already a registration for
a function, added a test to check that we register_meta for all
decompositions (except detach, that decomp is wrong lol), and then
update all the necessary sites to make the test pass.
Signed-off-by: Edward Z. Yang <ezyangfb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77477
Approved by: https://github.com/zou3519
I was working on an explanation of how to call into the "super"
implementation of some given ATen operation inside of __torch_dispatch__
(https://github.com/albanD/subclass_zoo/blob/main/trivial_tensors.py)
and I kept thinking to myself "Why doesn't just calling super() on
__torch_dispatch__ work"? Well, after this patch, it does! The idea
is if you don't actually unwrap the input tensors, you can call
super().__torch_dispatch__ to get at the original behavior.
Internally, this is implemented by disabling PythonKey and then
redispatching. This implementation of disabled_torch_dispatch is
not /quite/ right, and some reasons why are commented in the code.
There is then some extra work I have to do to make sure we recognize
disabled_torch_dispatch as the "default" implementation (so we don't
start slapping PythonKey on all tensors, including base Tensors),
which is modeled the same way as how disabled_torch_function is done.
Signed-off-by: Edward Z. Yang <ezyangfb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73684
Approved by: albanD
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64360
This PR adds a (private) enable_python_mode context manager.
(see torch/utils/_python_dispatch.py).
enable_python_mode accepts the type of a __torch_dispatch__ object
as its argument. Whenever an operator gets called inside of the
context manager, it dispatches to the __torch_dispatch__ of
the passed-in type.
Example usage:
```
with enable_python_mode(LoggingTensor):
z = torch.empty([])
assert isinstance(z, LoggingTensor)
```
There are quite a few changes that were made to support this.
First, we added TorchDispatchTypeObject, a C++ struct that represents the
type of a `__torch_dispatch__` object (e.g. LoggingTensor).
It holds both the PyObject* representing the class and a PyInterpreter*
so we know which Python interpreter it came from.
Next, we updated the concrete_dispatch_fn in python_variable.cpp to accept
a `const std::shared_ptr<TorchDispatchTypeObject>&` argument. When this
is null, dispatching happens as usual. When it is non-null, we prepend
the TorchDispatchTypeObject's PyObject* to the overloaded args list so that
it is considered first for dispatch.
To get that to work, we changed how `handle_torch_dispatch_no_python_arg_parser`
works. The "overloaded args list" previously only consisted of Tensor PyObjects,
but now it can have types in addition to Tensors!
- We renamed `append_overloaded_arg` to `append_overloaded_arg`
- We added a new `append_overloaded_type` that appends a type to
overloaded_args
- We added special handling in `handle_torch_dispatch_no_python_arg_parser`
and `append_overloaded_arg` to handle types in addition to Tensors.
Then, there is PythonMode and PythonModeTLS.
- We reuse the DispatchKey::Python dispatch key as a mode key
- We use PythonMode::enter and PythonMode::exit to enable/disable
DispatchKey::Python and set the PythonModeTLS.
- PythonModeTLS stores a TorchDispatchTypeObject as metadata.
- PythonMode is in libtorch_python, and PythonModeTLS is in ATen.
This split is due to the libtorch_python library boundary (because we need
to save TLS in ATen/ThreadLocalState)
- We modify the PythonFallbackKernel to look up
the relevant TorchDispatchTypeObject (if Python Mode is active) and
dispatch using it.
There are two more miscellaneous changes:
- internal_new_from_data (torch/csrc/utils/tensor_new.cpp) gets an
exclude guard. enable_python_mode currently does not handle
torch.tensor and the exclude guard is to prevent a bug.
Future:
- This PR does not allow for the nesting of Python modes. In the future we
should be able to enable this with a more sane no_dispatch API and by changing
the TLS to a stack. For now I did not need this for CompositeImplicitAutograd testing.
Test Plan: - new tests
Reviewed By: ezyang
Differential Revision: D30698082
Pulled By: zou3519
fbshipit-source-id: 7094a90eee6aa51f8b71bc4d91cfb6f49e9691f8
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63496
This PR adds a (private) enable_python_mode context manager.
(see torch/utils/_python_dispatch.py).
enable_python_mode accepts the type of a __torch_dispatch__ object
as its argument. Whenever an operator gets called inside of the
context manager, it dispatches to the __torch_dispatch__ of
the passed-in type.
Example usage:
```
with enable_python_mode(LoggingTensor):
z = torch.empty([])
assert isinstance(z, LoggingTensor)
```
There are quite a few changes that were made to support this.
First, we added TorchDispatchTypeObject, a C++ struct that represents the
type of a `__torch_dispatch__` object (e.g. LoggingTensor).
It holds both the PyObject* representing the class and a PyInterpreter*
so we know which Python interpreter it came from.
Next, we updated the concrete_dispatch_fn in python_variable.cpp to accept
a `const std::shared_ptr<TorchDispatchTypeObject>&` argument. When this
is null, dispatching happens as usual. When it is non-null, we prepend
the TorchDispatchTypeObject's PyObject* to the overloaded args list so that
it is considered first for dispatch.
To get that to work, we changed how `handle_torch_dispatch_no_python_arg_parser`
works. The "overloaded args list" previously only consisted of Tensor PyObjects,
but now it can have types in addition to Tensors!
- We renamed `append_overloaded_arg` to `append_overloaded_arg`
- We added a new `append_overloaded_type` that appends a type to
overloaded_args
- We added special handling in `handle_torch_dispatch_no_python_arg_parser`
and `append_overloaded_arg` to handle types in addition to Tensors.
Then, there is PythonMode and PythonModeTLS.
- We reuse the DispatchKey::Python dispatch key as a mode key
- We use PythonMode::enter and PythonMode::exit to enable/disable
DispatchKey::Python and set the PythonModeTLS.
- PythonModeTLS stores a TorchDispatchTypeObject as metadata.
- PythonMode is in libtorch_python, and PythonModeTLS is in ATen.
This split is due to the libtorch_python library boundary (because we need
to save TLS in ATen/ThreadLocalState)
- We modify the PythonFallbackKernel to look up
the relevant TorchDispatchTypeObject (if Python Mode is active) and
dispatch using it.
There are two more miscellaneous changes:
- internal_new_from_data (torch/csrc/utils/tensor_new.cpp) gets an
exclude guard. enable_python_mode currently does not handle
torch.tensor and the exclude guard is to prevent a bug.
Future:
- This PR does not allow for the nesting of Python modes. In the future we
should be able to enable this with a more sane no_dispatch API and by changing
the TLS to a stack. For now I did not need this for CompositeImplicitAutograd testing.
Test Plan: - new tests
Reviewed By: malfet, albanD
Differential Revision: D30543236
Pulled By: zou3519
fbshipit-source-id: ef5444d96a5a957d1657b7e37dce80f9a497d452