This PR fixed the bug of redistribute to move early return check into the
redistribute autograd function, so that even though we redistribute the
same placement, the grad_placements from the `to_local` call might be
different, the redistribute backward still need to happen
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121653
Approved by: https://github.com/awgu
Summary:
We don't want people to move to NCCL exp without explicit opt in. It seems that sparse allreduce was accidentally called and people were confused whether they should use NCCL exp instead.
Update the error message to explicitly say that sparse_allreduce is not supported.
Test Plan: sandcastle
Differential Revision: D54759307
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121644
Approved by: https://github.com/awgu
Summary: Previously, we bailed out of the Triton kernel analysis pass when seeing a `tt.reduce` op. In this PR, we support the op and don't bail out anymore.
Test Plan: This is a bit tricky, as the extension is added to the MLIR walk-based analysis code path which is active only on when the MLIR bindings added in https://github.com/openai/triton/pull/3191 are available. So for now I've run the `test_argmax` and `test_reduce_sum` manually with a newer Triton version than the current pin. When pin updates, we'll make those tests official (left a TODO comment).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121706
Approved by: https://github.com/jansel
In this PR, we create another dynamic test class for TestExport tests that basically serializes/deserializas pre-dispatch IR. I encountered 4 additional failures. But 3 of them are due to different operator showing up in the graph and only one legit failure which is tracked by another task internally.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121678
Approved by: https://github.com/angelayi
ghstack dependencies: #121652
This PR enables `test_addmm_sizes_all_sparse_csr_k_*_n_*_m_*_cuda_complex128` for ROCm for trivial cases (m or n or k = 0)
CUSPARSE_SPMM_COMPLEX128_SUPPORTED also used for `test_addmm_all_sparse_csr` and ` test_sparse_matmul` and both of them are skipped for ROCm by `@skipIfRocm` or `@skipCUDAIf(not _check_cusparse_spgemm_available())`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120504
Approved by: https://github.com/jithunnair-amd, https://github.com/ezyang
This patch addresses the major limitations in our previous [PR #115981](https://github.com/pytorch/pytorch/pull/115981) through the new dedicated repository [AOTriton](https://github.com/ROCm/aotriton)
- [x] Only supports MI200 series GPU (i.e., `gcnArchName == gfx90a:sramecc+:xnack-`).
* MI300X is supported. More architectures will be added once Triton support them.
- [x] Only supports power of two sequence lengths.
* Now it support arbitrary sequence length
- [ ] No support for varlen APIs.
* varlen API will be supported in the next release of AOTriton
- [x] Only support head dimension 16,32,64,128.
* Now it support arbitrary head dimension <= 256
- [x] Performance is still being optimized.
* Kernel is selected according to autotune information from Triton.
Other improvements from AOTriton include
* Allow more flexible Tensor storage layout
* More flexible API
This is a more extensive fix to #112997
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121561
Approved by: https://github.com/malfet, https://github.com/atalman
Eventually, we should just have one unified way to check for parity between a `DTensor`-sharded model and a replicated model. This PR is a small refactor to work toward that. One current gap to use this `check_sharded_parity` function for 2D is that FSDP's `(Shard(0), Shard(0))` layout differs from that of the `DTensor` APIs since FSDP shards on dim-0 after TP shards on dim-0.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121357
Approved by: https://github.com/weifengpy
ghstack dependencies: #121360
Summary: I plan to enable the FX graph cache for more inductor unit tests. This PR does some refactoring to prepare by moving the `TestCase` base class to `torch._inductor.test_case` (which mirrors the existing `torch._dynamo.test_case`). In a subsequent diff, I'll modify tests importing `torch._dynamo.test_case.TestCase` to use `torch._inductor.test_case.TestCase` instead.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121520
Approved by: https://github.com/eellison
Summary: Taking the right most part of the fqn will cause name conflict when having multiple instances of the same class. Changed to replace "." in fqn by "_" to avoid invalid syntax in input args.
Test Plan: added test case
Differential Revision: D54435230
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121145
Approved by: https://github.com/zhxchen17
Summary:
This fixes a case left incomplete by https://github.com/pytorch/pytorch/pull/106229
The object is using __prepare_scriptable__ correctly inside of torch.jit.script()
but the clousre that is obtained below is using the non-prepared version.
This causes issues when the prepared and non-prepared versions are in different python modules.
Test Plan:
```
buck2 run mode/opt caffe2/test:jit -- -r test_decorator
```
Differential Revision: D54308741
Re-exporting, as #120806#121307 were not properly merged.
Co-authored-by: Daniel Herrera <dherrera@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121553
Approved by: https://github.com/huydhn, https://github.com/seemethere
Follow up on #119326 with addressed comment: https://github.com/pytorch/pytorch/pull/119326#issuecomment-1939428705:
> I'd like to propose a slightly different approach. We could check if scipy is version `1.12.0`. If so, overload `scipy_cumulative_trapezoid` with a function that specifically checks `t.shape[axis] == 0`, and in that case return an array of the same shape as `t`, which is the expected behavior as far as I understand. That way, we're not just skipping the test cases
I would like to add that the version check is not necessary as in any case the outcome is the same.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121541
Approved by: https://github.com/nWEIdia, https://github.com/albanD
Make a test that fails on purpose to trigger retries. Check the opposite of success (that env vars exist)
It's bit hacky because I want it to fail on the normal flow in order to trigger reruns but I don't want to expose the failures to users since it's confusing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120519
Approved by: https://github.com/huydhn
Currently, when `torch.onnx.dynamo_export` is called within `torch.onnx.enable_fake_mode`, all the external pytorch checkpoint files used to initialize the model are automatically and used by `torch.onnx.ONNXProgram.save` to recreate the initializers for
the newly exported ONNX model.
This API extends the mechanism for HuggingFace models that use safetensors weights. This PR detects safetensors state files and converts them to PyTorch format using mmap on a temporary file, which is deleted after conversion is finished.
Without this PR, the user would have to convert the safetensors files to pytorch format manually and feed it to `torch.onnx.ONNXProgram.save` manually.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121001
Approved by: https://github.com/BowenBao, https://github.com/malfet
This means when codegen depends on a particular import we only need to
add it in one place and it's applied to all triton kernels.
This also changes codegen slightly so instead of generating
`@pointwise` we now generate `@triton_heuristics.pointwise` just so
the imports are the same for all kernel types.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121438
Approved by: https://github.com/lezcano
async output option was only available in `full_tensor()` call, but I think it's
generally good to make this option available in the `redistribute` call directly
so that user can control it
This PR adds async_op option to redistribute call, to allow user control
whether to perform tensor redistribution asynchronously or not.
By default we set this to False, this is to follow the semantics of the c10d
collectives.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121477
Approved by: https://github.com/wz337
The necessity of this PR lies in the fact that autograd engine + DDP calls `all_reduce` from C++, so the changes must be made in C++.
```
[rank0]: Traceback (most recent call last):
[rank0]: File "~/complex_ddp.py", line 72, in <module>
[rank0]: main()
[rank0]: File "~/complex_ddp.py", line 64, in main
[rank0]: loss.backward()
[rank0]: File "/home/usr/pytorch/torch/_tensor.py", line 525, in backward
[rank0]: torch.autograd.backward(
[rank0]: File "/home/usr/pytorch/torch/autograd/__init__.py", line 267, in backward
[rank0]: _engine_run_backward(
[rank0]: File "/home/usr/pytorch/torch/autograd/graph.py", line 744, in _engine_run_backward
[rank0]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[rank0]: TypeError: Input tensor data type is not supported for NCCL process group: ComplexFloat
```
I believe, for minimizing the Python overhead, the same could be done for the rest of the ops, what do you think @kwen2501?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121045
Approved by: https://github.com/eqy, https://github.com/kwen2501
# Context
I believe we have an incorrect guard being created during FakeTensor's binary op fast path.
Consider this case
```
# op.shape: (10, 192); final_shape: (s0, 10, 192)
# Guard Ne(s0, 10) is created when we create SymBool(10 == s0)
if isinstance(op, torch.Tensor) and op.shape == final_shape:
break
```
As of right now, `op.shape == final_shape` checks whether one of the binary op's operands is the same as the binay op's output shape.
* If one of them is a dynamic shape, then we'll create a guard via`SymBool` creation (i.e. `s0 == 10`).
* If the `SymBool` expr resolves to `false`, then we'll create the guard `Ne(s0, 10)`.
This is a problem when the # of dimensions aren't the same between `op.shape` & `final_shape`. Take the case above for example, `op.shape: (10, 192); final_shape: (s0, 10, 192)`. Although, the shapes aren't the same, it doesn't necessarily mean that `s0 != 10`.
Some thoughts (feel free to ignore). What if the # of dimensions are equal but one of the shapes has symbols. Here's three cases:
1. `op.shape: (9000, 10, 192); final_shape: (s0, 10, 192)` -- not broadcastable.
2. `op.shape: (1, 10, 192); final_shape: (s0, 10, 192)` -- 0/1 specialization wins?
3. `op.shape: (100, 10, 192); final_shape: (s0, 10, 192) where s0 = 100` -- Ask user to mark `s0` as a constant.
# Test
```
$ TORCHDYNAMO_VERBOSE=1 PYTORCH_TEST_WITH_DYNAMO=1 pytest -s test/dynamo/test_dynamic_shapes.py -k test_export_fast_binary_broadcast_check_dynamic_shapes
torch.fx.experimental.symbolic_shapes.ConstraintViolationError: Constraints violated (dim0)! For more information, run with TORCH_LOGS="+dynamic".
- Not all values of dim0 = L['a'].size()[0] in the specified range 3 <= dim0 <= 1024 satisfy the generated guard Ne(L['a'].size()[0], 3).
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121546
Approved by: https://github.com/aakhundov
This does not introduce a new test but is tested by checking that all the classes we already have still behave as before now that they don't explicitly disable torch_function.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120632
Approved by: https://github.com/ezyang