Commit Graph

7520 Commits

Author SHA1 Message Date
Igor Sugak
704e15307e [caffe2] replace refernces to np.asscalar (#121332) (#121545)
Summary:

`np.asscalar` was deprecated and removed in a recent Numpy. It used to be implemented the following way, and the recommended alternative is to call `item()` directly:
```python
def asscalar(a):
    return a.item()
```
This fixes all of the references.

Test Plan: visual inspection and automated tests

Differential Revision: D54697760

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121545
Approved by: https://github.com/malfet
2024-03-12 16:58:47 +00:00
Nikita Shulga
703e83e336 Fix AARCH64 builds (#121700)
After https://github.com/pytorch/pytorch/pull/119992 was landed

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121700
Approved by: https://github.com/janeyx99, https://github.com/huydhn
2024-03-12 04:17:47 +00:00
Xinya Zhang
a37e22de70 Add Flash Attention support on ROCM (#121561)
This patch addresses the major limitations in our previous [PR #115981](https://github.com/pytorch/pytorch/pull/115981) through the new dedicated repository [AOTriton](https://github.com/ROCm/aotriton)

- [x] Only supports MI200 series GPU (i.e., `gcnArchName == gfx90a:sramecc+:xnack-`).
    * MI300X is supported. More architectures will be added once Triton support them.
- [x] Only supports power of two sequence lengths.
    * Now it support arbitrary sequence length
- [ ] No support for varlen APIs.
    * varlen API will be supported in the next release of AOTriton
- [x] Only support head dimension 16,32,64,128.
    * Now it support arbitrary head dimension <= 256
- [x] Performance is still being optimized.
    * Kernel is selected according to autotune information from Triton.

Other improvements from AOTriton include
* Allow more flexible Tensor storage layout
* More flexible API

This is a more extensive fix to #112997

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121561
Approved by: https://github.com/malfet, https://github.com/atalman
2024-03-12 01:16:53 +00:00
Eddie Yan
967dd31621 [cuDNN] Cleanup cuDNN < 8.1 ifdefs (#120862)
Follow-up of #95722

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120862
Approved by: https://github.com/Skylion007
2024-03-07 01:46:25 +00:00
cyy
507611f9ae [CUDACachingAllocator] Turn Allocator::allocate into non-const (#120969)
Ideally, the method should be non-const since it changes the allocator state. Some const_casts are also removed in the way.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120969
Approved by: https://github.com/albanD
2024-03-05 09:53:05 +00:00
Bin Bao
bd19d6d822 [AOTI] Use torchgen to generate C shim functions (#120513)
Summary: The current C shim layer manually implements a C interface for a handful of ops. Obviously that's not scalable if we want to extend it to cover all aten ops. This new torchgen script automatically generates C shim interfaces for CPU and CUDA backends. The interface follows the same parameter passing rules as the current C shim layer, such as

* Use plain C data types to pass parameters
* Use AtenTensorHandle to pass at::Tensor
* Use pointer type to pass optional parameter
* Use pointer+length to pass list
* Use device_type+device_index to pass device
* When a parameter is a pointer of pointer, e.g. AtenTensorHandle**, the script generates either a list of optional values or an optional list of values

https://gist.github.com/desertfire/83701532b126c6d34dae6ba68a1b074a is an example of the generated torch/csrc/inductor/aoti_torch/generated/c_shim_cuda.cpp file. The current version doesn't generate C shim wrappers for all aten ops, and probably generates more wrappers than needed on the other hand, but it should serve as a good basis.

This PR by itself won't change AOTI codegen and thus won't introduce any FC breakage. The actual wrapper codegen changes will come in another PR with some version control flag to avoid FC breakage.

Differential Revision: [D54258087](https://our.internmc.facebook.com/intern/diff/D54258087)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120513
Approved by: https://github.com/jansel
2024-03-05 04:28:44 +00:00
Yang Chen
1a1f58ffbe [rocm][cmake] retrieve rocm location from ROCM_SOURCE_DIR env if specified (#120898)
This PR allows us to build PyTorch with a rocm that is not installed
to the default location, i.e. /opt/rocm

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120898
Approved by: https://github.com/jianyuh
2024-02-29 21:32:45 +00:00
Emmett Neyman
db92558229 [codemod][lowrisk] Fix deprecated use of 0/NULL (#120740)
Summary:
`nullptr` is typesafe. `0` and `NULL` are not. In the future, only `nullptr` will be allowed.

This diff helps us embrace the future _now_ in service of enabling `-Wzero-as-null-pointer-constant`.

Test Plan: Sandcastle

Reviewed By: meyering

Differential Revision: D54163060

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120740
Approved by: https://github.com/Skylion007
2024-02-28 20:13:13 +00:00
PyTorch MergeBot
a9d9077f12 Revert "Increased compile time max GPUs to 512. Switched to int16_t DeviceIndex. (#119639)"
This reverts commit 7c556428c7.

Reverted https://github.com/pytorch/pytorch/pull/119639 on behalf of https://github.com/kit1980 due to breaking internal builds, see D54286923 ([comment](https://github.com/pytorch/pytorch/pull/119639#issuecomment-1969634480))
2024-02-28 18:57:09 +00:00
Tobias Ringwald
7c556428c7 Increased compile time max GPUs to 512. Switched to int16_t DeviceIndex. (#119639)
Fixes #115331.

This PR increases the number of valid GPU devices to 512 (from 64) in order to future-proof PyTorch for providers that offer [single nodes with a large device count](https://www.tensorwave.com/). Until now, `DeviceIndex` was an `int8_t`, thus multiple changes were necessary:

- `DeviceIndex` changed to `int16_t`. Updated consumers that assume it to be an `int8_t`.
- Updated bounds checking for `torch.device()` in the Python frontend. Right now, we allow funny things like `torch.device('cpu', 200).index == -56`, which is undefined behavior. I inserted some checks to only allow values between 0 and `c10::Device::MAX_NUM_DEVICES - 1`.
- Updated the `ArgumentInfo` struct as it hardcodes the device index as 8 bit field [^1]. Might be a breaking change, not sure if users rely on this.
- Introduced `c10::Device::MAX_NUM_DEVICES` as a replacement for the old `C10_COMPILE_TIME_MAX_GPUS`

[^1]: This field was unsigned, so I guess this has also been undef behavior the whole time? Our default device index is -1, so this always wrapped around to 255 when written to the `ArgumentInfo` struct. When I switched the `DeviceIndex` to `int16_t`, it actually stayed 255 after unpacking from `ArgumentInfo` again, as the `DeviceIndex` was now wide enough that it didn't wrap back to -1.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119639
Approved by: https://github.com/cyyever, https://github.com/albanD, https://github.com/huydhn
2024-02-27 07:05:48 +00:00
PyTorch MergeBot
fff9d98e58 Revert "Increased compile time max GPUs to 512. Switched to int16_t DeviceIndex. (#119639)"
This reverts commit e0268821dd.

Reverted https://github.com/pytorch/pytorch/pull/119639 on behalf of https://github.com/huydhn due to Sorry for reverting your change but I think the Window failures are legit as they are failing now in trunk, i.e. 450339ab2d ([comment](https://github.com/pytorch/pytorch/pull/119639#issuecomment-1958428416))
2024-02-22 00:12:54 +00:00
Tobias Ringwald
e0268821dd Increased compile time max GPUs to 512. Switched to int16_t DeviceIndex. (#119639)
Fixes #115331.

This PR increases the number of valid GPU devices to 512 (from 64) in order to future-proof PyTorch for providers that offer [single nodes with a large device count](https://www.tensorwave.com/). Until now, `DeviceIndex` was an `int8_t`, thus multiple changes were necessary:

- `DeviceIndex` changed to `int16_t`. Updated consumers that assume it to be an `int8_t`.
- Updated bounds checking for `torch.device()` in the Python frontend. Right now, we allow funny things like `torch.device('cpu', 200).index == -56`, which is undefined behavior. I inserted some checks to only allow values between 0 and `c10::Device::MAX_NUM_DEVICES - 1`.
- Updated the `ArgumentInfo` struct as it hardcodes the device index as 8 bit field [^1]. Might be a breaking change, not sure if users rely on this.
- Introduced `c10::Device::MAX_NUM_DEVICES` as a replacement for the old `C10_COMPILE_TIME_MAX_GPUS`

[^1]: This field was unsigned, so I guess this has also been undef behavior the whole time? Our default device index is -1, so this always wrapped around to 255 when written to the `ArgumentInfo` struct. When I switched the `DeviceIndex` to `int16_t`, it actually stayed 255 after unpacking from `ArgumentInfo` again, as the `DeviceIndex` was now wide enough that it didn't wrap back to -1.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119639
Approved by: https://github.com/cyyever, https://github.com/albanD
2024-02-21 21:10:49 +00:00
Quinn Zhu
3993771617 Expose recordSize in ChunkRecordIterator (#120239)
Summary: Add a public method to read recordSize in ChunkRecordIterator

Test Plan: ci

Differential Revision: D53931944

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120239
Approved by: https://github.com/zoranzhao
2024-02-21 04:33:03 +00:00
Orvid King
a07fd51b6b [caffe2] Add an avx512 implementation of adagrad_update (#113289)
Summary: As per title

Test Plan: contbuilds

Differential Revision: D50947444

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113289
Approved by: https://github.com/ezyang
2024-02-15 01:45:30 +00:00
Joel Schlosser
9ec8dd2467 Reify view_func() closures as ViewFuncs (#118404)
Replaces `view_func()` closures with a reified `ViewFunc` data structure. Codegen generates a `ViewFunc` subclass for each view op (e.g. `NarrowViewFunc`) containing state needed to reconstruct the view. The `ViewFunc` API allows for querying and hot-swapping any `SymInt`s or `Tensors` in the state through `get_symints()` / `get_tensors()` / `clone_and_set()`, which will be essential for fake-ification later on.

```cpp
/// Base class for view functions, providing reapplication of a view on a new base.
/// Each view op should get a codegenerated subclass of this class containing
/// any state needed to reconstruct the view. The class also provides convenience
/// accessors for saved SymInts / tensor state. This is useful for e.g. fake-ification,
/// where we want to use symbolic values or fake tensors instead.
struct TORCH_API ViewFunc {
  virtual ~ViewFunc() {}
  /// Returns any SymInts in the saved state.
  virtual std::vector<c10::SymInt> get_symints() const { return {}; }
  /// Returns the number of SymInts in the saved state.
  virtual size_t num_symints() const { return 0; }
  /// Returns any tensors in the saved state.
  virtual std::vector<at::Tensor> get_tensors() const { return {}; }
  /// Returns the number of tensors in the saved state.
  virtual size_t num_tensors() const { return 0; }
  /// Reapplies the view on the given base using the saved state.
  virtual at::Tensor operator()(const at::Tensor&) const = 0;
  /// Returns a clone of this ViewFunc, optionally with the specified saved state.
  virtual std::unique_ptr<ViewFunc> clone_and_set(
      std::optional<std::vector<c10::SymInt>> = c10::nullopt,
      std::optional<std::vector<at::Tensor>> = c10::nullopt) const = 0;

protected:
  /// Sets the values of any SymInts in the saved state. The input vector size must
  /// match the number of SymInts in the saved state (i.e. the size of the list
  /// returned by get_symints()).
  virtual void set_symints(std::vector<c10::SymInt>) {}
  /// Sets the values of any Tensors in the saved state. The input vector size must
  /// match the number of Tensors in the saved state (i.e. the size of the list
  /// returned by get_tensors()).
  virtual void set_tensors(std::vector<at::Tensor>) {}
};
```

New codegen files:
* `torch/csrc/autograd/generated/ViewFunc.h`
* `torch/csrc/autograd/generated/ViewFuncs.cpp`

The templates for these also contains impls for `ChainedViewFunc` and `ErroringViewFunc` which are used in a few places within autograd.

Example codegen for `slice.Tensor`:
```cpp
// torch/csrc/autograd/generated/ViewFuncs.h
#define SLICE_TENSOR_VIEW_FUNC_AVAILABLE
struct SliceTensorViewFunc : public torch::autograd::ViewFunc {
  SliceTensorViewFunc(int64_t dim, c10::optional<c10::SymInt> start, c10::optional<c10::SymInt> end, c10::SymInt step) : dim(dim), start(start), end(end), step(step)
  {};
  virtual ~SliceTensorViewFunc() override {};
  virtual std::vector<c10::SymInt> get_symints() const override;
  virtual size_t num_symints() const override;
  virtual std::vector<at::Tensor> get_tensors() const override;
  virtual size_t num_tensors() const override;
  virtual at::Tensor operator()(const at::Tensor&) const override;
  virtual std::unique_ptr<ViewFunc> clone_and_set(
      std::optional<std::vector<c10::SymInt>> = c10::nullopt,
      std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;

protected:
  virtual void set_symints(std::vector<c10::SymInt>) override;
  virtual void set_tensors(std::vector<at::Tensor>) override;

private:
  int64_t dim;
  c10::optional<c10::SymInt> start;
  c10::optional<c10::SymInt> end;
  c10::SymInt step;
};
...

// torch/csrc/autograd/generated/ViewFuncs.cpp
std::vector<c10::SymInt> SliceTensorViewFunc::get_symints() const {
  ::std::vector<c10::SymInt> symints;
  symints.reserve((start.has_value() ? 1 : 0) + (end.has_value() ? 1 : 0) + 1);
  if(start.has_value()) symints.insert(symints.end(), *(start));
  if(end.has_value()) symints.insert(symints.end(), *(end));
  symints.push_back(step);
  return symints;
}

size_t SliceTensorViewFunc::num_symints() const {
  return static_cast<size_t>((start.has_value() ? 1 : 0) + (end.has_value() ? 1 : 0) + 1);
}

void SliceTensorViewFunc::set_symints(std::vector<c10::SymInt> symints) {
  TORCH_INTERNAL_ASSERT(symints.size() == num_symints());
  auto i = 0;
  if(start.has_value()) start = symints[i];
  i += (start.has_value() ? 1 : 0);
  if(end.has_value()) end = symints[i];
  i += (end.has_value() ? 1 : 0);
  step = symints[i];
}

std::vector<at::Tensor> SliceTensorViewFunc::get_tensors() const {
  ::std::vector<at::Tensor> tensors;
  return tensors;
}

size_t SliceTensorViewFunc::num_tensors() const {
  return static_cast<size_t>(0);
}

void SliceTensorViewFunc::set_tensors(std::vector<at::Tensor> tensors) {
  TORCH_INTERNAL_ASSERT(tensors.size() == num_tensors());

}

at::Tensor SliceTensorViewFunc::operator()(const at::Tensor& input_base) const {
  return at::_ops::slice_Tensor::call(input_base, dim, start, end, step);
}

std::unique_ptr<ViewFunc> SliceTensorViewFunc::clone_and_set(
    std::optional<std::vector<c10::SymInt>> symints,
    std::optional<std::vector<at::Tensor>> tensors) const {
  auto output = std::make_unique<SliceTensorViewFunc>(dim, start, end, step);
  if (symints.has_value()) {
    output->set_symints(std::move(*(symints)));
  }
  if (tensors.has_value()) {
    output->set_tensors(std::move(*(tensors)));
  }
  return output;
}
```

The `_view_func()` / `_view_func_unsafe()` methods now accept two additional (optional) args for `symint_visitor_fn` / `tensor_visitor_fn`. If these are defined, they are expected to be python callables that operate on a single SymInt / tensor and return a new one. This allows for the hot-swapping needed during fake-ification.

For testing, there are extensive pre-existing tests, and I added a test to ensure that hot-swapping functions correctly.
```sh
python test/test_autograd.py -k test_view_func_replay
python test/test_ops.py -k test_view_replay
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118404
Approved by: https://github.com/ezyang
2024-02-14 22:00:43 +00:00
Alexander Mols
2ae655b4f1 caffe2: remove support for specifically running "flaky tests" (#112007)
Summary:
In March 2019 D14468816 introduced some infra to mark tests as flaky
while still running them. In July 2019 D15797371 removed the last use of this
feature. Remove the related code as well.

Test Plan: ci

Reviewed By: mlogachev

Differential Revision: D50601204

Pull Request resolved: https://github.com/pytorch/pytorch/pull/112007
Approved by: https://github.com/malfet
2024-02-13 07:56:37 +00:00
PyTorch MergeBot
34a61c527b Revert "Enable x86 CPU vectorization on windows (#118980)"
This reverts commit 5f69d95b2b.

Reverted https://github.com/pytorch/pytorch/pull/118980 on behalf of https://github.com/huydhn due to This is breaking Window binary build https://github.com/pytorch/pytorch/actions/runs/7874475000/job/21484997298 where it failed to build sleef ([comment](https://github.com/pytorch/pytorch/pull/118980#issuecomment-1939619212))
2024-02-12 21:33:14 +00:00
Xu Han
5f69d95b2b Enable x86 CPU vectorization on windows (#118980)
Enable VEC on Windows OS.
1. Fix some type defination gap between Windows and Linux.
2. Fix some operator not support on Windows, such as [], /.
3. Enable static sleef library build on Windows.
4. Disable unsupported function overloading on MSVC.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118980
Approved by: https://github.com/jgong5, https://github.com/ezyang, https://github.com/malfet
2024-02-12 16:01:30 +00:00
PyTorch MergeBot
24bdd03d23 Revert "Reify view_func() closures as ViewFuncs (#118404)"
This reverts commit d5a6762263.

Reverted https://github.com/pytorch/pytorch/pull/118404 on behalf of https://github.com/DanilBaibak due to Broken trunk ([comment](https://github.com/pytorch/pytorch/pull/118404#issuecomment-1938600260))
2024-02-12 12:38:51 +00:00
Taras Tsugrii
dcce5327bb [core][perf] Use set comprehensions in _RecreateLookupTables. (#119617)
It's more idiomatic and much more efficient.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119617
Approved by: https://github.com/Skylion007
2024-02-10 18:53:25 +00:00
cyy
05602915f5 Link torch_cpu to cudart only if CUPTI is enabled (#118232)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118232
Approved by: https://github.com/ezyang
2024-02-10 00:53:51 +00:00
Joel Schlosser
d5a6762263 Reify view_func() closures as ViewFuncs (#118404)
Replaces `view_func()` closures with a reified `ViewFunc` data structure. Codegen generates a `ViewFunc` subclass for each view op (e.g. `NarrowViewFunc`) containing state needed to reconstruct the view. The `ViewFunc` API allows for querying and hot-swapping any `SymInt`s or `Tensors` in the state through `get_symints()` / `get_tensors()` / `clone_and_set()`, which will be essential for fake-ification later on.

```cpp
/// Base class for view functions, providing reapplication of a view on a new base.
/// Each view op should get a codegenerated subclass of this class containing
/// any state needed to reconstruct the view. The class also provides convenience
/// accessors for saved SymInts / tensor state. This is useful for e.g. fake-ification,
/// where we want to use symbolic values or fake tensors instead.
struct TORCH_API ViewFunc {
  virtual ~ViewFunc() {}
  /// Returns any SymInts in the saved state.
  virtual std::vector<c10::SymInt> get_symints() const { return {}; }
  /// Returns the number of SymInts in the saved state.
  virtual size_t num_symints() const { return 0; }
  /// Returns any tensors in the saved state.
  virtual std::vector<at::Tensor> get_tensors() const { return {}; }
  /// Returns the number of tensors in the saved state.
  virtual size_t num_tensors() const { return 0; }
  /// Reapplies the view on the given base using the saved state.
  virtual at::Tensor operator()(const at::Tensor&) const = 0;
  /// Returns a clone of this ViewFunc, optionally with the specified saved state.
  virtual std::unique_ptr<ViewFunc> clone_and_set(
      std::optional<std::vector<c10::SymInt>> = c10::nullopt,
      std::optional<std::vector<at::Tensor>> = c10::nullopt) const = 0;

protected:
  /// Sets the values of any SymInts in the saved state. The input vector size must
  /// match the number of SymInts in the saved state (i.e. the size of the list
  /// returned by get_symints()).
  virtual void set_symints(std::vector<c10::SymInt>) {}
  /// Sets the values of any Tensors in the saved state. The input vector size must
  /// match the number of Tensors in the saved state (i.e. the size of the list
  /// returned by get_tensors()).
  virtual void set_tensors(std::vector<at::Tensor>) {}
};
```

New codegen files:
* `torch/csrc/autograd/generated/ViewFunc.h`
* `torch/csrc/autograd/generated/ViewFuncs.cpp`

The templates for these also contains impls for `ChainedViewFunc` and `ErroringViewFunc` which are used in a few places within autograd.

Example codegen for `slice.Tensor`:
```cpp
// torch/csrc/autograd/generated/ViewFuncs.h
#define SLICE_TENSOR_VIEW_FUNC_AVAILABLE
struct SliceTensorViewFunc : public torch::autograd::ViewFunc {
  SliceTensorViewFunc(int64_t dim, c10::optional<c10::SymInt> start, c10::optional<c10::SymInt> end, c10::SymInt step) : dim(dim), start(start), end(end), step(step)
  {};
  virtual ~SliceTensorViewFunc() override {};
  virtual std::vector<c10::SymInt> get_symints() const override;
  virtual size_t num_symints() const override;
  virtual std::vector<at::Tensor> get_tensors() const override;
  virtual size_t num_tensors() const override;
  virtual at::Tensor operator()(const at::Tensor&) const override;
  virtual std::unique_ptr<ViewFunc> clone_and_set(
      std::optional<std::vector<c10::SymInt>> = c10::nullopt,
      std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;

protected:
  virtual void set_symints(std::vector<c10::SymInt>) override;
  virtual void set_tensors(std::vector<at::Tensor>) override;

private:
  int64_t dim;
  c10::optional<c10::SymInt> start;
  c10::optional<c10::SymInt> end;
  c10::SymInt step;
};
...

// torch/csrc/autograd/generated/ViewFuncs.cpp
std::vector<c10::SymInt> SliceTensorViewFunc::get_symints() const {
  ::std::vector<c10::SymInt> symints;
  symints.reserve((start.has_value() ? 1 : 0) + (end.has_value() ? 1 : 0) + 1);
  if(start.has_value()) symints.insert(symints.end(), *(start));
  if(end.has_value()) symints.insert(symints.end(), *(end));
  symints.push_back(step);
  return symints;
}

size_t SliceTensorViewFunc::num_symints() const {
  return static_cast<size_t>((start.has_value() ? 1 : 0) + (end.has_value() ? 1 : 0) + 1);
}

void SliceTensorViewFunc::set_symints(std::vector<c10::SymInt> symints) {
  TORCH_INTERNAL_ASSERT(symints.size() == num_symints());
  auto i = 0;
  if(start.has_value()) start = symints[i];
  i += (start.has_value() ? 1 : 0);
  if(end.has_value()) end = symints[i];
  i += (end.has_value() ? 1 : 0);
  step = symints[i];
}

std::vector<at::Tensor> SliceTensorViewFunc::get_tensors() const {
  ::std::vector<at::Tensor> tensors;
  return tensors;
}

size_t SliceTensorViewFunc::num_tensors() const {
  return static_cast<size_t>(0);
}

void SliceTensorViewFunc::set_tensors(std::vector<at::Tensor> tensors) {
  TORCH_INTERNAL_ASSERT(tensors.size() == num_tensors());

}

at::Tensor SliceTensorViewFunc::operator()(const at::Tensor& input_base) const {
  return at::_ops::slice_Tensor::call(input_base, dim, start, end, step);
}

std::unique_ptr<ViewFunc> SliceTensorViewFunc::clone_and_set(
    std::optional<std::vector<c10::SymInt>> symints,
    std::optional<std::vector<at::Tensor>> tensors) const {
  auto output = std::make_unique<SliceTensorViewFunc>(dim, start, end, step);
  if (symints.has_value()) {
    output->set_symints(std::move(*(symints)));
  }
  if (tensors.has_value()) {
    output->set_tensors(std::move(*(tensors)));
  }
  return output;
}
```

The `_view_func()` / `_view_func_unsafe()` methods now accept two additional (optional) args for `symint_visitor_fn` / `tensor_visitor_fn`. If these are defined, they are expected to be python callables that operate on a single SymInt / tensor and return a new one. This allows for the hot-swapping needed during fake-ification.

For testing, there are extensive pre-existing tests, and I added a test to ensure that hot-swapping functions correctly.
```sh
python test/test_autograd.py -k test_view_func_replay
python test/test_ops.py -k test_view_replay
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118404
Approved by: https://github.com/ezyang
2024-02-09 18:51:36 +00:00
Edward Z. Yang
dab16b6b8e s/supress/suppress/ (#119132)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119132
Approved by: https://github.com/kit1980, https://github.com/malfet
2024-02-04 00:54:14 +00:00
Yu, Guangye
a205e7bf56 [3/4] Intel GPU Runtime Upstreaming for Device (#116850)
# Motivation
According to [[1/4] Intel GPU Runtime Upstreaming for Device](https://github.com/pytorch/pytorch/pull/116019), As mentioned in [[RFC] Intel GPU Runtime Upstreaming](https://github.com/pytorch/pytorch/issues/114842), this third PR  covers the changes under `libtorch_python`.

# Design
This PR primarily offers device-related APIs in python frontend, including
- `torch.xpu.is_available`
- `torch.xpu.device_count`
- `torch.xpu.current_device`
- `torch.xpu.set_device`
- `torch.xpu.device`
- `torch.xpu.device_of`
- `torch.xpu.get_device_name`
- `torch.xpu.get_device_capability`
- `torch.xpu.get_device_properties`
- ====================
- `torch.xpu._DeviceGuard`
- `torch.xpu._is_compiled`
- `torch.xpu._get_device`

# Additional Context
We will implement the support of lazy initialization in the next PR.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116850
Approved by: https://github.com/EikanWang, https://github.com/jgong5, https://github.com/gujinghui, https://github.com/malfet
2024-02-01 12:31:26 +00:00
Edward Z. Yang
9bce208dfb Replace follow_imports = silent with normal (#118414)
This is a lot of files changed! Don't panic! Here's how it works:

* Previously, we set `follow_imports = silent` for our mypy.ini configuration. Per https://mypy.readthedocs.io/en/stable/running_mypy.html#follow-imports, what this does is whenever we have an import to a module which is not listed as a file to be typechecked in mypy, we typecheck it as normal but suppress all errors that occurred in that file.
* When mypy is run inside lintrunner, the list of files is precisely the files covered by the glob in lintrunner.toml, but with files in excludes excluded.
* The top-level directive `# mypy: ignore-errors` instructs mypy to typecheck the file as normal, but ignore all errors.
* Therefore, it should be equivalent to set `follow_imports = normal`, if we put `# mypy: ignore-errors` on all files that were previously excluded from the file list.
* Having done this, we can remove the exclude list from .lintrunner.toml, since excluding a file from typechecking is baked into the files themselves.
* torch/_dynamo and torch/_inductor were previously in the exclude list, because they were covered by MYPYINDUCTOR. It is not OK to mark these as `# mypy: ignore-errors` as this will impede typechecking on the alternate configuration. So they are temporarily being checked twice, but I am suppressing the errors in these files as the configurations are not quite the same. I plan to unify the configurations so this is only a temporary state.
* There were some straggler type errors after these changes somehow, so I fixed them as needed. There weren't that many.

In the future, to start type checking a file, just remove the ignore-errors directive from the top of the file.

The codemod was done with this script authored by GPT-4:

```
import glob

exclude_patterns = [
    ...
]

for pattern in exclude_patterns:
    for filepath in glob.glob(pattern, recursive=True):
        if filepath.endswith('.py'):
            with open(filepath, 'r+') as f:
                content = f.read()
                f.seek(0, 0)
                f.write('# mypy: ignore-errors\n\n' + content)
```

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118414
Approved by: https://github.com/thiagocrepaldi, https://github.com/albanD
2024-01-27 02:44:11 +00:00
nidefawl
a289dba7b1 Add missing cuda libraries for context_gpu_test (#117493)
This adds some missing cuda (curand and cublas) libraries that are required for the context_gpu_test to link.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117493
Approved by: https://github.com/ezyang
2024-01-25 18:04:23 +00:00
Richard Barnes
f9fca33baf [codemod][highrisk] Fix shadowed variable in caffe2/caffe2/onnx/onnx_exporter.cc (#117996)
Summary:
Our upcoming compiler upgrade will require us not to have shadowed variables. Such variables have a _high_ bug rate and reduce readability, so we would like to avoid them even if the compiler was not forcing us to do so.

This codemod attempts to fix an instance of a shadowed variable. Please review with care: if it's failed the result will be a silent bug.

**What's a shadowed variable?**

Shadowed variables are variables in an inner scope with the same name as another variable in an outer scope. Having the same name for both variables might be semantically correct, but it can make the code confusing to read! It can also hide subtle bugs.

This diff fixes such an issue by renaming the variable.

 - If you approve of this diff, please use the "Accept & Ship" button :-)

Test Plan: Sandcastle

Reviewed By: igorsugak

Differential Revision: D52582853

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117996
Approved by: https://github.com/PaliC, https://github.com/kit1980, https://github.com/malfet
2024-01-22 22:57:06 +00:00
Yu, Guangye
79811e765c [2/4] Intel GPU Runtime Upstreaming for Device (#116833)
# Motivation
According to [[1/4] Intel GPU Runtime Upstreaming for Device](https://github.com/pytorch/pytorch/pull/116019), as mentioned in [[RFC] Intel GPU Runtime Upstreaming](https://github.com/pytorch/pytorch/issues/114842), the second PR  covers the changes under `aten`.

# Design
We will compile the code for XPU separately into a library named `libtorch_xpu.so`. Currently, it primarily offers device-related APIs, including
- `getCurrentDeviceProperties`
- `getDeviceProperties`
- `getGlobalIdxFromDevice`
- `getDeviceFromPtr`

# Additional Context
`XPUHooks` is an indispensable part of the runtime. We upstream `XPUHooks` in this PR since there is some code related to `Device` in it and we also refine some logic and code to avoid forward declaration in `DLPack`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116833
Approved by: https://github.com/EikanWang, https://github.com/jgong5, https://github.com/gujinghui, https://github.com/malfet
2024-01-18 05:02:42 +00:00
Richard Barnes
bffc8ecfb0 [codemod] Fix shadows in PyTorch (#117562)
Test Plan: Sandcastle

Differential Revision: D52802592

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117562
Approved by: https://github.com/Skylion007, https://github.com/malfet
2024-01-17 20:33:50 +00:00
nidefawl
b1c3f9f1b9 Fix missing mkl-dnn include paths (#117492)
Fixes #91968 and #100960
This commit fixes missing  include paths by linking `caffe2_pybind11_state_gpu` against `caffe2::mkldnn`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117492
Approved by: https://github.com/ezyang
2024-01-16 23:28:17 +00:00
Edward Yang
b4a35632f9 Add function to materialize COW storages (#117053)
Summary: From Kurt Mohler, see https://github.com/pytorch/pytorch/pull/113396 (manually imported due to ghimport problems)

Test Plan: sandcastle, OSS CI

Differential Revision: D52610522

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117053
Approved by: https://github.com/malfet, https://github.com/kurtamohler
2024-01-10 15:34:16 +00:00
Bert Maher
521dbbfaff Remove cpp/tensorexpr benchmarks (#116868)
Summary: These refer to a deprecated backend of torchscript which is no longer built in releases, and require llvm to be built.

Test Plan:
```
python setup.py develop
```

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116868
Approved by: https://github.com/hl475, https://github.com/chenyang78, https://github.com/eellison, https://github.com/mikekgfb
2024-01-05 21:23:30 +00:00
Xinya Zhang
e3ca7346ce Re-add initial Flash Attention support on ROCM (#115981)
Note about the Updates:

This PR:
1. skips more flash attention related UTs on MI200
2. Fix additional ATen compiling errors after hipification
3. Fix the author "root" of a specific commit
4. Includes the patch from Nikita in favor of block level static initialization.

CAVEAT: This revised PR has a commit that modifies the CI to force its running on MI200 nodes. That specific commit must be reverted before merge.

Original PR (https://github.com/pytorch/pytorch/pull/114309) Note:

This pull requests add initial Flash Attention support for AMD/ROCM platform. It added a specialized Triton repository/branch as a compile-time dependency for Flash Attention math library on AMD/ROCM. This triton submodule is not used at runtime and will not be shipped to the final pytorch package. We have the plan to release this specialized Triton as a separate project.

Know limitations:

- Only supports MI200 series GPU (i.e., `gcnArchName == gfx90a:sramecc+:xnack-`.
- Only supports power of two sequence lengths.
- No support for varlen APIs.
- Only support head dimension 16,32,64,128.
- Performance is still being optimized.

Fixes #112997

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115981
Approved by: https://github.com/malfet
2024-01-04 22:21:31 +00:00
Richard Barnes
6fece41e9a [codemod][lowrisk] Remove extra semi colon from caffe2/c10/util/Float8_e5m2.h (#115761)
Summary:
`-Wextra-semi` or `-Wextra-semi-stmt`

If the code compiles, this is safe to land.

Test Plan: Sandcastle

Reviewed By: palmje

Differential Revision: D51995078

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115761
Approved by: https://github.com/Skylion007
2024-01-04 02:02:26 +00:00
Eddie Yan
ba06951c66 [BE] [cuDNN] Always build assuming cuDNN >= 8.1 (#95722)
<!--
copilot:summary
-->
### <samp>🤖 Generated by Copilot at 27084ed</samp>

This pull request simplifies and cleans up the code that uses the cuDNN library for convolution, batch normalization, CTC loss, and quantized operations. It removes the unnecessary checks and conditions for older cuDNN versions and the experimental cuDNN v8 API, and ~~replaces them with the stable `cudnn_frontend` API that requires cuDNN v8 or higher. It also adds the dependency and configuration for the `cudnn_frontend` library in the cmake and bazel files.~~ Correction: The v7 API will still be available with this PR, and can still be used, without any changes to the defaults. This change simply always _builds_ the v8 API, and removes the case where _only_ the v7 API is built.

This is a re-land of https://github.com/pytorch/pytorch/pull/91527

Pull Request resolved: https://github.com/pytorch/pytorch/pull/95722
Approved by: https://github.com/malfet, https://github.com/atalman
2024-01-03 15:41:28 +00:00
cyy
764b4cd44e Remove outdated string function wrapper for Android and Caffe2 (#116186)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116186
Approved by: https://github.com/janeyx99
2023-12-22 04:31:56 +00:00
Nikita Shulga
7ca6e0d38f [EZ] Add CUSPARSELT to build variables (#116213)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116213
Approved by: https://github.com/Skylion007, https://github.com/kit1980, https://github.com/atalman
ghstack dependencies: #116212
2023-12-21 01:02:11 +00:00
Nikita Shulga
74119a3482 [EZ] Fix typo in USE_GLOO var (#116212)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116212
Approved by: https://github.com/Skylion007, https://github.com/kit1980
2023-12-21 01:02:11 +00:00
Jeff Daily
602abf6b55 [ROCm] more 6.0 changes (#115946)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115946
Approved by: https://github.com/pruthvistony, https://github.com/huydhn, https://github.com/malfet
2023-12-20 20:19:29 +00:00
Yifu Wang
6e1ba79b7f [re-land] Introduce 3 low-latency, intra-node allreduce algorithms for small messages to PyTorch (#114001) (#116125)
This is an attempt to re-land https://github.com/pytorch/pytorch/pull/114001. The previous attempt used `std::array` in cuda kernels which wasn't compatible with Meta's internal build.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116125
Approved by: https://github.com/yf225
2023-12-20 07:13:50 +00:00
Xiaodong Wang
c72bc61bcd [ROCm] Fix caffe2 build with hipblasv2 api (#116073)
Summary: we need this change along with D52244365 to make caffe2 build happy

Test Plan: OSS CI

Differential Revision: D52275058

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116073
Approved by: https://github.com/jeffdaily, https://github.com/malfet
2023-12-20 04:02:29 +00:00
PyTorch MergeBot
91e184fd74 Revert "Introduce 3 low-latency, intra-node allreduce algorithms for small messages to PyTorch (#114001)"
This reverts commit 4edc921857.

Reverted https://github.com/pytorch/pytorch/pull/114001 on behalf of https://github.com/jeanschmidt due to Breaking multiple internal tests, might be flakiness but multiple retries did not elicit an improvement, please check internal diff ([comment](https://github.com/pytorch/pytorch/pull/114001#issuecomment-1863036417))
2023-12-19 16:01:19 +00:00
Jeff Daily
e3aefe2970 Revert "Initial Flash Attention support on ROCM (#114309)" (#115975)
This reverts commit 5bddbed399.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115975
Approved by: https://github.com/atalman, https://github.com/malfet
2023-12-16 03:40:14 +00:00
Yifu Wang
4edc921857 Introduce 3 low-latency, intra-node allreduce algorithms for small messages to PyTorch (#114001)
## Summary
This PR added 3 intra-node GPU allreduce algorithms to PyTorch:
- One-shot allreduce (inspired by FasterTransformer): all ranks simultaneously read and accumulate data from other ranks.
- Two-shot allreduce (inspired by FasterTransformer): all ranks simultanesouly read and accumulate `1 / world_size` data from other ranks. Then all ranks read accumulated data from other ranks. (effectively one-shot reduce-scatter + one-shot all-gather).
- Hybrid cube mesh allreduce (original): a one-shot allreduce variant that avoids transmission over PCIe on HCM topology.

## Micro Benchmarks
![image](https://github.com/pytorch/pytorch/assets/4156752/7bd25ffc-cd5b-4acb-bd65-b01bc136726e)

![image](https://github.com/pytorch/pytorch/assets/4156752/3ced31b4-6c31-4f34-a2d8-c072df29ae0e)

![image](https://github.com/pytorch/pytorch/assets/4156752/5b942c05-4fcc-4ec9-ae29-12c64080bb1c)

## Details
The intra-node algos are organized behind `c10d::IntraNodeComm`, which is responsible for:
- Managing handshaking and cuda IPC handle exchange among ranks.
- Querying NVLink connection and detecting topology.
- Performing algo selection based on available info.
- Launching the selected allreduce kernel.

`c10d::IntraNodeComm` is integrated into `c10d::ProcessGroupNCCL` as follows:
- When the `ENABLE_INTRA_NODE_COMM` environment variable is set, `c10d::ProcessGroupNCCL` initialize a `c10d::IntraNodeComm` for its ranks.
  - If the setup is not suitable for intra-node comm (e.g. not all ranks are from the same node), the rendezvous logic guarantees all participants fall back consistently.
- `c10d::ProcessGroupNCCL::allreduce` consults `c10d::IntraNodeComm` whether to use intra-node allreduce and carries out the communication accordingly.

We currently detect two types of topoloies from the nNVLink connection mesh:
- Fully connected: all GPU pairs has direct NVLink connection (e.g. NVSwitch or fully connected sub-set of hybrid cube mesh)
  - `msg <= 256KB`: one-shot allreduce.
  - `256KB < msg <= 10MB`: two-shot allreduce.
  -  `msg > 10MB`: instructs the caller to fallback to NCCL.
- Hybrid cube mesh
  - `msg <= 256KB`: one-shot allreduce.
  - `msg > 256KB`: instructs the caller to fallback to NCCL.

## Next Steps
- Fine tune algo selection based on GPU model, topology, link speed.
- Potentially optimize the two-shot allreduce impl. Accroding to FasterTransformer, two-shot allreduce is preferred until 50MB. There might be room for improvement, but PyTorch does impose more constraints:
  - FasterTransformer uses a single process to drive multiple devices. It can use `cudaDeviceEnablePeerAccess` enable device-level peer access.
  - PyTorch uses multiple process to drive multiple devices. With cuda IPC, a device can only share a specific region to other devices. This means extra copies may be unavoidable.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/114001
Approved by: https://github.com/yf225
2023-12-15 08:17:35 +00:00
PyTorch MergeBot
7ecddaef23 Revert "Introduce 3 low-latency, intra-node allreduce algorithms for small messages to PyTorch (#114001)"
This reverts commit adfbd2b219.

Reverted https://github.com/pytorch/pytorch/pull/114001 on behalf of https://github.com/atalman due to OSSCI oncall, breaks periodic jobs ([comment](https://github.com/pytorch/pytorch/pull/114001#issuecomment-1856539040))
2023-12-14 20:33:10 +00:00
Xinya Zhang
5bddbed399
Initial Flash Attention support on ROCM (#114309)
This pull requests add initial Flash Attention support for AMD/ROCM platform. It added a specialized Triton repository/branch as a compile-time dependency for Flash Attention math library on AMD/ROCM. This triton submodule is not used at runtime and will not be shipped to the final pytorch package. We have the plan to release this specialized Triton as a separate project.

Know limitations:

- [ ] Only supports MI200 series GPU (i.e., `gcnArchName == gfx90a:sramecc+:xnack-`.
- [ ] Only supports power of two sequence lengths.
- [ ] No support for varlen APIs.
- [ ] Only support head dimension 16,32,64,128.
- [ ] Performance is still being optimized.

Fixes https://github.com/pytorch/pytorch/issues/112997

Pull Request resolved: https://github.com/pytorch/pytorch/pull/114309

Approved by: https://github.com/jeffdaily, https://github.com/malfet

---------

Co-authored-by: Joseph Groenenboom <joseph.groenenboom@amd.com>
2023-12-14 08:52:57 -08:00
Yifu Wang
adfbd2b219 Introduce 3 low-latency, intra-node allreduce algorithms for small messages to PyTorch (#114001)
## Summary
This PR added 3 intra-node GPU allreduce algorithms to PyTorch:
- One-shot allreduce (inspired by FasterTransformer): all ranks simultaneously read and accumulate data from other ranks.
- Two-shot allreduce (inspired by FasterTransformer): all ranks simultanesouly read and accumulate `1 / world_size` data from other ranks. Then all ranks read accumulated data from other ranks. (effectively one-shot reduce-scatter + one-shot all-gather).
- Hybrid cube mesh allreduce (original): a one-shot allreduce variant that avoids transmission over PCIe on HCM topology.

## Micro Benchmarks
![image](https://github.com/pytorch/pytorch/assets/4156752/7bd25ffc-cd5b-4acb-bd65-b01bc136726e)

![image](https://github.com/pytorch/pytorch/assets/4156752/3ced31b4-6c31-4f34-a2d8-c072df29ae0e)

![image](https://github.com/pytorch/pytorch/assets/4156752/5b942c05-4fcc-4ec9-ae29-12c64080bb1c)

## Details
The intra-node algos are organized behind `c10d::IntraNodeComm`, which is responsible for:
- Managing handshaking and cuda IPC handle exchange among ranks.
- Querying NVLink connection and detecting topology.
- Performing algo selection based on available info.
- Launching the selected allreduce kernel.

`c10d::IntraNodeComm` is integrated into `c10d::ProcessGroupNCCL` as follows:
- When the `ENABLE_INTRA_NODE_COMM` environment variable is set, `c10d::ProcessGroupNCCL` initialize a `c10d::IntraNodeComm` for its ranks.
  - If the setup is not suitable for intra-node comm (e.g. not all ranks are from the same node), the rendezvous logic guarantees all participants fall back consistently.
- `c10d::ProcessGroupNCCL::allreduce` consults `c10d::IntraNodeComm` whether to use intra-node allreduce and carries out the communication accordingly.

We currently detect two types of topoloies from the nNVLink connection mesh:
- Fully connected: all GPU pairs has direct NVLink connection (e.g. NVSwitch or fully connected sub-set of hybrid cube mesh)
  - `msg <= 256KB`: one-shot allreduce.
  - `256KB < msg <= 10MB`: two-shot allreduce.
  -  `msg > 10MB`: instructs the caller to fallback to NCCL.
- Hybrid cube mesh
  - `msg <= 256KB`: one-shot allreduce.
  - `msg > 256KB`: instructs the caller to fallback to NCCL.

## Next Steps
- Fine tune algo selection based on GPU model, topology, link speed.
- Potentially optimize the two-shot allreduce impl. Accroding to FasterTransformer, two-shot allreduce is preferred until 50MB. There might be room for improvement, but PyTorch does impose more constraints:
  - FasterTransformer uses a single process to drive multiple devices. It can use `cudaDeviceEnablePeerAccess` enable device-level peer access.
  - PyTorch uses multiple process to drive multiple devices. With cuda IPC, a device can only share a specific region to other devices. This means extra copies may be unavoidable.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/114001
Approved by: https://github.com/yf225
2023-12-14 08:13:08 +00:00
Richard Barnes
43efe39cb1 [codemod][lowrisk] Remove extra semi colon from caffe2/caffe2/opt/optimizer.cc (#115018)
Summary:
`-Wextra-semi` or `-Wextra-semi-stmt`

If the code compiles, this is safe to land.

Test Plan: Sandcastle

Reviewed By: dmm-fb

Differential Revision: D51777924

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115018
Approved by: https://github.com/Skylion007
2023-12-13 23:11:33 +00:00
hongxyan
66a76516bf [ROCm] Disabling Kernel Asserts for ROCm by default - fix and clean up and refactoring (#114660)
Related to #103973  #110532 #108404 #94891

**Context:**
As commented in 6ae0554d11/cmake/Dependencies.cmake (L1198)
Kernel asserts are enabled by default for CUDA and disabled for ROCm.
However it is somewhat broken, and Kernel assert was still enabled for ROCm.

Disabling kernel assert is also needed for users who do not have PCIe atomics support. These community users have verified that disabling the kernel assert in PyTorch/ROCm platform fixed their pytorch workflow, like torch.sum script, stable-diffusion. (see the related issues)

**Changes:**

This pull request serves the following purposes:
* Refactor and clean up the logic,  make it simpler for ROCm to enable and disable Kernel Asserts
* Fix the bug that Kernel Asserts for ROCm was not disabled by default.

Specifically,
- Renamed `TORCH_DISABLE_GPU_ASSERTS` to `C10_USE_ROCM_KERNEL_ASSERT` for the following reasons:
(1) This variable only applies to ROCm.
(2) The new name is more align with #define CUDA_KERNEL_ASSERT function.
(3) With USE_ in front of the name, we can easily control it with environment variable to turn on and off this feature during build (e.g. `USE_ROCM_KERNEL_ASSERT=1 python setup.py develop` will enable kernel assert for ROCm build).
- Get rid of the `ROCM_FORCE_ENABLE_GPU_ASSERTS' to simplify the logic and make it easier to understand and maintain
- Added `#cmakedefine` to carry over the CMake variable to C++

**Tests:**
(1) build with default mode and verify that USE_ROCM_KERNEL_ASSERT  is OFF(0), and kernel assert is disabled:

```
python setup.py develop
```
Verify CMakeCache.txt has correct value.
```
/xxxx/pytorch/build$ grep USE_ROCM_KERNEL_ASSERT CMakeCache.txt
USE_ROCM_KERNEL_ASSERT:BOOL=0
```
Tested the following code in ROCm build and CUDA build, and expected the return code differently.

```
subprocess.call([sys.executable, '-c', "import torch;torch._assert_async(torch.tensor(0,device='cuda'));torch.cuda.synchronize()"])
```
This piece of code is adapted from below unit test to get around the limitation that this unit test now was skipped for ROCm. (We will check to enable this unit test in the future)

```
python test/test_cuda_expandable_segments.py -k test_fixed_cuda_assert_async
```

Ran the following script, expecting r ==0 since the CUDA_KERNEL_ASSERT is defined as nothing:
```
>> import sys
>>> import subprocess
>>> r=subprocess.call([sys.executable, '-c', "import torch;torch._assert_async(torch.tensor(0,device='cuda'));torch.cuda.synchronize()"])
>>> r
0
```

(2) Enable the kernel assert by building with USE_ROCM_KERNEL_ASSERT=1, or USE_ROCM_KERNEL_ASSERT=ON
```
USE_ROCM_KERNEL_ASSERT=1 python setup.py develop
```

Verify `USE_ROCM_KERNEL_ASSERT` is `1`
```
/xxxx/pytorch/build$ grep USE_ROCM_KERNEL_ASSERT CMakeCache.txt
USE_ROCM_KERNEL_ASSERT:BOOL=1
```

Run the assert test, and expected return code not equal to 0.

```
>> import sys
>>> import subprocess
>>> r=subprocess.call([sys.executable, '-c', "import torch;torch._assert_async(torch.tensor(0,device='cuda'));torch.cuda.synchronize()"])
>>>/xxxx/pytorch/aten/src/ATen/native/hip/TensorCompare.hip:108: _assert_async_cuda_kernel: Device-side assertion `input[0] != 0' failed.
:0:rocdevice.cpp            :2690: 2435301199202 us: [pid:206019 tid:0x7f6cf0a77700] Callback: Queue 0x7f64e8400000 aborting with error : HSA_STATUS_ERROR_EXCEPTION: An HSAIL operation resulted in a hardware exception. code: 0x1016

>>> r
-6
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/114660
Approved by: https://github.com/jeffdaily, https://github.com/malfet, https://github.com/jithunnair-amd
2023-12-13 15:44:53 +00:00
PyTorch MergeBot
ee96399bb4 Revert "[Reland2] Update NVTX to NVTX3 (#109843)"
This reverts commit dcb486232d.

Reverted https://github.com/pytorch/pytorch/pull/109843 on behalf of https://github.com/atalman due to Diff broke internal builds and tests ([comment](https://github.com/pytorch/pytorch/pull/109843#issuecomment-1841105398))
2023-12-05 16:10:20 +00:00