This PR heavily simplifies the code of `linalg.solve`. At the same time,
this implementation saves quite a few copies of the input data in some
cases (e.g. A is contiguous)
We also implement it in such a way that the derivative goes from
computing two LU decompositions and two LU solves to no LU
decompositions and one LU solves. It also avoids a number of unnecessary
copies the derivative was unnecessarily performing (at least the copy of
two matrices).
On top of this, we add a `left` kw-only arg that allows the user to
solve `XA = B` rather concisely.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74046
Approved by: https://github.com/nikitaved, https://github.com/IvanYashchuk, https://github.com/mruberry
This PR adds `linalg.lu_solve`. While doing so, I found a bug in MAGMA
when calling the batched MAGMA backend with trans=True. We work around
that by solving the system solving two triangular systems.
We also update the heuristics for this function, as they were fairly
updated. We found that cuSolver is king, so luckily we do not need to
rely on the buggy backend from magma for this function.
We added tests testing this function left and right. We also added tests
for the different backends. We also activated the tests for AMD, as
those should work as well.
Fixes https://github.com/pytorch/pytorch/issues/61657
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77634
Approved by: https://github.com/malfet
When I run against a list of DPER ops I get this list:
```
aten.count_nonzero.dim_IntList
aten.count_nonzero.default
aten.empty.memory_format # SKIP
aten.repeat_interleave.Tensor
aten.relu.default
aten.nonzero.out
aten.nonzero.default
```
Signed-off-by: Edward Z. Yang <ezyangfb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78526
Approved by: https://github.com/zou3519
Seems like it should be one. This will make it possible to register
meta implementations even when there is a CompositeImplicitAutograd
registration already. It also paves the way for sparse meta, etc.
Signed-off-by: Edward Z. Yang <ezyangfb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78469
Approved by: https://github.com/ngimel
This PR is a result of collaboration with @rdspring1 and @mruberry on primTorch.
It adds the following prims:
- `fmax`
- `fmin`
- `fmod`
And adds the following refs:
- `fmax`
- `fmin`
- `fmod`
- `logical_xor`
The work is in progress as there are some tests that fail.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78023
Approved by: https://github.com/mruberry
This PR...
**Issues Found**
- https://github.com/pytorch/pytorch/issues/78058
- https://github.com/pytorch/pytorch/issues/78054
- https://github.com/pytorch/pytorch/issues/78053
- https://github.com/pytorch/pytorch/issues/78050
- https://github.com/pytorch/pytorch/issues/77932
**Testing**
- disables stride consistency checks in test_ops and test_meta pending resolution of https://github.com/pytorch/pytorch/issues/78050
- skips chalf in reference tests (addressing https://github.com/pytorch/pytorch/issues/78054)
- splits test test_python_reference_consistency in one test for the ctx where torch.foo is torch.foo, and another for when torch.foo is refs.foo
- updates test names to be more natural and consistent:
- test_python_reference_errors -> test_python_ref_errors
- test_python_reference_consistency -> test_python_ref and test_python_ref_torch_fallback
- test_python_reference_meta_functions -> test_python_ref_meta
- test_reference_testing -> test_numpy_ref
- updates test_python_ref and test_python_ref_torch_fallback to check that the reference is more accurate than the torch op if the reference and torch op results are not close, a warning is raised when this occurs (addressing https://github.com/pytorch/pytorch/issues/77687)
- adds reference inputs for broadcast_tensors
- Updates the "fill_" OpInfo to "fill", adding a NumPy reference and making it an elementwise unary operator
- Adds 1D no element sample inputs to the cat OpInfo and updates the NumPy reference to handle them and type promotion correctly
- Adds reference inputs for elementwise ternary operations, like clamp
- Adds a NumPy reference for clamp
- Adds reference inputs to where's OpInfo
- Makes softplus an elementwise unary OpInfo
- Removes the great majority of Python reference OpInfo skips and xfails due to the above test changes
- Adds Python reference OpInfos for fill, dropout, clamp, broadcast_tensors, and where
**Prims**
- adds the fill, empty_strided, and uniform prims
- removes the empty, empty_like, full, and full_like prims -- these are now references that use empty_strided and fill
- renames the "concatenate" and "select" prims to "cat" and "where", respectively, to be consistent with PyTorch
- extends the `_elementwise_meta` operation to accepts tensors that don't participate in type promotion, like the `cond` tensor in `where`
- fixes a bug in the stride propagation of broadcast_in_dim
- moves some error checks from prims.cat to prims.where to refs.cat and refs.where, respectively, consistent with our new policy of doing as much error checking in the ref as possible
**Utils**
- adds the canoicalize_device, extract_shape, and extract_shape_from_varargs helpers
- adds the elementwise_unary_scalar_wrapper -- this allows elementwise unary operators to take and return scalar values (ex. refs.sin(1) will return .84...)
**Refs**
- adds the fill, broadcast_tensors, clamp, empty_strided, ones, zeros, and uniform references
- adds the nn.functional.dropout reference
- fixes refs.cat to handle 1D tensors with no inputs consistent with eager mode
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78026
Approved by: https://github.com/ngimel
This PR...
**Issues Found**
- https://github.com/pytorch/pytorch/issues/78058
- https://github.com/pytorch/pytorch/issues/78054
- https://github.com/pytorch/pytorch/issues/78053
- https://github.com/pytorch/pytorch/issues/78050
- https://github.com/pytorch/pytorch/issues/77932
**Testing**
- disables stride consistency checks in test_ops and test_meta pending resolution of https://github.com/pytorch/pytorch/issues/78050
- skips chalf in reference tests (addressing https://github.com/pytorch/pytorch/issues/78054)
- splits test test_python_reference_consistency in one test for the ctx where torch.foo is torch.foo, and another for when torch.foo is refs.foo
- updates test names to be more natural and consistent:
- test_python_reference_errors -> test_python_ref_errors
- test_python_reference_consistency -> test_python_ref and test_python_ref_torch_fallback
- test_python_reference_meta_functions -> test_python_ref_meta
- test_reference_testing -> test_numpy_ref
- updates test_python_ref and test_python_ref_torch_fallback to check that the reference is more accurate than the torch op if the reference and torch op results are not close, a warning is raised when this occurs (addressing https://github.com/pytorch/pytorch/issues/77687)
- adds reference inputs for broadcast_tensors
- Updates the "fill_" OpInfo to "fill", adding a NumPy reference and making it an elementwise unary operator
- Adds 1D no element sample inputs to the cat OpInfo and updates the NumPy reference to handle them and type promotion correctly
- Adds reference inputs for elementwise ternary operations, like clamp
- Adds a NumPy reference for clamp
- Adds reference inputs to where's OpInfo
- Makes softplus an elementwise unary OpInfo
- Removes the great majority of Python reference OpInfo skips and xfails due to the above test changes
- Adds Python reference OpInfos for fill, dropout, clamp, broadcast_tensors, and where
**Prims**
- adds the fill, empty_strided, and uniform prims
- removes the empty, empty_like, full, and full_like prims -- these are now references that use empty_strided and fill
- renames the "concatenate" and "select" prims to "cat" and "where", respectively, to be consistent with PyTorch
- extends the `_elementwise_meta` operation to accepts tensors that don't participate in type promotion, like the `cond` tensor in `where`
- fixes a bug in the stride propagation of broadcast_in_dim
- moves some error checks from prims.cat to prims.where to refs.cat and refs.where, respectively, consistent with our new policy of doing as much error checking in the ref as possible
**Utils**
- adds the canoicalize_device, extract_shape, and extract_shape_from_varargs helpers
- adds the elementwise_unary_scalar_wrapper -- this allows elementwise unary operators to take and return scalar values (ex. refs.sin(1) will return .84...)
**Refs**
- adds the fill, broadcast_tensors, clamp, empty_strided, ones, zeros, and uniform references
- adds the nn.functional.dropout reference
- fixes refs.cat to handle 1D tensors with no inputs consistent with eager mode
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78026
Approved by: https://github.com/ngimel