That check was potentially synchronizing (people were running into synchronization in real workloads) and mostly unneeded.
Type promotion takes care of comparing to values that cannot be safely converted to the type of other argument.
This now works for `comp(int_tensor, float('inf'))` as expected. For `comp(uint8_tensor, large_int)` it silently wraps integer to uint8 whereas it would error out before, but this also happens with other arithmetic ops.
Also adds reference np implementation to comparison op OpInfos, and additional reference inputs to test newly enabled behavior.
Fixes#76805
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78881
Approved by: https://github.com/mruberry
This PR does the following...
Tests:
- fixes test_type_promotion in test_binary_ufuncs to correctly generate scalar cpu tensors
- fixes test_python_reference_consistency to use the Python Reference's reference inputs
- extends Python reference testing to test_conj_view, test_neg_view, and test_neg_conj_view
- adds a NaN propagation sample input for elementwise unary and binary operations
- fixes the UnaryUfuncInfo class to properly register its reference inputs
- Updates the Python Reference OpInfos to skip error inputs when their behavior on scalar inputs is inconsistent with their reference operators
Code organization:
- moves elementwise type promotion functionality to prims.utils
Prims & Refs:
- fixes scalar cpu tensor handling by having them pass through broadcasting and device and shape checks
- adds two decorators, `elementwise_type_promotion_wrapper` and `out_wrapper`, the former allows for elementwise type promotion to be automated and the latter automatically adds the out kwarg and handles it properly
cc @ezyang who also had some thoughts on cpu scalar tensor handling
cc @chillee -- might want to use this new decorator as we converge decompositions and references
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76945
Approved by: https://github.com/ngimel
https://github.com/pytorch/pytorch/pull/76158 added `chalf` support for `mul` on CUDA incorrectly.
Following sample
```python
torch.mul(torch.zeros(3, device='cuda'), 2.5) # CUDA Tensor and CPU Scalar
```
fails with
```
RuntimeError: iter.device(arg).is_cuda() INTERNAL ASSERT FAILED at "../aten/src/ATen/native/cuda/JitLoops.cuh":83, please report a bug to PyTorch. argument 2: expected a CUDA device but found cpu
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76364
Approved by: https://github.com/mruberry
Adds a prototype tracer with no caching support and the `ElementwiseUnaryPythonRefInfo` class. A reference for `floor` is added to test the latter, and the elementwise binary reference inputs are extended to also return noncontiguous inputs. The SampleInput transform operation has been updated to return an actual SampleInput instead of a tuple to facilitate uniform handling of (transformed) SampleInputs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76388
Approved by: https://github.com/ngimel
This PR makes the following improvements:
- moves the custom skip list for test_normalize_operator_exhaustive in test_fx_experimental to use the typical OpInfo skip architecture. The skips were updated to xfails, and that identified some operators which were no longer failing the test
- redundant tests with OpInfo-based testing in test_jit.py were removed
- test_dtypes was improved so its error messages are clear and it makes test_nondifferentiable redundant; the latter test has been removed
- OpInfo.supports_complex_autograd() is removed in favor of a more accurate and general test for whether the particular dtype is in the backward dtypes of the operator
- gradchecks have been improved to verify that an operator doesn't support grad if it claims not to
- gradchecks have been improved to test the gradient of all input tensors that require gradient
- the concept of "default test dtypes" has been removed
- excessive and mostly redundant out testing for elementwise unary operators has been removed
- metadata for whether an op supports nuanced "safe casting" to out behavior has been removed from OpInfos
- numerous skips have been converted to xfails
- numerous OpInfos have had their metadata fixed based on the new checks
- jit-specific utilities in common_methods_invocations.py have been moved to jit_programming_utils.py
Pull Request resolved: https://github.com/pytorch/pytorch/pull/75951
Approved by: https://github.com/ngimel
This PR extends our OpInfo test architecture with "reference inputs," an optional expansion of typical sample inputs that allows for more thorough testing. Currently only the elementwise binary operations implement an extended set of reference inputs. This PR also cleans up some smaller OpInfo-related issues, including several bugs, and it identified https://github.com/pytorch/pytorch/issues/74279.
A reference inputs function can be specified for an OpInfo by filling in its "reference_inputs_func" metadata. If this is done it's recommended that the reference inputs function first call the sample inputs function, then produce additional sample inputs. See `reference_inputs_elementwise_binary` for an example of this pattern.
In addition to implementing reference inputs for the elementwise binary operations, this PR improves their consistency and simplifies how their metadata is represented. The great majority now use a generic sample input function, and those that want extensions start by calling the generic sample input function and then adding additional samples. This removes many older sample input functions. The BinaryUfuncInfo subclass also now allows specifying scalar support more precisely, and reference inputs and error inputs are generated based on this metadata to ensure it's correct.
cc @kshitij12345 @pmeier @zou3519 @Chillee
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74280
Approved by: https://github.com/ngimel
Summary:
This adds support for bfloat16 and fp16 types for jiterator by adding at::Half and at::BFloat16 classes to the jiterator code template. The only methods defined in those classes are construction from float and implicit conversion to float. Mathematical operations on them never need to be defined, because jiterator is written in a way to implicitly upcast the inputs to the functor, so all math has to be performed on float only (e.g. compute part of the kernel would always be written as
```
out[j] = i0<float>(arg0[j]);
```
It also adds support for casting to complex outputs, by adding a similar templated class c10::complex<T>. Originally I planned to only support float -> complex complex for it, but to compile fetch_and_cast function we also need complex -> float conversion. We can avoid it by compiling fetch_and_cast for a different subset of types, but I'm not doing it in this PR. Thus, technically, we can compile a kernel that would accept complex inputs and produce wrong results, but we are guarding against it by static asserting that none of the functor datatype are complex, and runtime-checking that none of the inputs are complex.
Adding bfloat16, half and complex support allows us to remove special handling for type promotion tests for gcd.
i0 (that supports half and bfloat16 inputs) is moved to use jiterator.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/70157
Reviewed By: mruberry
Differential Revision: D33221645
Pulled By: ngimel
fbshipit-source-id: 9cfe8aba3498a0604c4ea62c217292ea06c826b1
Summary:
ROCm and CUDA type promotion are slightly divergent and need to be updated.
cc jeffdaily sunway513 jithunnair-amd ROCmSupport KyleCZH
Pull Request resolved: https://github.com/pytorch/pytorch/pull/69456
Reviewed By: anjali411, janeyx99
Differential Revision: D32883895
Pulled By: mruberry
fbshipit-source-id: 3b0ba8a9d092c2d7ff20d78da42d4a147b1db12d
Summary:
This PR:
- creates the "jiterator" pattern, allowing elementwise unary and binary kernels that don't accept scalars to be jit compiled when called
- ports the gcd and i1 CUDA kernels to use the jiterator
- extends elementwise binary systemic testing to be comparable to elementwise unary systemic testing
- separates one test case from test_out in test_ops.py
- updates more OpInfos to use expected failures instead of skips
The jiterator currently does not support half, bfloat16 or complex dtypes. It also (as mentioned above) doesn't support scalar inputs. In the future we expect to add support for those datatypes and scalars.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/69439
Reviewed By: ngimel
Differential Revision: D32874968
Pulled By: mruberry
fbshipit-source-id: d44bb9cde4f602703e75400ec5a0b209f085e9b3
Summary:
Partially fixes https://github.com/pytorch/pytorch/issues/66066
This PR:
- cleans up op-specific testing from test_autograd. test_autograd should be reserved for testing generic autograd functionality
- tests related to an operator are better colocated
- see the tracker for details
What to think about when moving tests to their correct test suite:
- naming, make sure its not too generic
- how the test is parametrized, sometimes we need to add/remove a device/dtype parameter
- can this be merged with existing tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/67413
Reviewed By: jbschlosser, albanD
Differential Revision: D32031480
Pulled By: soulitzer
fbshipit-source-id: 8e13da1e58a38d5cecbfdfd4fe2b4fe6f816897f
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66245Fixes#66053
This PR splits `declare_static_dtype_and_device` into two new methods for
`TensorIteratorBase`: `declare_static_dtype` and `declare_static_device`.
Test Plan: Imported from OSS
Reviewed By: ejguan
Differential Revision: D31503849
Pulled By: ngimel
fbshipit-source-id: 4b131b691d29ceb5f3709f5d6503997ea0875c54
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64267
This test expects every operation to throw a runtime error.
And Reinsert in-place operation test,Fix bug for comparison operation
fix: #64018
Test Plan: Imported from OSS
Reviewed By: gchanan
Differential Revision: D30720915
Pulled By: ezyang
fbshipit-source-id: 215a6556d20770f70f4ced1c1f9a9753933f1d37
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63554
Following https://github.com/pytorch/pytorch/pull/61840#issuecomment-884087809, this deprecates all the dtype getters publicly exposed in the `torch.testing` namespace. The reason for this twofold:
1. If someone is not familiar with the C++ dispatch macros PyTorch uses, the names are misleading. For example `torch.testing.floating_types()` will only give you `float32` and `float64` skipping `float16` and `bfloat16`.
2. The dtype getters provide very minimal functionality that can be easily emulated by downstream libraries.
We thought about [providing an replacement](https://gist.github.com/pmeier/3dfd2e105842ad0de4505068a1a0270a), but ultimately decided against it. The major problem is BC: by keeping it, either the namespace is getting messy again after a new dtype is added or we need to somehow version the return values of the getters.
Test Plan: Imported from OSS
Reviewed By: H-Huang
Differential Revision: D30662206
Pulled By: mruberry
fbshipit-source-id: a2bdb10ab02ae665df1b5b76e8afa9af043bbf56
Summary:
Fixes https://github.com/pytorch/pytorch/issues/60548
`Tensor.__floordiv__` was indirectly deprecated by deprecation of `torch.floor_divide` (see https://github.com/pytorch/pytorch/issues/43874). Deprecating it directly provides clearer feedback.
Repro:
```
import torch
x = torch.tensor(0)
x // 1
```
Before this change, a deprecation warning was triggered within the C++ implementation of floor_divide:
```
UserWarning: floor_divide is deprecated, and will be removed in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values.
To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). (Triggered internally at ../aten/src/ATen/native/BinaryOps.cpp:571.)
return torch.floor_divide(self, other)
```
After this change, the warning instead cites the user's offending line of Python code:
```
UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values.
To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').
x // 1
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64034
Reviewed By: mruberry
Differential Revision: D30658010
Pulled By: saketh-are
fbshipit-source-id: b0e6c5008d741897509d102f4a89efb47de4aa2a
Summary:
As proof of concept, this PR uses the new `BinaryUfuncOpInfo` in broadcasting tests for `add`, `sub`, `mul`, `div`, `floor_div`, and `true_div`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61964
Reviewed By: ngimel
Differential Revision: D30407734
Pulled By: mruberry
fbshipit-source-id: ada28994f43b0635f279f45a02ecba18bc8ee033
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61349
Also add type promotion test for bugs found by pr #60813
Test Plan: Imported from OSS
Reviewed By: mruberry
Differential Revision: D29592840
Pulled By: ezyang
fbshipit-source-id: ee013b20e31baf6c6ebf2edb881ae6d8e215c7a6
Summary:
This PR un-reverts https://github.com/pytorch/pytorch/issues/61475 + fixes compilation with MSVC, that does not recognize alternative operator spellings (i.e. using `or` instead of `||` )
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61937
Reviewed By: albanD
Differential Revision: D29805941
Pulled By: malfet
fbshipit-source-id: 01e5963c6717c1b44b260300d87ba0bf57f26ce9