Summary: The new PrivateUse1 DeviceType is associated with the PrivateUse1 DispatchKey, which can be used for non-public devices without introducing a new device type. Note that the stringified name of the PrivateUse1 device is "privateuseone".
Test Plan: All CI should pass.
Differential Revision: D35859437
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77208
Approved by: https://github.com/bdhirsh
Summary:
This PR implements the necessary hooks/stubs/enums/etc for complete ONNX Runtime (ORT) Eager Mode integration. The actual extension will live out of tree at https://github.com/pytorch/ort.
We have been [working on this at Microsoft](https://github.com/microsoft/onnxruntime-pytorch/tree/eager-ort/torch_onnxruntime) for the last few months, and are finally ready to contribute the PyTorch core changes upstream (nothing major or exciting, just the usual boilerplate for adding new backends).
The ORT backend will allow us to ferry [almost] all torch ops into granular ONNX kernels that ORT will eagerly execute against any devices it supports (therefore, we only need a single ORT backend from a PyTorch perspective).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/58248
Reviewed By: astaff
Differential Revision: D30344992
Pulled By: albanD
fbshipit-source-id: 69082b32121246340d686e16653626114b7714b2
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56830
Opt into formatting on GitHub and format everything. This is a trial run before turning on formatting for more and eventually all of the codebase.
Test Plan: CI
Reviewed By: zertosh
Differential Revision: D27979080
fbshipit-source-id: a80f0c48691c08ae8ca0af06377b87e6a2351151
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56939
These never have kernels registered to them and are effectively useless.
What I am not so sure if we allocate tensors to them or not; if we do
I cannot use asserts and I need to ensure we just return undefined
or something equivalent.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: ailzhang
Differential Revision: D28006160
Pulled By: ezyang
fbshipit-source-id: f8e2b61b8bd928fb2c0ac0b534bd4af076423f71
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53973
Two parts to this PR; I had to put them together because adding support for X causes more test code to be exercised, which in turn may require a fix for Y.
The first part is restoring the concept of storage to meta tensors. Previously, meta tensors had a nullptr storage (e.g., `meta_tensor.storage()` is an error.) As I was increasing the coverage of meta tensors, I started running into test cases (specifically memory overlap tests) that were failing because not having storage meant I couldn't check for memory overlap. After some discussion, we decided that it would make sense for meta tensors to model this as well (we already model strides, so getting accurate view information also seems useful). This PR does that by:
* Rewrite all of the factory functions in MetaTensor.cpp to use the generic versions (which are very carefully written to not actually poke at the data pointer, so everything works out). The key idea here is we give meta tensors a special allocator, MetaAllocator, which always returns a nullptr even if you ask for a nonzero number of bytes. resize_ is also made generic; the normal variant can be used directly rather than having to instruct it to avoid resizing storage
* Turn on memory overlap checking in TensorIterator even for meta tensors
* Although meta tensors now have storage, the concept of meta storage is NOT exposed to Python land (as it would imply I would have to codegen MetaFloatStorage, MetaDoubleStorage, etc. classes). So `x.storage()` still raises an error and I have a cludge in `__deepcopy__` to break storage sharing upon deep copy (this is wrong, but no tests exercise this at the moment).
The second part is adding more support for the most used functions in the test suite.
* Inplace operations have very simple meta functions. I added `fill_`, `zero_`, `random_`, `uniform_` and `normal_`. In the case of random, I take advantage of pbelevich's templates for defining random kernels, so that I can reuse the common scaffolding, and then just register a noop stub that actually does the RNG. (Look, another structured kernels tiny variant!)
* `copy_` is now implemented. Copying into a meta tensor is always OK, but copying out of a meta tensor raises an error (as we don't know what the "correct" data to copy out is in this case)
* `empty_strided` usage from structured kernels now is implemented (TBH, this could have been done as soon as `empty_strided` was added)
* Meta was missing in a few places in TensorOptions/DispatchKey utility functions, so I added them
* Autograd engine now correctly homes meta tensors with CPU tensors (they have -1 device index so CUDA queues wouldn't work anyway)
* `apply_`, `map_` and `map2_` are special cased to no-op on meta tensor self. These count as inplace operations too but they are implemented a little differently.
Getting more meta function support triggers a number of bugs in the test suite, which I then fix:
- Linear algebra functions sometimes don't report NotImplementedError because they get swallowed by catch all try blocks. This is tracked in https://github.com/pytorch/pytorch/issues/53739
- dlpack obviously doesn't work with meta tensors, I just disabled the test
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Differential Revision: D27036572
Test Plan: Imported from OSS
Reviewed By: agolynski, bdhirsh
Pulled By: ezyang
fbshipit-source-id: 7005ecf4feb92a643c37389fdfbd852dbf00ac78
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54004
According to
`glean-search find-decls --refs 'c10::TensorOptions::key_set'`
there are no uses of this function
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: bdhirsh
Differential Revision: D27047971
Pulled By: ezyang
fbshipit-source-id: 63662dd7ab27753ecb79c45c152c2cad1160dab2
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54034Fixes#53544
I had to touch a bunch of lines but the refactoring was fairly
mechanical. Here's how it works.
The basic concept behind this PR is that tensor_new.cpp was previously
abusing DispatchKey when it actually meant TensorOptions. The provided
DispatchKey argument to most of the constructor functions typically
comes from torch::tensors::get_default_dispatch_key(); it doesn't
really make sense for people to set the default dispatch key, but
this got grandfathered in due to the old API set_default_tensor_type
(where the "Type" concept got refactored into "DispatchKey" concept
over time). See also #53124. But the upshot is that, semantically,
what we refer to as the default dispatch key really is more like
torch.set_default_tensor_type(torch.Tensor) versus
torch.set_default_tensor_type(torch.cuda.Tensor): clearly the user
wants to do something about *construction* of the tensor, and
TensorOptions captures that exactly.
So, how exactly to translate from one to the other?
- Sources (things that used to PRODUCE DispatchKey)
- Most top level functions take a DispatchKey as their argument. I
use the new function dispatchKeyToTensorOptions to convert it into
a TensorOptions
- typeIdWithDefault now produces a TensorOptions (probably could do
with a rename, though I didn't)
- Sinks (things that used to CONSUME DispatchKey)
- Previously, the function options() was typically used to convert the
DispatchKey into a TensorOptions. Now its replacement build_options
just takes a TensorOptions and sets some extra fields on it.
Irritatingly, I can't just replace
`build_options(options, scalar_type, device)` with
`options.dtype(scalar_type).device(device)` because the semantics
are slightly different: if device is nullopt, we should preserve
the usage of the device specified in options (what options.device()
does is overwrite the device unconditionally; e.g., if device is
nullopt, unset device from options)
- The other major sink for DispatchKey was `internal_new_from_data`,
but it turns out it only really extracts the device type from
the dispatch key. Now it just pulls out the device from
TensorOptions.
- To actually do the translation of DispatchKey to TensorOptions, I
introduce new functions dispatchKeyToLayout (replicating
layout_from_backend--there are still a few uses of this function
so I couldn't delete it) and dispatchKeyToDeviceType (replacing
computeDeviceType)
- In all internal functions, whenever DispatchKey is taken as an argument,
I instead take TensorOptions as an argument, and pass it along.
- Anywhere `legacyExtractDispatchKey(other.key_set())` equality was
previously used, I now do `other.options().type_equal()`, which
is the intended BC for doing "backend to backend" comparisons
- There are a few places in the sparse constructors where we allocated
a tensor for values, and then read out the dispatch key from the
result to allocate the keys. As best as I can tell, this is totally
equivalent to just passing in the options to both values and indices
(the only difference is dtype, which is captured via a separate
argument)
This refactor doesn't really go far enough: for example, there are now
functions that take both TensorOptions and ScalarType, when really
the TensorOptions can capture this all. I kept it solely just
s/DispatchKey/TensorOptions/ to reduce the number of possible bugs;
also, a lot of this will be mooted by a proper fix to #53124.
Even with this limited refactor, the payoff is sweet. I can delete:
- backendToCPU
- backendToXPU
- backendToCUDA
- backendToHIP
- backendToBackendOfDeviceType
The reason I can do this is because I can simply overwrite layout in TensorOptions
to do the conversion, rather than having to type out each backend case
explicitly.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: bhosmer
Differential Revision: D27109509
Pulled By: ezyang
fbshipit-source-id: 91d16cfbc390127770362ac04fb43f7e070077e9
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53823
Argument for correctness: type_equal previous compared if backends
are equal. Backend is computed by translation from dispatch key.
I verified that computeDispatchKey never computed a weird
dispatch key (e.g., AutogradXLA), so that dispatchKeyToBackend
was effectively injective. Then it is always valid to compare
the arguments of an injective function for equality, rather than
the output of the injective function.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: mruberry
Differential Revision: D27036575
Pulled By: ezyang
fbshipit-source-id: 6aeafc89f287da0bc0065bd21c1adb5e272dbb81
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53610
I noticed these because I was running the test suite under
meta device and triggered these error checks without getting
a NotImplementedError. Well, now they raise.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: glaringlee
Differential Revision: D26918376
Pulled By: ezyang
fbshipit-source-id: 20d57417aa64875d43460fce58af11dd33eb4a23
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53143
Meta is now an honest to goodness device type, like cpu, so you can use
device='meta' to trigger allocation of meta tensors. This way better
than empty_meta since we now have working API for most factory functions
(they don't necessarily work yet, though, because need to register Meta
versions of those functions.)
Some subtleties:
- I decided to drop the concept of CPU versus CUDA meta tensors; meta
tensors are device agnostic. It's hard to say exactly what the
correct level of abstraction here is, but in this particular case
implementation considerations trump semantic considerations: it
is way easier to have just a meta device, than to have a meta device
AND a cpu device AND a cuda device. This may limit the applicability
of meta tensors for tracing models that do explicit cpu()/cuda()
conversions (unless, perhaps, we make those operations no-ops on meta
tensors).
- I noticed that the DeviceType uppercase strings are kind of weird.
Are they really supposed to be all caps? That's weird.
- I moved the Meta dispatch key to live with the rest of the "device"
dispatch keys.
- I intentionally did NOT add a Backend for Meta. For now, I'm going to
hope meta tensors never exercise any of the Backend conversion code;
even if it does, better to fix the code to just stop converting to and
from Backend.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: samestep
Differential Revision: D26763552
Pulled By: ezyang
fbshipit-source-id: 14633b6ca738e60b921db66a763155d01795480d
Summary:
Apple recently announced ML Compute, a new framework available in macOS Big Sur, which enables users to accelerate the training of neural networks on Mac hardware. This PR is the first on a series of PRs that will enable the integration with ML Compute. Most of the integration code will live on a separate subrepo named `mlc`.
The integration with `mlc` (ML Compute) will be very similar to that of xla. We rely on registering our ops through:
TORCH_LIBRARY_IMPL(aten, PrivateUse1, m) {
m.impl_UNBOXED(<op_schema_name>, &customized_op_kernel)
...
}
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50634
Reviewed By: malfet
Differential Revision: D26614213
Pulled By: smessmer
fbshipit-source-id: 3b492b346c61cc3950ac880ac01a82fbdddbc07b
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50843
AT_ASSERTM is deprecated and should be replaced by either TORCH_CHECK or
TORCH_INTERNAL_ASSERT, depending on the situation.
Test Plan: Imported from OSS
Reviewed By: ailzhang
Differential Revision: D26074365
Pulled By: ezyang
fbshipit-source-id: 46e13588fad4e24828f3cc99635e9cb2223a6c2c
Summary:
Add a new device type 'XPU' ('xpu' for lower case) to PyTorch. Changes are needed for code related to device model and kernel dispatch, e.g. DeviceType, Backend and DispatchKey etc.
https://github.com/pytorch/pytorch/issues/48246
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49786
Reviewed By: mrshenli
Differential Revision: D25893962
Pulled By: ezyang
fbshipit-source-id: 7ff0a316ee34cf0ed6fc7ead08ecdeb7df4b0052
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49346
This is less ambitious redo of
https://github.com/pytorch/pytorch/pull/49129/.
We make the
```
xq_slice = xq[:, [0], :, :]
```
indexing syntax work if `xq` is a quantized Tensor. For now, we are
making the code not crash, with an in efficient `dq -> index -> q`
implementation. A future PR can optimize performance by removing
the unnecessary memory copies (which will require some non-trivial
changes to TensorIterator).
Test Plan:
```
python test/test_quantization.py TestQuantizedOps.test_advanced_indexing
```
Imported from OSS
Reviewed By: jerryzh168
Differential Revision: D25539365
fbshipit-source-id: 98485875aaaf5743e1a940e170258057691be4fa
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47023
DeviceType pretty clearly only needs 1 byte. DeviceIndex only needs 1 byte given that machines don't have anywhere near 255 GPUs in them as far as I know.
ghstack-source-id: 116901430
Test Plan: Existing tests, added assertion to catch if my assumption about DeviceIndex is incorrect
Reviewed By: dzhulgakov
Differential Revision: D24605460
fbshipit-source-id: 7c9a89027fcf8eebd623b7cdbf6302162c981cd2
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46092
Make empty c10-full without using hacky-wrapper, i.e. port the kernel to the new style signature.
This PR also changes the signature of some helpers called by empty to the new style.
ghstack-source-id: 116544203
(Note: this ignores all push blocking failures!)
Test Plan:
vs prev diff (outdated, before c10::optional fix): https://www.internalfb.com/intern/fblearner/details/224735103/
after c10::optional fix:
https://www.internalfb.com/intern/fblearner/details/231391773/
Also, after the c10::optional fix, the instruction counting benchmark shows a 2% regression for calling empty from Python. We decided this is acceptable and decided against landing D24425836 which would fix the regression.
Reviewed By: ezyang
Differential Revision: D24219944
fbshipit-source-id: e554096e90ce438c75b679131c3151ff8e5c5d50
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46112
### Summary
This PR adds the support of running torchscript models on iOS GPU via Metal (Inference only). The feature is currently in prototype state, API changes are expected. The tutorial and the documents will be added once it goes to beta.
allow-large-files
- Users API
```
auto module = torch::jit::load(model);
module.eval();
at::Tensor input = at::ones({1,3,224,224}, at::ScalarType::Float).metal();
auto output = module.forward({input}).toTensor().cpu();
```
- Supported Models
- Person Segmentation v106 (FB Internal)
- Mobilenetv2
- Supported Operators
- aten::conv2d
- aten::addmm
- aten::add.Tensor
- aten::sub.Tensor
- aten::mul.Tensor
- aten::relu
- aten::hardtanh
- aten::hardtanh_
- aten::sigmoid
- aten::max_pool2d
- aten::adaptive_avg_pool2d
- aten::reshape
- aten::t
- aten::view
- aten::log_softmax.int
- aten::upsample_nearest2d.vec
- Supported Devices
- Apple A9 and above
- iOS 10.2 and above
- CMake scripts
- `IOS_ARCH=arm64 ./scripts/build_ios.sh -DUSE_METAL=ON`
### Test Plan
- Circle CI
ghstack-source-id: 114155638
Test Plan:
1. Sandcastle CI
2. Circle CI
Reviewed By: dreiss
Differential Revision: D23236555
fbshipit-source-id: 98ffc48b837e308bc678c37a9a5fd8ae72d11625
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44071
Previously, tracing re-gathered ScalarType, Layout, Device, bool into a TensorOptions object and called `tracer::addInput()` on the gathered TensorOptions argument. `tracer::addInput()` then scattered them again and added the individual scattered arguments to the traced graph. This PR avoids the extraneous gathering and re-scattering step and calls `tracer::addInput()` on the individual arguments directly. This avoid the perf hit for an unnecessary gathering step.
This applies to both c10-full and non-c10-full ops. In the case of c10-full ops, the tracing kernels takes scattered arguments and we can directly pass them to `tracer::addInput()`. In the case of non-c10-full ops, the kernel takes a `TensorOptions` argument but we still call `tracer::addInput()` on the scattered arguments.
ghstack-source-id: 112825793
Test Plan:
waitforsandcastle
vs master: https://www.internalfb.com/intern/fblearner/details/216129483/
vs previous diff: https://www.internalfb.com/intern/fblearner/details/216170069/
Reviewed By: ezyang
Differential Revision: D23486638
fbshipit-source-id: e0b53e6673cef8d7f94158e718301eee261e5d22
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44062
Previously, BackendSelect kernels were still written in the legacy way, i.e. they took one TensorOptions argument instead of scattered dtype, layout, device, pin_memory, and they used hacky_wrapper to be callable. This caused a re-wrapping step. Calling into a BackencSelect kernel required taking the individual scattered arguments, packing them into a TensorOptions, and the kernel itself then gathered them again for redispatch.
Now with this PR, BackendSelect kernels are written in the new way and no hacky_wrapper or rewrapping is needed for them.
ghstack-source-id: 112825789
Test Plan:
vs master: https://www.internalfb.com/intern/fblearner/details/216117032/
vs previous diff: https://www.internalfb.com/intern/fblearner/details/216170194/
Reviewed By: ezyang
Differential Revision: D23484192
fbshipit-source-id: e8fb49c4692404b6b775d18548b990c4cdddbada
Summary:
This PR moves `DispatchKey::Autograd` to an alias dispatch key mapping to `AutogradCPU, AutogradCUDA, AutogradXLA, AutogradOther, AutogradPrivate*` keys.
A few things are handled in this PR:
- Update alias dispatch key mapping and precompute dispatchTable logic
- Move `Autograd` key from `always_included` set to TensorImpl constructor.
- Update `dummyTensor` constructor to take `requires_grad` as optional argument so that it's closer to the real application in op_registration_test.
- Use `BackendSelect` key for both backend select before and after autograd layer. (1 liner in backend_select codegen)
A few planned followups ordered by priority:
- [cleanup] Update `test_dispatch.py` to include testing `Autograd`.
- [cleanup] Add Math alias key and move catchAll to Math. (to remove 2.2 in `computeDispatchTableEntryWithDebug`)
- [new feature] Add support for Math in native_functions.yaml
- [cleanup] Add iterator like functionality to DispatchKeySet
- [cleanup/large] Only add Autograd backend keys when tensor requires grad. (cc: ljk53 ?)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43070
Reviewed By: ezyang
Differential Revision: D23281535
Pulled By: ailzhang
fbshipit-source-id: 9ad00b17142e9b83304f63cf599f785500f28f71
Summary:
ezyang,
I have added the changes to DispatchKey, DeviceType, Backend to support the out-of-tree FPGA.
cc. tataetae
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38938
Differential Revision: D21748955
Pulled By: ezyang
fbshipit-source-id: fe76d9730818205961430d2a0e00727b5c547b32
Summary:
This PR contains the initial version of Vulkan (GPU) Backend integration.
The primary target environment is Android, but the desktop build is also supported.
## CMake
Introducing three cmake options:
USE_VULKAN:
The main switch, if it is off, all other options do not affect.
USE_VULKAN_WRAPPER:
ON - Vulkan will be used loading it at runtime as "libvulkan.so" using libdl, every function call is wrapped in vulkan_wrapper.h.
OFF - linking with libvulkan.so directly
USE_VULKAN_SHADERC_RUNTIME:
ON - Shader compilation library will be linked, and shaders will be compiled runtime.
OFF - Shaders will be precompiled and shader compilation library is not included.
## Codegen
if `USE_VULKAN_SHADERC_RUNTIME` is ON:
Shaders precompilation () starts in cmake/VulkanCodegen.cmake, which calls `aten/src/ATen/native/vulkan/gen_glsl.py` or `aten/src/ATen/native/vulkan/gen_spv.py` to include shaders source or SPIR-V bytecode inside binary as uint32_t array in spv.h,spv.cpp.
if `USE_VULKAN_SHADERC_RUNTIME` is OFF:
The source of shaders is included as `glsl.h`,`glsl.cpp`.
All codegen results happen in the build directory.
## Build dependencies
cmake/Dependencies.cmake
If the target platform is Android - vulkan library, headers, Vulkan wrapper will be used from ANDROID_NDK.
Desktop build requires the VULKAN_SDK environment variable, and all vulkan dependencies will be used from it.
(Desktop build was tested only on Linux).
## Pytorch integration:
Adding 'Vulkan" as new Backend, DispatchKey, DeviceType.
We are using Strided layout without supporting strides at the moment, but we plan to support them in the future.
Using OpaqueTensorImpl where OpaqueHandle is copyable VulkanTensor,
more details in comments in `aten/src/ATen/native/vulkan/Vulkan.h`
Main code location: `aten/src/ATen/native/vulkan`
`aten/src/ATen/native/vulkan/VulkanAten.cpp` - connection link between ATen and Vulkan api (Vulkan.h) that converts at::Tensor to VulkanTensor.
`aten/src/ATen/native/Vulkan/Vulkan.h` - Vulkan API that contains VulkanTensor representation and functions to work with it. Plan to expose it for clients to be able to write their own Vulkan Ops.
`aten/src/ATen/native/vulkan/VulkanOps.cpp` - Vulkan Operations Implementations that uses Vulkan.h API
## GLSL shaders
Located in `aten/src/ATen/native/vulkan/glsl` as *.glsl files.
All shaders use Vulkan specialized constants for workgroup sizes with ids 1, 2, 3
## Supported operations
Code point:
conv2d no-groups
conv2d depthwise
addmm
upsample nearest 2d
clamp
hardtanh
## Testing
`aten/src/ATen/test/vulkan_test.cpp` - contains tests for
copy from CPU to Vulkan and back
all supported operations
Desktop builds supported, and testing can be done on a desktop that has Vulkan supported GPU or with installed software implementation of Vulkan, like https://github.com/google/swiftshader
## Vulkan execution
The initial implementation is trivial and waits every operator's execution.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36491
Differential Revision: D21696709
Pulled By: IvanKobzarev
fbshipit-source-id: da3e5a770b1a1995e9465d7e81963e7de56217fa
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37081
Closes https://github.com/pytorch/pytorch/issues/30813
Relanding of https://github.com/pytorch/pytorch/pull/35463
1. Tensor quantization logic(quantize_*) is moved to the aten/native/quantized. Previously all logic for tensor quantization lived in the aten/quantized/Quantizer.cpp file, and started to become complicated and hard to read. This problem should be addressed in refactoring PR. Still, I reworked this partially because I had to add tensor quantization logic for CUDA, and it was native to move everything to the aten/native/quantized.
2. Requirements to run CUDA_tensor_apply* was eased to process any tenser that lives on the CUDA device(QuantizedCUDA included).
3. All quantized data types now have a default constructor. NVCC refuses to compile any gpu_kernel or CUDA_tensor_apply* without them.
4. Minor changes in many files to register QuantizedCUDA backend.
5. test_quantized_tensor is extended to process QuantizedCUDA backend where possible.
Test Plan: Imported from OSS
Differential Revision: D21206694
Pulled By: jerryzh168
fbshipit-source-id: c7433aad9c095a34c57e6dddd128b5c5d9292373
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36936
Closes https://github.com/pytorch/pytorch/issues/30813
Relanding of https://github.com/pytorch/pytorch/pull/35463
1. Tensor quantization logic(quantize_*) is moved to the aten/native/quantized. Previously all logic for tensor quantization lived in the aten/quantized/Quantizer.cpp file, and started to become complicated and hard to read. This problem should be addressed in refactoring PR. Still, I reworked this partially because I had to add tensor quantization logic for CUDA, and it was native to move everything to the aten/native/quantized.
2. Requirements to run CUDA_tensor_apply* was eased to process any tenser that lives on the CUDA device(QuantizedCUDA included).
3. All quantized data types now have a default constructor. NVCC refuses to compile any gpu_kernel or CUDA_tensor_apply* without them.
4. Minor changes in many files to register QuantizedCUDA backend.
5. test_quantized_tensor is extended to process QuantizedCUDA backend where possible.
Test Plan: Imported from OSS
Differential Revision: D21143025
Pulled By: jerryzh168
fbshipit-source-id: 11405e2e8f87e48fadc0a084c51db15f85ccb500
Summary:
Closes https://github.com/pytorch/pytorch/issues/30813
1. Tensor quantization logic(quantize_*) is moved to the aten/native/quantized. Previously all logic for tensor quantization lived in the aten/quantized/Quantizer.cpp file, and started to become complicated and hard to read. This problem should be addressed in refactoring PR. Still, I reworked this partially because I had to add tensor quantization logic for CUDA, and it was native to move everything to the aten/native/quantized.
2. Requirements to run CUDA_tensor_apply* was eased to process any tenser that lives on the CUDA device(QuantizedCUDA included).
3. All quantized data types now have a default constructor. NVCC refuses to compile any gpu_kernel or CUDA_tensor_apply* without them.
4. Minor changes in many files to register QuantizedCUDA backend.
5. test_quantized_tensor is extended to process QuantizedCUDA backend where possible.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35463
Differential Revision: D20896697
Pulled By: jerryzh168
fbshipit-source-id: 163554efa23d11a2b10bbc2492439db4798eb26b
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35476
A few things:
- Add new callUnboxedRedispatch function which can be used to do a
redispatch when you don't want to add a type id to the excluded
set. This will recompute the dispatch key but ignore everything
including and before the currentDispatchKey
- Add FULL_AFTER constructor to DispatchKeySet; used to implement
redispatch.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Differential Revision: D20680518
Test Plan: Imported from OSS
Pulled By: ezyang
fbshipit-source-id: ecd7fbdfa916d0d2550a5b19dd3ee4a9f2272457
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33705
The fact that there were two overloads appears to be a historical
artifact that dates back to when goldsborough originally added these
bindings in the first place. If TensorOptions is made optional,
then you only need one overload, not two, as they are exactly redundant
with each other. When MemoryFormat was added, it was made a little
harder to do this, as the C++ syntax at::empty_like(t, memory_format) would
not work if you collapsed the overload; but now it works because TensorOptions
supports MemoryFormat.
The upshot is, I can get rid of all the overloads and just have one overload.
Amazingly, this change is backwards compatible, as the test attests. While
I was at it, I also deleted the overload name from the functions entirely.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D20073355
Pulled By: bhosmer
fbshipit-source-id: c6a8908213b32ccf6737ea864d135e2cce34f56b
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33704
This diff adds MemoryFormat field to TensorOptions, and teaches
all kernels that take TensorOptions to respect it, but doesn't
teach the codegen about it. As such, it is now possible to specify
memory_format using TensorOptions syntax, e.g.,
at::empty_like(tensor, at::memory_format(MemoryFormat::Contiguous))
in the C++ API, but there isn't any other user visible effect.
The intended end state of this diff stack is to eliminate the
explicit MemoryFormat? arguments from native functions, but
as this change has BC implications I'd prefer to do it separately.
So this starts things off with a non-BC breaking addition to the
API. For all internal functions that are not bound by codegen,
I switch them to exclusively using TensorOptions (eliminating
MemoryFormat); there's only a few, mostly quantized and to().
To keep things screwed down in the short term, it is a HARD ERROR
to specify both the explicit MemoryFormat argument as well as
TensorOptions. This caught a few errors in my diff where I needed
to modify memory format settings and then call code later, esp
in empty_like.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D20073356
Pulled By: bhosmer
fbshipit-source-id: 18d310d7ee7cf2ee182994104652afcfc9d613e2
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33510
Previously, we would fill in TensorOption with defaults whenever an
item was missing from both the left and right side of the merge. This
is morally incorrect: if we don't have an item on the left or right,
we should keep the entry empty (so the downstream user can apply
the appropriate defaulting rule).
I don't think this caused any bugs, but I noticed this error when
working on a later patch in my diff stack.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D20001775
Pulled By: ezyang
fbshipit-source-id: 88139fc268b488cd1834043584a0d73f46c8ecaa