* Use Index rather than Long for IntList, so floating-point types convertible to ints fail the parsing.
Basically, our unpackLong code works with floating-point types that are convertible to ints, but this isn't often what you want (because of truncation).
What you actually want is to convert to an index, which will usually find such issues.
I made this the minimal change I could because:
1) I didn't want to change unpackLong because the existing code call checkLong before unpackLong, so this should be a non-issue most of the time. And fixing this properly requires calling checkLong again, which will slow everything down.
2) An exception above is with IntList, which only checks that 1) it is a tuple or 2) it is a varargs tuple (i.e. torch.ones(1, 2, 3)).
* Fix bug.
* Don't conflict tensor and IntList bindings.
* Change function to be consistent between python 2 and 3.
* Check Index.
* Move IntList overloads in legacy new functions to below Tensor overloads.
* start at generic trilinear
* Implement einsum (fixes#1889)
This provides a simple implementation of einsum. It is built on
top of the work for computing bilinear (#6110).
It uses a naive left-to-right resolution at the moment.
Autograd is able to differentiate by itself.
The obvious unsupported feature is taking diagonals (einsum('ii->i',(a,)).
* add tests and docs
* fix flake8
* clean diff
* rebase on current master to resolve conflicting String wrapping
* clean up after rebase
* better commentary in einsum and sumproduct_pair
* don't say fixme if it's fixed and rename num_outputs to num_output_dims
* adapt python wrapper to use std::string instead of String to avoid typedef at::String
* typos and some vector to array conversion
* fix accidental python<->python3 change
* really fix bad rebase
* Add dtypes (with reasonable defaults) to sum, prod, cumsum, cumprod.
This adds optional dtypes to torch.sum, torch.prod, torch.cumsum, torch.cumprod.
By default, the dtype is torch.float64 for integral types, and the dtype of the input for floating point types.
* Don't use optional<ScalarType>, because the jit can't handle it yet.
Instead, we manually build the overloads. This is fairly painful because of default arguments, but should be easy to pull out once the jit can handle optional<ScalarType>.
* Fix keepdim with out parameters.
* Fix _cudnn_rnn_flatten_weight.
* If dtype is provided to an out function, make sure it matches the dtype of the result.
* Fix typo.
* Separate cuda-ness from dtype.
There are no longer torch.cuda.int64, etc; only torch.int64 that correspond to at::ScalarType.
At the python arg parser level, the corresponding ATen type is selected from the combination of (ScalarType, Layout, Device).
There is also currently unused code in here for support ScalarType in native_functions; this will be used for specifying aggregate types
on reduction functions.
* Fix test_autograd.
* Add defaults to randint_like.
* Track is_cuda in py tensor types.
* Fix test_sparse.
* Fix multiprocessing.
* Fix rnn.
* Fix test_nn.
* Fix flake8.
* Add string-style devices to all tensors.
Previously, tensors only had a 'get_device' method which would throw an exception on a CPU tensor. This made it necessary to if/else code that
was meant to be device agnostic.
This PR implements the following:
1) Adds a 'device' property to all tensors that returns a string representation of the device for all tensors.
For cpu tensors this is 'cpu'. For cuda tensors this is 'cuda:X', where X is the cuda device ordinal.
2) Adds a DeviceSpec class. This is just a helper class for separating device_type and device_index specification and to allow partial specification.
For example, you can call DeviceSpec('cuda'), DeviceSpec('cuda:0'), DeviceSpec('cuda', 1).
Also has backwards compatibility support for specifying integers, which are treated as cuda devices.
DeviceSpecs have the following properties:
a) device_type: string representation of the device type (i.e. 'cpu' or 'cuda')
b) device_index: integer for the device index (None if not specified)
c) cuda_device_index: for backwards compatibility; behaves roughly like `get_device` did previously. I.e. if a function previously took integers for cuda devices,
it can now take DeviceSpecs (or strings), and can maintain the old functionality by calling `old_index = DeviceSpec(old).cuda_device_index`.
3) tensor methods and torch. functions that took integer devices can now take integers, strings, or DeviceSpecs. For example:
torch.randn((2,3), dtype=torch.cuda.float32, device='cuda:1')
TODO in future PRs:
A) Split out cuda from dtype so you don't need to overspecify cuda-ness
B) We currently only support strings/DeviceSpecs in tensor methods and torch. functions. We should have equivalents torch.cuda.device(...), torch.cuda.device_of, etc.
at the torch. level that work on strings/DeviceSpecs
* Add deviceInt64 to python arg parser.
* device_str.
* Remove device_str.
* remove device prefix from attributes.
* Use const char * instead of string.
* Move autogpu index out of Device.
* comment on is_default.
* Rename torch.DeviceSpec to torch.device.
* comment.
* Fix tests.
* Fix flake8.
* Fix sparse_coo_tensor parameter name.
* Improve error message.
* Remove device_ prefix from C++ device object.
* Allocate static strings.
* Return not implemented from rich compare.
* Move torch::Device to THPDevice.
* Remove cuda index.
* Py_RETURN_NOTIMPLEMENTED doesn't exist in python2.
* Introduce torch.layout and split layout from dtypes.
Tensors (and tensor types) now have a 'layout' attribute that returns either 'torch.strided' or 'torch.sparse_coo'.
Previously, dtypes were 1-to-1 with ATen types/PyTensorTypes; the impetus behind this decision was to make things easy in the common case
(i.e. specifying a type in a factory function). But this doesn't really follow for sparity, which isn't a common case.
It also doesn't properly represent the concept or a dtype, which in numpy are proper scalar types (i.e. roughly the type returned from indexing the
last dimension of an n-d array). But this should be the same whether or not the tensor is represented via strides, sparsity, etc.
This is accomplished by:
1) having the dtype of tensor return the (device-type, scalar-type) combination, i.e. torch.cuda.float32, so both
torch.cuda.FloatTensor and torch.cuda.sparse.FloatTensor have the same dtype
2) Adding a layout parameter to python functions, where the combination of (dtype, layout) maps to an ATen type that is used for dispatch.
* Formatting, make init throw python_error.
* Fix cuda not enabled error message.
* Fix test.
This replaces the torch.Tensor constructors with factories that produce
Variables. Similarly, functions on the torch module (e.g. torch.randn)
now return Variables.
To keep the PR to a reasonable size, I've left most of the unused tensor
code. Subsequent PRs will remove the dead code, clean-up calls to
torch.autograd.Variable, and rename Variable to Tensor everywhere.
There are some breaking changes because Variable and Tensors had
slightly different semantics. There's a list of those changes here:
https://github.com/pytorch/pytorch/wiki/Breaking-Changes-from-Variable-and-Tensor-merge
* Various dtype improvements.
1) Add dtypes to the new data-based constructors: Variable.new_tensor and torch.autograd.variable.
2) In the python signatures, use Type instead of Dtype to match the C++ signatures; the error messages still print as dtype.
3) Handle / add a better error message when a dtype is used when ATen was not compiled with that type (e.g. cuda types).
4) Move cuda_lazy_init to its own file.
A later commit will add support to the legacy constructors as well.
* Move implementation of lazy_init to cpp.
* Fix parsed_arg size.
* Add numpy-style dtypes to Variable factories.
1) Add numpy-style dtypes corresponding to torch tensor types. These are:
torch.float16, torch.float32, torch.float64, torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64
as well as torch.cuda, torch.sparse, and torch.cuda.sparse equivalents.
2) Adds "legacy" names for the above dtypes that correspond more closely to existing tensor names. These are:
torch.half, torch.float, torch.double, torch.short, torch.int, torch.long.
torch.byte and torch.char don't exist because they either don't match numpy semantics or differ on different architectures.
3) Adds a "dtype" parameter to Variable factories (e.g. zeros, ones) that allows the user to specify the type without changing the default tensor type.
4) Adds a "dtype" getter to Variables that return the canonical dtype from 1)
This PR is missing the following useful features that should be added in the future:
A) We only add the "dtype" parameter to auto-generated factories; hand-written factories like in tensor_new.cpp don't support this yet.
B) We don't allow type conversions to use dtypes; that should be added to type(param) or a new function.
C) We don't yet have a "device" parameter for these factories; right now, they will only create Variables on the default device.
* backend_to_string can be private.
* Define python binding argument indexes in a more simple way.
* add all_declared_types, still need to hook it up to THPDType.
* Fix all_declared_types for missing types (it's Sparse + Half).
* Ensure cuda dtypes are created even if compiled with NO_CUDA=1.
* Fix case where dtype is provided but dispatch is via namespace.
This happens in ones_like, empty_like, randn_like.
There is some question if we should do:
1) at::ones_like(tensor).toType(dtype)
2) at::ones_like(tensor.toType(dtype))
I did the former because this matches with the numpy documentation, i.e.:
"Overrides the data type of the result." and it's easier to implement.
Note that the above causes an extra copy, either of the input or output.
Here's a better implementation:
1) Make zeros_like, ones_like native functions that take an optional type (named dtype?).
2) Match the type argument with the dtype, so we don't have two different parameters.
3) Call at::zeros_like(input, type) -> at::native::zeros_like(input, type) -> type.zeros(input.sizes())
* Don't return from maybe_initialize_cuda.
* Don't leak DType name.
* Address cpp review comments.
* Share code between sparse and non-sparse test_dtypes.
* Rewrite _like functions as native function with explicit type parameter.
* Use type 'Type' instead of 'dtype' for consistency.
* Address review comments.
* Handle arg_idx when there is requires_grad but no dtype in python_binding_arguments.
* Allow zero-dim tensors to be bound to at::Scalar
This relaxes THPUtils_unpackLong and THPUtils_unpackDouble to allow
values convertable to PyLong and PyFloat objects. This includes NumPy
scalars and zero-dim tensors (Variables).
This is important to maintain backwards compatibility in the Tensor
constructors once scalars are enabled and Variable and Tensor are
merged.
* Add comment and unpack PyInt as int64_t
Uses TypeError from torch/csrc/Exceptions.h in python_arg_parser.cpp so
that the exception is interpreted as a Python TypeError instead of
RuntimeError.
* Convolution derivatives in ATen
This PR introduces ATen implementation of convolution, which dispatches to
THNN/CuDNN/nnpack based on input parameters. The general strategy is to compose
this function out of the various forward-backward pairs of specific
implementations, rather than write a monolithic function with backwards (which
is what we did before because the boilerplate of doing it otherwise would have
been very high.) The new API provides the following functions:
- _convolution, which is a fully generic, native convolution implementation
that dispatches to various other convolution implementations depending on
input characteristics. This is prefixed with an underscore because it
explicitly takes benchmark, deterministic and cudnn_enabled which are
implementation details for CuDNN. The intent is to eventually provide a
convolution that reads these parameters out of the context using #4104.
- _convolution_nogroup is a convolution implementation for non-CuDNN
algorithms which don't support group convolution natively.
- _convolution_double_backward is the generic double-backwards implementation
for convolution.
In more detail:
- Most functionality from torch/csrc/autograd/functions/convolution.cpp has been
moved into aten/src/ATen/native/Convolution.cpp
- We continue to make use of ConvParams, but we now construct the parameters
upon entry to a function from the function signature (which does not use
ConvParams; having convolution take ConvParams directly would require teaching
the code generator how to accept these as parameters, complicating ATen's API
model) and destruct them when making subprocedure calls.
- I introduce a new idiom, input_r, which represents a const Tensor& reference,
which will subsequently be assigned to a local Tensor input. This is helpful
because a lot of the existing algorithms relied on being able to assign to
locals, which is not permitted with a const reference.
- The native argument parser now supports std::array<bool,2> inputs (NB: there
MUST NOT be a space; this is the same hack as is applied to derivatives.yaml)
- Native parser now supports Tensor? arguments, which indicates a nullable
tensor. Previously this function was only used by NN methods.
- Documentation updates on THNN library
- I added an extra fgradInput argument to VolumetricConvolutionMM_updateOutput
and VolumetricConvolutionMM_accGradParameters so that its buffer list lines up
with the backward argument list. This makes it possible to write derivative
for conv3d which previously was not supported (commented out in
derivatives.yaml)
- Extra double_backward declarations for all convolution backwards functions was
added.
- You can now use the syntax Tensor? in native_functions.yaml to indicate that a
tensor argument is nullable. There are adjustments to propagate this to the
Python argument parser.
- NNPACK was ported to ATen, and ATen now builds and links against ATen if
possible. New AT_NNPACK_ENABLED macro. The nnpack functions are
nnpack_spatial_convolution.
- Some modest CuDNN convolution refactoring to remove _forward from names.
- There's a new cudnn_convolution_backward function to deal with the fact that
CuDNN convolution double backward requires you to have computed all gradients
in one go.
- Variable set_flags now checks if the tensor is undefined, fixing a silent memory
corruption.
- checkSameType updated to not raise an exception if called with Variable arguments
- "no ATen declaration found for" error message is improved to say what available declarations are
- make_variable now accepts undefined tensors, and returns an undefined tensor in this case.
* Bind cauchy_, exponential_, normal_, uniform_ functions to THPVariable.
Also changes the error messages around Generator parser; previously, you'd get an error
like: torch._C.Generator is not a torch.Generator; now the check is proper but returns
that only None is supported.
* Support passing Generators to ATen Variable-bound methods.
This involves changing THPGenerator to have an at::Generator rather than a THGenerator.
TH getRNGState, setRNGState are still called directly because they are not bound from ATen yet;
they should probably be on the Generators and return (opaque) GenerateState objects.
* Fix default values.
* Properly use THRandom_initialSeed.
* update standard gamma to use new default generator.
This adds some generated autograd functions implemented in C++, which
are generated from derivatives.yaml. It also generates Python bindings
for the Variable methods. The generated files are:
Functions.cpp/h: subclasses of torch::autograd::Function
VariableType.cpp/h: The at::Type for autograd Variables
python_variable_methods.cpp: Python bindings to torch::autograd::Variable
python_variable_methods_dispatch.h: wrapper which releases GIL and sets the
CUDA device
python_functions.cpp/h: exposes generated autograd functions as Python
objects
The generated functions are mostly shadowed by the definitions in
variable.py. We'll remove the Python implementations in favor of the
generated C++ implementations in a subsequent commit.