Commit Graph

572 Commits

Author SHA1 Message Date
Huamin Li
fd494dd426 Change wrapped_linear_prepack and wrapped_quantized_linear_prepacked to private by adding _ as prefix (#135401)
Summary: In https://github.com/pytorch/pytorch/pull/134232, we added two new ops wrapped_linear_prepack and wrapped_quantized_linear_prepacked. From the review comments and offline discussion, we are changing them to private by adding `_` as prefix

Differential Revision: D62325142

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135401
Approved by: https://github.com/houseroad
2024-09-08 04:16:24 +00:00
Huamin Li
311af3b988 Add new ops wrapped_linear_prepack and wrapped_quantized_linear_prepacked (#134232)
Summary:
This diff adds two new operators torch.ops._quantized.wrapped_linear_prepack and torch.ops._quantized.wrapped_quantized_linear_prepacked. It is a decomposition of the op torch.ops._quantized.wrapped_quantized_linear added in the previous diff.

We decomposed in this way as packed weight could be computed early so we don;t need to do it in every forward in AOTI

Reviewed By: jerryzh168

Differential Revision: D61395887

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134232
Approved by: https://github.com/houseroad
2024-08-23 04:54:26 +00:00
Avik Chaudhuri
b454c51060 remove dynamic_dim (#134211)
Summary: As promised in https://github.com/pytorch/pytorch/pull/134045.

Test Plan: existing

Differential Revision: D61646937

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134211
Approved by: https://github.com/angelayi
2024-08-23 04:13:03 +00:00
Xuehai Pan
4226ed1585 [BE] Format uncategorized Python files with ruff format (#132576)
Remove patterns `**`, `test/**`, and `torch/**` in `tools/linter/adapters/pyfmt_linter.py` and run `lintrunner`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132576
Approved by: https://github.com/ezyang, https://github.com/Skylion007
ghstack dependencies: #132574
2024-08-04 17:13:31 +00:00
Oguz Ulgen
72d2dba992 Add None return type to init (#132335)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132335
Approved by: https://github.com/albanD
2024-08-01 15:26:45 +00:00
Jun Luo
00e19ae97a [MTIA] Support module.mtia() (#131499)
Summary: Following other device backends' implementation to support module.mtia() API.

Test Plan: OSS and Internal CIs.

Differential Revision: D60076584

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131499
Approved by: https://github.com/mikaylagawarecki
2024-07-25 04:23:48 +00:00
Xuehai Pan
973037be6a [BE][Easy] apply autofix for ruff rules unnecessary-collection-call (C408): list() / tuple() / dict() (#130199)
This PR changes the empty collection factory call to Python literals:

- `list()` -> `[]`
- `tuple()` -> `()`
- `dict()` -> `{}`

The Python literals are more performant and safer. For example, the bytecode for building an empty dictionary:

```bash
$ python3 -m dis - <<EOS
import collections

d1 = {}
d2 = dict()

dict = collections.OrderedDict
d3 = dict()
EOS
```

```text
  0           0 RESUME                   0

  1           2 LOAD_CONST               0 (0)
              4 LOAD_CONST               1 (None)
              6 IMPORT_NAME              0 (collections)
              8 STORE_NAME               0 (collections)

  3          10 BUILD_MAP                0
             12 STORE_NAME               1 (d1)

  4          14 PUSH_NULL
             16 LOAD_NAME                2 (dict)
             18 CALL                     0
             26 STORE_NAME               3 (d2)

  6          28 LOAD_NAME                0 (collections)
             30 LOAD_ATTR                8 (OrderedDict)
             50 STORE_NAME               2 (dict)

  7          52 PUSH_NULL
             54 LOAD_NAME                2 (dict)
             56 CALL                     0
             64 STORE_NAME               5 (d3)
             66 RETURN_CONST             1 (None)
```

The dict literal `{}` only has one bytecode `BUILD_MAP`, while the factory call `dict()` has three `PUSH_NULL + LOAD_NAME + CALL`. Also, the factory call is not safe if users override the `dict` name in `locals` or `globals` (see the example of replacing with `OrderedDict` above).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130199
Approved by: https://github.com/malfet
2024-07-11 17:30:28 +00:00
Xuehai Pan
f85d1e845a [BE] enable UFMT for torch/nn/*.py (#128593)
Part of #123062

- #123062
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128593
Approved by: https://github.com/mikaylagawarecki
2024-06-23 16:05:13 +00:00
PyTorch MergeBot
cc8193c707 Revert "[BE] enable UFMT for torch/nn/functional.py (#128592)"
This reverts commit f6e6e55fa7.

Reverted https://github.com/pytorch/pytorch/pull/128592 on behalf of https://github.com/fbgheith due to breaking internal builds ([comment](https://github.com/pytorch/pytorch/pull/128592#issuecomment-2181783936))
2024-06-21 00:44:16 +00:00
Xuehai Pan
f6e6e55fa7 [BE] enable UFMT for torch/nn/functional.py (#128592)
Part of #123062

- #123062

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128592
Approved by: https://github.com/mikaylagawarecki
ghstack dependencies: #128596, #128594
2024-06-17 16:29:29 +00:00
Xuehai Pan
dd143d44cc [BE] enable UFMT for top-level files torch/*.py (#127707)
Part of #123062

- #123062

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127707
Approved by: https://github.com/ezyang
2024-06-12 20:15:05 +00:00
Mikayla Gawarecki
cd06ae0cb8 Relax use_count constraints for swap_tensors when AccumulateGrad holds a reference (#127313)
### Before this PR:
`torch.utils.swap_tensors(a, b)` required the `use_count` of `a` and `b` to be 1

```python
a = torch.randn(2, 3, requires_grad=True)
b = torch.randn(2, 4)
out = a * 2
out.sum().backward()
# Calling swap_tensors here would fail due to the reference held by AccumulateGrad node, which is not cleaned up after backward
# torch.utils.swap_tensors(a, b)
del out
# Calling swap_tensors here would pass
torch.utils.swap_tensors(a, b)
```
### After this PR:
`torch.utils.swap_tensors(a, b)` requires the `use_count` of `a` and `b` to be 1 or 2 IF the second reference is held by `AccumulateGrad`

A pre-hook will be registered on the `AccumulateGrad` node so that it will fail if it is called (i.e. if user attempts to backward through the graph).

```python
a = torch.randn(2, 3, requires_grad=True)
b = torch.randn(2, 4)
out = a * 2
out.sum().backward()
# Calling swap_tensors here is ok
torch.utils.swap_tensors(a, b)
# If we ever backward to the AccumulateGrad node it will error that it was poisoned by swap_tensors
```

### Application to `nn.Module`

This issue is especially pertinent in context of `nn.Module` where parameters will have `AccumulateGrad` nodes initialized after forward. Specifically, this is intended to address https://github.com/pytorch/pytorch/pull/126814#issuecomment-2127777866. Previously, this would fail at the `m.cpu()` but we want users to be able to do something like the following, and instead raise an error if the user ever attempts to backward through the poisoned `AccumulateGrad` node

```python
import torch
import torch.nn as nn
m = nn.Linear(3, 5)
inp = torch.randn(2, 3)
out = m(inp)
out.sum().backward()
m.cpu()
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127313
Approved by: https://github.com/soulitzer
2024-05-30 07:06:55 +00:00
egienvalue
73744a2c00 torch.mtia module for MTIA device backend (#123612)
MTIA device has its own Module in PyTorch now.
torch.mtia has following APIs similar to other backends. The lazy_init is also supported.
```
__all__ = [
    "init",
    "is_available",
    "synchronize",
    "device_count",
    "current_device",
    "current_stream",
    "default_stream",
    "set_stream",
    "stream",
    "device",
]

```
------------
For device management. We expand AccleratorHooksInterface to support generic device management and it can be used in both C++ and PyThon.
```
def _accelerator_hooks_device_count() -> _int: ...
def _accelerator_hooks_set_current_device(device_index: _int) -> None: ...
def _accelerator_hooks_get_current_device() -> _int : ...
def _accelerator_hooks_exchange_device(device_index: _int) -> _int : ...
def _accelerator_hooks_maybe_exchange_device(device_index: _int) -> _int : ...
```

---------
Adding get_device_module API to retrieve device modules for different device types.
```
def get_device_module(device: Optional[Union[torch.device, str]] = None)
```
---------

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123612
Approved by: https://github.com/albanD
ghstack dependencies: #123611
2024-04-26 16:17:54 +00:00
PyTorch MergeBot
e04c7b19f4 Revert "torch.mtia module for MTIA device backend (#123612)"
This reverts commit 381653de63.

Reverted https://github.com/pytorch/pytorch/pull/123612 on behalf of https://github.com/jeffdaily due to this PR broke ROCm with message RuntimeError: Cannot have MTIA with other devices ([comment](https://github.com/pytorch/pytorch/pull/123612#issuecomment-2077649762))
2024-04-25 16:06:46 +00:00
egienvalue
381653de63 torch.mtia module for MTIA device backend (#123612)
MTIA device has its own Module in PyTorch now.
torch.mtia has following APIs similar to other backends. The lazy_init is also supported.
```
__all__ = [
    "init",
    "is_available",
    "synchronize",
    "device_count",
    "current_device",
    "current_stream",
    "default_stream",
    "set_stream",
    "stream",
    "device",
]

```
------------
For device management. We expand AccleratorHooksInterface to support generic device management and it can be used in both C++ and PyThon.
```
def _accelerator_hooks_device_count() -> _int: ...
def _accelerator_hooks_set_current_device(device_index: _int) -> None: ...
def _accelerator_hooks_get_current_device() -> _int : ...
def _accelerator_hooks_exchange_device(device_index: _int) -> _int : ...
def _accelerator_hooks_maybe_exchange_device(device_index: _int) -> _int : ...
```

---------
Adding get_device_module API to retrieve device modules for different device types.
```
def get_device_module(device: Optional[Union[torch.device, str]] = None)
```
---------

Differential Revision: [D56443356](https://our.internmc.facebook.com/intern/diff/D56443356)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123612
Approved by: https://github.com/albanD
ghstack dependencies: #123611
2024-04-24 20:51:20 +00:00
Yu, Guangye
25f321b84f Refactor autocast C++ APIs to be device-agnostic (#124359)
# Motivation
This PR aims to refactor autocast **C++** APIs to be device-agnostic and deprecate the device-specific autocast  **C++** APIs.
In C++ side,
- `is_enabled()` -> `is_enabled(device_type)`.
- `set_enabled(new_enabled)` -> `set_enabled(device_type, new_enabled)`.
- `get_autocast_dtype()` -> `get_autocast_dtype(device_type)`
- `set_autocast_dtype(dtype)` -> `set_autocast_dtype(device_type, dtype)`

These following C++ APIs are deprecated and should be removed in PyTorch 2.5
- `is_cpu_enabled`
- `set_cpu_enabled`
- `get_autocast_cpu_dtype`
- `set_autocast_cpu_dtype`
- `is_xpu_enabled`
- `set_xpu_enabled`
- `get_autocast_xpu_dtype`
- `set_autocast_xpu_dtype`
- `is_ipu_enabled`
- `set_ipu_enabled`
- `get_autocast_ipu_dtype`
- `set_autocast_ipu_dtype`
- `is_hpu_enabled`
- `set_hpu_enabled`
- `get_autocast_hpu_dtype`
- `set_autocast_hpu_dtype`
- `is_xla_enabled`
- `set_xla_enabled`
- `get_autocast_xla_dtype`
- `set_autocast_xla_dtype`
- `is_privateuseone_enabled`
- `set_privateuseone_enabled`
- `get_autocast_privateuseone_dtype`
- `set_autocast_privateuseone_dtype`

In Python side,
provide 4 generic autocast APIs:
- `torch.is_autocast_enabled(device_type)`
- `torch.set_autocast_enabled(device_type, new_enabled)`
- `torch.get_autocast_dtype(device_type)`
- `torch.set_autocast_dtype(device_type, dtype)`

# Additional Context
We will submit another PR to refactor autocast **Python** APIs based on this PR.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124359
Approved by: https://github.com/jgong5, https://github.com/albanD
2024-04-23 10:38:50 +00:00
Ashwin Hari
5f5778476a rename ort to maia (#123265)
Fixes #123264

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123265
Approved by: https://github.com/albanD
2024-04-23 00:33:25 +00:00
PyTorch MergeBot
929242a15c Revert "torch.mtia module for MTIA device backend (#123612)"
This reverts commit d7e1bf9ff9.

Reverted https://github.com/pytorch/pytorch/pull/123612 on behalf of https://github.com/jeffdaily due to This broke ROCm. see test_overrides.py ([comment](https://github.com/pytorch/pytorch/pull/123611#issuecomment-2067363780))
2024-04-19 22:44:26 +00:00
cdzhan
f8f7cfbeee Add __torch_function__ support for generated tensor methods/property of PrivateUse1 (#121723)
support following case:
```python
import torch
...
class CustomFooTensor(torch.Tensor):
  @classmethod
  def __torch_function__(cls, func, types, args=(), kwargs=None):
    ...
a = CustomFooTensor([3])
print(a.is_foo)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121723
Approved by: https://github.com/albanD
2024-04-19 22:34:34 +00:00
egienvalue
d7e1bf9ff9 torch.mtia module for MTIA device backend (#123612)
MTIA device has its own Module in PyTorch now.
torch.mtia has following APIs similar to other backends. The lazy_init is also supported.
```
__all__ = [
    "init",
    "is_available",
    "synchronize",
    "device_count",
    "current_device",
    "current_stream",
    "default_stream",
    "set_stream",
    "stream",
    "device",
]

```
------------
For device management. We expand AccleratorHooksInterface to support generic device management and it can be used in both C++ and PyThon.
```
def _accelerator_hooks_device_count() -> _int: ...
def _accelerator_hooks_set_current_device(device_index: _int) -> None: ...
def _accelerator_hooks_get_current_device() -> _int : ...
def _accelerator_hooks_exchange_device(device_index: _int) -> _int : ...
def _accelerator_hooks_maybe_exchange_device(device_index: _int) -> _int : ...
```

---------
Adding get_device_module API to retrieve device modules for different device types.
```
def get_device_module(device: Optional[Union[torch.device, str]] = None)
```
---------
@exported-using-ghexport

Differential Revision: [D52923602](https://our.internmc.facebook.com/intern/diff/D52923602/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123612
Approved by: https://github.com/albanD
ghstack dependencies: #123611
2024-04-18 17:38:06 +00:00
Xuehai Pan
93e249969b [BE] enable ruff rule RSE and remove useless parentheses in raise statements (#124261)
Remove useless parentheses in `raise` statements if the exception type is raised with no argument.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124261
Approved by: https://github.com/albanD
2024-04-17 19:29:34 +00:00
Mikayla Gawarecki
487b6d40ec Add RMSNorm module (#121364)
Similar to dbeed9724b/torchmultimodal/modules/layers/normalizations.py (L51)

**The implementation here is not optimized and we welcome pull requests to improve this**

- Use `normalized_shape` instead of singular integer `dim` to be aligned with the `nn.LayerNorm` implementation
- Remove the [upcast to float and downcast
](dbeed9724b/torchmultimodal/modules/layers/normalizations.py (L73))

Differential Revision: [](https://our.internmc.facebook.com/intern/diff/)

Differential Revision: [D55485840](https://our.internmc.facebook.com/intern/diff/D55485840)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121364
Approved by: https://github.com/albanD
2024-03-29 18:05:28 +00:00
PyTorch MergeBot
8698121636 Revert "Add RMSNorm module (#121364)"
This reverts commit a7306de0dc.

Reverted https://github.com/pytorch/pytorch/pull/121364 on behalf of https://github.com/atalman due to Broke internal tests ([comment](https://github.com/pytorch/pytorch/pull/121364#issuecomment-2025502007))
2024-03-28 15:31:10 +00:00
Mikayla Gawarecki
a7306de0dc Add RMSNorm module (#121364)
Similar to dbeed9724b/torchmultimodal/modules/layers/normalizations.py (L51)

**The implementation here is not optimized and we welcome pull requests to improve this**

- Use `normalized_shape` instead of singular integer `dim` to be aligned with the `nn.LayerNorm` implementation
- Remove the [upcast to float and downcast
](dbeed9724b/torchmultimodal/modules/layers/normalizations.py (L73))

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121364
Approved by: https://github.com/albanD
2024-03-27 21:39:30 +00:00
Mikayla Gawarecki
4b3903379a Add assign argument to torch.Tensor.module_load (#121158)
Make `torch.__future__.get_swap_module_params_on_conversion() == True` account for `assign` argument to `nn.Module.load_state_dict`

Similar to when `torch.__future__.set_swap_module_params_on_conversion()` is `False`, `assign=True` means that we do not incur a `self.copy_(other)` and the properties of `other` will be preserved

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121158
Approved by: https://github.com/albanD
ghstack dependencies: #121157
2024-03-06 01:32:06 +00:00
Mikayla Gawarecki
3372aa51b4 Integrate swap_tensors into nn.Module.load_state_dict (#117913)
Added a `torch.Tensor` method that defines how to transform `other`, a value in the state dictionary, to be loaded into `self`, a param/buffer in an `nn.Module` before swapping via `torch.utils.swap_tensors`
* `param.module_load(sd[key])`

This method can be overridden using `__torch_function__`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117913
Approved by: https://github.com/albanD
2024-02-09 22:32:29 +00:00
PyTorch MergeBot
df048f4da4 Revert "[RELAND] Remove deprecated fbgemm operators (#112153)"
This reverts commit 19e8ba95e5.

Reverted https://github.com/pytorch/pytorch/pull/112153 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/112153#issuecomment-1921965780))
2024-02-01 18:35:19 +00:00
Peter Bell
19e8ba95e5 [RELAND] Remove deprecated fbgemm operators (#112153)
These operators are not used and have been deprecated since #72690
(Feb 2022).

BC-breaking message:

`TorchScript` models that were exported with the deprecated
`torch.jit.quantized` API will no longer be loadable, as the required
internal operators have been removed.
Please re-export your models using the newer `torch.ao.quantization` API
instead.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112153
Approved by: https://github.com/jerryzh168
2024-01-30 16:32:37 +00:00
Joel Schlosser
5aac95c713 Introduce slice_inverse() op (#117041)
Introduces a new op `slice_inverse()`. This is used in the reverse view_func for slice and several other ops (e.g. `split_with_sizes`, `chunk`). It's implemented behind the scenes by a call to `as_strided()`, but it's easier for subclasses to implement the more limited `slice_inverse()` than the full `as_strided()`. This PR:
* Introduces the op itself
* Updates all relevant functional inverses to call `slice_inverse()` instead of `as_strided()` directly
* Makes codegen changes to allow `slice_scatter()` to be the copy variant for `slice_inverse()`
    * Need to avoid view_copy codegen (assumes if view name ends in inverse, we don't need to gen one, which is possibly a bad assumption)

@albanD / @soulitzer / @bdhirsh: I'm most interested in your thoughts on the codegen changes and whether this is the right way to go.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117041
Approved by: https://github.com/bdhirsh
2024-01-16 23:44:54 +00:00
vfdev-5
7005a4bcb6 [dynamo] Added dyn shapes support for math trigo ops: sin(h), cos(h), tan(h) ... (#114866)
Description:
- Added dynamic shapes support for math trigo ops: sin(h), cos(h), tan(h) ...

```python
import math
import torch

def func(x, a, b):
    c = 0
    c = c + math.sqrt(a)
    c = c + math.cos(a)
    c = c + math.cosh(a)
    c = c + math.sin(a)
    c = c + math.sinh(a)
    c = c + math.tan(a)
    c = c + math.tanh(a)
    c = c + math.asin(b)
    c = c + math.acos(b)
    c = c + math.atan(a)
    y = x + c
    return y

cfunc = torch.compile(func, dynamic=True, fullgraph=True)

device = "cpu"  # or "cuda"
x = torch.tensor([0, 1, 2, 3], dtype=torch.float32, device=device)
a = 12
b = 1

out = cfunc(x, a, b)
expected = func(x, a, b)
torch.testing.assert_close(out, expected)
```

and the graph `TORCH_LOGS=+graph_code python check_math_ops.py`:

<details>
<summary>
graph code
</summary>

```
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG] TRACED GRAPH
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]  ===== __compiled_fn_0 =====
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]  <eval_with_key>.0 class GraphModule(torch.nn.Module):
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]     def forward(self, L_a_ : torch.SymInt, s1 : torch.SymInt, L_x_ : torch.Tensor):
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         l_a_ = L_a_
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         l_x_ = L_x_
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         # File: check_math_ops.py:57, code: c = c + math.sqrt(a)
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         sym_sqrt = torch.sym_sqrt(l_a_)
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         add = 0 + sym_sqrt;  sym_sqrt = None
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         # File: check_math_ops.py:58, code: c = c + math.cos(a)
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         sym_cos = torch.sym_cos(l_a_)
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         add_1 = add + sym_cos;  add = sym_cos = None
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         # File: check_math_ops.py:59, code: c = c + math.cosh(a)
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         sym_cosh = torch.sym_cosh(l_a_)
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         add_2 = add_1 + sym_cosh;  add_1 = sym_cosh = None
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         # File: check_math_ops.py:60, code: c = c + math.sin(a)
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         sym_sin = torch.sym_sin(l_a_)
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         add_3 = add_2 + sym_sin;  add_2 = sym_sin = None
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         # File: check_math_ops.py:61, code: c = c + math.sinh(a)
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         sym_sinh = torch.sym_sinh(l_a_)
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         add_4 = add_3 + sym_sinh;  add_3 = sym_sinh = None
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         # File: check_math_ops.py:62, code: c = c + math.tan(a)
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         sym_tan = torch.sym_tan(l_a_)
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         add_5 = add_4 + sym_tan;  add_4 = sym_tan = None
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         # File: check_math_ops.py:63, code: c = c + math.tanh(a)
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         sym_tanh = torch.sym_tanh(l_a_)
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         add_6 = add_5 + sym_tanh;  add_5 = sym_tanh = None
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         # File: check_math_ops.py:64, code: c = c + math.asin(b)
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         add_7 = add_6 + 1.5707963267948966;  add_6 = None
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         # File: check_math_ops.py:65, code: c = c + math.acos(b)
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         add_8 = add_7 + 0.0;  add_7 = None
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         # File: check_math_ops.py:66, code: c = c + math.atan(a)
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         sym_atan = torch.sym_atan(l_a_);  l_a_ = None
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         add_9 = add_8 + sym_atan;  add_8 = sym_atan = None
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         # File: check_math_ops.py:67, code: y = x + c
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         y = l_x_ + add_9;  l_x_ = add_9 = None
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]         return (y,)
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]
[2023-11-30 22:16:10,654] [0/0] torch._dynamo.output_graph.__graph_code: [DEBUG]
```
</details>

Generated code with `TORCH_LOGS=+output_code python check_math_ops.py`:
<details>
<summary>
C++ code
</summary>

```
[2023-11-30 22:19:09,709] [0/0] torch._inductor.graph.__output_code: [DEBUG] cpp_fused_add_0 = async_compile.cpp('''
[2023-11-30 22:19:09,709] [0/0] torch._inductor.graph.__output_code: [DEBUG] #include "/tmp/torchinductor_root/2l/c2ljzlm4sosod7u6lyrroqdba6hmfcyijrric6p4t3fhbcmw6osp.h"
[2023-11-30 22:19:09,709] [0/0] torch._inductor.graph.__output_code: [DEBUG] extern "C" void kernel(const float* in_ptr0,
[2023-11-30 22:19:09,709] [0/0] torch._inductor.graph.__output_code: [DEBUG]                        float* out_ptr0,
[2023-11-30 22:19:09,709] [0/0] torch._inductor.graph.__output_code: [DEBUG]                        const long ks0,
[2023-11-30 22:19:09,709] [0/0] torch._inductor.graph.__output_code: [DEBUG]                        const long ks1)
[2023-11-30 22:19:09,709] [0/0] torch._inductor.graph.__output_code: [DEBUG] {
[2023-11-30 22:19:09,709] [0/0] torch._inductor.graph.__output_code: [DEBUG]     {
[2023-11-30 22:19:09,709] [0/0] torch._inductor.graph.__output_code: [DEBUG]         #pragma GCC ivdep
[2023-11-30 22:19:09,709] [0/0] torch._inductor.graph.__output_code: [DEBUG]         for(long x0=static_cast<long>(0L); x0<static_cast<long>(ks0); x0+=static_cast<long>(1L))
[2023-11-30 22:19:09,709] [0/0] torch._inductor.graph.__output_code: [DEBUG]         {
[2023-11-30 22:19:09,709] [0/0] torch._inductor.graph.__output_code: [DEBUG]             auto tmp0 = in_ptr0[static_cast<long>(x0)];
[2023-11-30 22:19:09,709] [0/0] torch._inductor.graph.__output_code: [DEBUG]             auto tmp1 = c10::convert<float>(1.57079632679490 + (std::sqrt(ks1)) + (std::atan(ks1)) + (std::cos(ks1)) + (std::cosh(ks1)) + (std::sin(ks1)) + (std::sinh(ks1)) + (std::tan(ks1)) + (std::tanh(ks1)));
[2023-11-30 22:19:09,709] [0/0] torch._inductor.graph.__output_code: [DEBUG]             auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
[2023-11-30 22:19:09,709] [0/0] torch._inductor.graph.__output_code: [DEBUG]             out_ptr0[static_cast<long>(x0)] = tmp2;
[2023-11-30 22:19:09,709] [0/0] torch._inductor.graph.__output_code: [DEBUG]         }
[2023-11-30 22:19:09,709] [0/0] torch._inductor.graph.__output_code: [DEBUG]     }
[2023-11-30 22:19:09,709] [0/0] torch._inductor.graph.__output_code: [DEBUG] }
[2023-11-30 22:19:09,709] [0/0] torch._inductor.graph.__output_code: [DEBUG] ''')
```

</details>

<details>
<summary>
Triton code
</summary>

```
[2023-11-30 22:20:00,383] [0/0] torch._inductor.graph.__output_code: [DEBUG] @pointwise(
[2023-11-30 22:20:00,383] [0/0] torch._inductor.graph.__output_code: [DEBUG]     size_hints=[4],
[2023-11-30 22:20:00,383] [0/0] torch._inductor.graph.__output_code: [DEBUG]     filename=__file__,
[2023-11-30 22:20:00,383] [0/0] torch._inductor.graph.__output_code: [DEBUG]     triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': 0, 'device_type': 'cuda', 'constants': {}, 'configs': [instance_descriptor(divisible_by_16=(0, 1), equal_to_1=(), i
ds_of_folded_args=(), divisible_by_8=())]},
[2023-11-30 22:20:00,383] [0/0] torch._inductor.graph.__output_code: [DEBUG]     inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': []},
[2023-11-30 22:20:00,383] [0/0] torch._inductor.graph.__output_code: [DEBUG]     min_elem_per_thread=0
[2023-11-30 22:20:00,383] [0/0] torch._inductor.graph.__output_code: [DEBUG] )
[2023-11-30 22:20:00,383] [0/0] torch._inductor.graph.__output_code: [DEBUG] @triton.jit
[2023-11-30 22:20:00,383] [0/0] torch._inductor.graph.__output_code: [DEBUG] def triton_(in_ptr0, out_ptr0, ks0, xnumel, XBLOCK : tl.constexpr):
[2023-11-30 22:20:00,383] [0/0] torch._inductor.graph.__output_code: [DEBUG]     xoffset = tl.program_id(0) * XBLOCK
[2023-11-30 22:20:00,383] [0/0] torch._inductor.graph.__output_code: [DEBUG]     xindex = xoffset + tl.arange(0, XBLOCK)[:]
[2023-11-30 22:20:00,383] [0/0] torch._inductor.graph.__output_code: [DEBUG]     xmask = xindex < xnumel
[2023-11-30 22:20:00,383] [0/0] torch._inductor.graph.__output_code: [DEBUG]     x0 = xindex
[2023-11-30 22:20:00,383] [0/0] torch._inductor.graph.__output_code: [DEBUG]     tmp0 = tl.load(in_ptr0 + (x0), xmask)
[2023-11-30 22:20:00,383] [0/0] torch._inductor.graph.__output_code: [DEBUG]     tmp1 = 1.57079632679490 + (tl.math.sqrt(ks0.to(tl.float32))) + (tl.math.atan((ks0).to(tl.float32))) + (tl.math.cos((ks0).to(tl.float32))) + (tl.math.cosh((ks0).to(tl.float32))) + (tl.math.sin((ks0)
.to(tl.float32))) + (tl.math.sinh((ks0).to(tl.float32))) + (tl.math.tan((ks0).to(tl.float32))) + (tl.math.tanh((ks0).to(tl.float32)))
[2023-11-30 22:20:00,383] [0/0] torch._inductor.graph.__output_code: [DEBUG]     tmp2 = tmp1.to(tl.float32)
[2023-11-30 22:20:00,383] [0/0] torch._inductor.graph.__output_code: [DEBUG]     tmp3 = tmp0 + tmp2
[2023-11-30 22:20:00,383] [0/0] torch._inductor.graph.__output_code: [DEBUG]     tl.store(out_ptr0 + (x0), tmp3, xmask)
[2023-11-30 22:20:00,383] [0/0] torch._inductor.graph.__output_code: [DEBUG] ''')
```

</details>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/114866
Approved by: https://github.com/peterbell10
2024-01-11 11:52:28 +00:00
Edward Z. Yang
edec54b9de Add torch._lazy_clone to create COW tensors (#113397)
Part of #109833

Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom):
* __->__ #113397
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113397
Approved by: https://github.com/ezyang
2024-01-11 01:32:44 +00:00
Joel Schlosser
3c21264c9b Introduce reverse view_funcs (#115894)
Part 2 of implementation for general [subclass view fake-ification](https://docs.google.com/document/d/1C5taWiplmX7nKiURXDOAZG2W5VNJ2iV0fQFq92H0Cxw).

Details:
* Codegen `rev_view_func()` alongside `view_func()`
    * Reverse view_func gives you a "base" from a "view": `rev_view_func(new_view) -> new_base` AKA it plays the original view backwards
* Utilizes the functional inverses defined in `FunctionalInverses.cpp`, passing `InverseReturnMode::AlwaysView`
* Manually implements functional inverses for `narrow()` and `chunk()`
* **NB: Multi-output views now set view_func() / rev_view_func() for each of the output views!**
    * Due to this, the `as_view()` overload that operates on a list of views is scrapped in favor of iteration via codegen

Example codegen in `ADInplaceOrViewTypeN.cpp`:
```cpp
at::Tensor narrow(c10::DispatchKeySet ks, const at::Tensor & self, int64_t dim, c10::SymInt start, c10::SymInt length) {
  auto _tmp = ([&]() {
    at::AutoDispatchBelowADInplaceOrView guard;
    return at::_ops::narrow::redispatch(ks & c10::after_ADInplaceOrView_keyset, self, dim, start, length);
  })();
  std::function<at::Tensor(const at::Tensor&)> func=nullptr;
  std::function<at::Tensor(const at::Tensor&)> rev_func=nullptr;
  if (false || !self.unsafeGetTensorImpl()->support_as_strided() ||
      c10::AutogradState::get_tls_state().get_view_replay_enabled()) {
    func = [=](const at::Tensor& input_base) {
      return at::_ops::narrow::call(input_base, dim, start, length);
    };
    rev_func = [=](const at::Tensor& input_view) {
      // NB: args from narrow() signature are passed along to the inverse
      return at::functionalization::FunctionalInverses::narrow_copy_inverse(self, input_view, at::functionalization::InverseReturnMode::AlwaysView, dim, start, length);
    };
  }
  auto result = as_view(/* base */ self, /* output */ _tmp, /* is_bw_differentiable */ true, /* is_fw_differentiable */ true, /* view_func */ func, /* rev_view_func */ rev_func, /* creation_meta */ InferenceMode::is_enabled() ? CreationMeta::INFERENCE_MODE : (at::GradMode::is_enabled() ? CreationMeta::DEFAULT : CreationMeta::NO_GRAD_MODE));
  return result;
}
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115894
Approved by: https://github.com/soulitzer
2024-01-05 16:48:12 +00:00
FFFrog
327bdcdb14 Some tiny modification about torch.set/get_default_device (#116014)
1. fix bug of torch.set_default_device in multi-threading
2. add new interface named torch.get_default_device

Fixes #115333
Fixes #115917

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116014
Approved by: https://github.com/malfet, https://github.com/jansel
2023-12-19 05:08:06 +00:00
Wongboo
68f74dd162 Add python and C++ support for LPPool3d (#114199)
Add python and C++ support for LPPool3d to Fixes #114114

Pull Request resolved: https://github.com/pytorch/pytorch/pull/114199
Approved by: https://github.com/mikaylagawarecki
2023-12-08 18:18:44 +00:00
Antonio Kim
7fc292930c Add support for torch.Generator type in TorchScript (#110413)
- Add support for `torch.Generator` type in TorchScript
- Add `generator` args to all `torch.nn.init` functions that call `uniform_` or `normal_`
- Add support for `torch.Generator` in LTC's TorchScript backend (CC: @wconstab)

CC: @eellison @davidberard98 @GlebKazantaev @behzad-a
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110413
Approved by: https://github.com/wconstab, https://github.com/albanD, https://github.com/glebk-cerebras, https://github.com/davidberard98
2023-11-21 23:07:21 +00:00
Edward Z. Yang
473b17c4c1 Run sympy expressions with Python values / FX tracing (#113978)
To codegen deferred runtime asserts, I need to be able to convert sympy expressions back into regular Python expressions that I can put in FX graphs. This PR adds some of the machinery to do this: it adds a new sympy analysis that runs operations on all FX traceable operations that can also be run with plain Python int/float/bool/etc. It's tested by symbolic tracing through the analysis, and then testing that this traced graph gives the same result as running the Python analysis directly.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113978
Approved by: https://github.com/aakhundov, https://github.com/lezcano
2023-11-20 21:25:11 +00:00
PyTorch MergeBot
fe428a284b Revert "Add torch._lazy_clone to create COW tensors (#113397)"
This reverts commit 9916d8a9ea.

Reverted https://github.com/pytorch/pytorch/pull/113397 on behalf of https://github.com/DanilBaibak due to Unfortunately, I need to revert your PR because the lower [PR in the stack](https://github.com/pytorch/pytorch/pull/113396) is failing a bunch of internal build jobs. ([comment](https://github.com/pytorch/pytorch/pull/113397#issuecomment-1818761224))
2023-11-20 10:21:09 +00:00
Kurt Mohler
9916d8a9ea Add torch._lazy_clone to create COW tensors (#113397)
Part of #109833

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113397
Approved by: https://github.com/ezyang
ghstack dependencies: #113396
2023-11-17 01:58:51 +00:00
PyTorch MergeBot
252e68a83b Revert "Add support for torch.Generator type in TorchScript (#110413)"
This reverts commit 54493fe8c4.

Reverted https://github.com/pytorch/pytorch/pull/110413 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it is, unfortunately, still breaking internal builds ([comment](https://github.com/pytorch/pytorch/pull/110413#issuecomment-1811625557))
2023-11-15 00:51:23 +00:00
Antonio Kim
54493fe8c4 Add support for torch.Generator type in TorchScript (#110413)
- Add support for `torch.Generator` type in TorchScript
- Add `generator` args to all `torch.nn.init` functions that call `uniform_` or `normal_`
- Add support for `torch.Generator` in LTC's TorchScript backend (CC: @wconstab)

CC: @eellison @davidberard98 @GlebKazantaev @behzad-a
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110413
Approved by: https://github.com/wconstab, https://github.com/albanD, https://github.com/glebk-cerebras, https://github.com/davidberard98
2023-11-13 23:18:14 +00:00
PyTorch MergeBot
9a28a7b498 Revert "Add support for torch.Generator type in TorchScript (#110413)"
This reverts commit 27e31ab6e8.

Reverted https://github.com/pytorch/pytorch/pull/110413 on behalf of https://github.com/PaliC due to breaking internal builds ([comment](https://github.com/pytorch/pytorch/pull/110413#issuecomment-1799003164))
2023-11-07 15:53:32 +00:00
Antonio Kim
27e31ab6e8 Add support for torch.Generator type in TorchScript (#110413)
- Add support for `torch.Generator` type in TorchScript
- Add `generator` args to all `torch.nn.init` functions that call `uniform_` or `normal_`
- Add support for `torch.Generator` in LTC's TorchScript backend (CC: @wconstab)

CC: @eellison @davidberard98 @GlebKazantaev @behzad-a
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110413
Approved by: https://github.com/wconstab, https://github.com/albanD, https://github.com/glebk-cerebras, https://github.com/davidberard98
2023-11-06 21:27:02 +00:00
soulitzer
0cda4c8abe Replay view with view_func instead of as_strided in meta_utils for NT (#112205)
Currently meta_utils relies on as_strided when handling the view case (recursively meta-ify the base, and then do as_strided to simulate the view), but NestedTensor does not support as_strided today (though maybe it could?), so what we want to do instead is call Tensor. _view_func. Conveniently,  _view_func IS always available for nested tensors.

A detail to note is that _view_func actually incurs a guard because it needs to perform some metadata checks to make sure the view is still valid. This PR adds Tensor._unsafe_view_func which can avoid that.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/112205
Approved by: https://github.com/jbschlosser
2023-10-30 19:25:10 +00:00
PyTorch MergeBot
5ce8002d24 Revert "Remove deprecated fbgemm operators (#104535)"
This reverts commit 57c7aa12db.

Reverted https://github.com/pytorch/pytorch/pull/104535 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/104535#issuecomment-1779650412))
2023-10-25 16:34:16 +00:00
ydwu4
f3d02d9ae6 Add support for sym_ite (#111440)
This PR supports sym_ite. This is useful for converting SymBool to SymInt in e.g. #109916. Internally, it uses sympy.Piecewise. We cannot use sympy.ITE because it expects the arguments and output all to be boolean type but we want return SymInt type when converting a SymBool to SymInt. So we use sympy.Piecewise to denote the symbolic relationship.

Note that this pr uses the range analysis for sympy.Piecewise implemented in https://github.com/pytorch/pytorch/blob/main/torch/utils/_sympy/value_ranges.py.

Test Plan:
See added test.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111440
Approved by: https://github.com/ezyang
2023-10-23 16:17:43 +00:00
Peter Bell
57c7aa12db Remove deprecated fbgemm operators (#104535)
These operators are not used and have been deprecated since #72690 (Feb 2022). Additionally, the `torch.jit.quantized` interface has been deprecated since #40102 (June 2020).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104535
Approved by: https://github.com/ezyang
2023-10-22 06:10:09 +00:00
Michael Lazos
a55ecec195 [dynamo][__torch_function__ 2/n] Refactor TensorWithTFOverrideVariable (#109556)
This is purely a refactor that preserves the existing behavior and tests.

The main contributions of the PR are to refactor the dispatch of `__torch_function__` to enable calling it with  TF override objects in any argument position and matching the eager dispatch behavior.

This will allow for the following in upcoming PRs:

1) have TensorWithTFOverrideVariable inherit from TensorVariable
2) enable tracing through the base `__torch_function__` implementation.

Note: this depends on https://github.com/pytorch/pytorch/pull/109542

towards tracing for https://github.com/pytorch/pytorch/issues/93723

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109556
Approved by: https://github.com/jansel, https://github.com/ezyang
2023-10-20 18:53:38 +00:00
Tugsbayasgalan Manlaibaatar
5614023f5e Move export.constrain_as_* to torch._constrain_as_* (#110757)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110757
Approved by: https://github.com/avikchaudhuri
ghstack dependencies: #109859
2023-10-12 05:37:44 +00:00
PyTorch MergeBot
6ce3a38050 Revert "Move export.constrain_as_* to torch._constrain_as_* (#110757)"
This reverts commit 5aee22e0e0.

Reverted https://github.com/pytorch/pytorch/pull/110757 on behalf of https://github.com/kit1980 due to Depends on https://github.com/pytorch/pytorch/pull/109859 that needs to be reverted ([comment](https://github.com/pytorch/pytorch/pull/110757#issuecomment-1758908371))
2023-10-12 04:53:29 +00:00
Michael Lazos
07f0f383fa update tensor-like to check instance for torch function impl (#111087)
tensor like should check the instance for a torch function impl, not the type
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111087
Approved by: https://github.com/ezyang
2023-10-12 02:14:38 +00:00
Kurt Mohler
5292a92e03 Add torch.unravel_index (#110580)
Fixes #35674

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110580
Approved by: https://github.com/lezcano, https://github.com/kulinseth
2023-10-12 00:55:51 +00:00
Tugsbayasgalan Manlaibaatar
5aee22e0e0 Move export.constrain_as_* to torch._constrain_as_* (#110757)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110757
Approved by: https://github.com/avikchaudhuri
ghstack dependencies: #109859
2023-10-11 02:37:55 +00:00
ydwu4
d84bcb9c8c [HigherOrderOp] expose torch.cond (#110293)
This pr expose torch._higher_order_ops.cond as torch.cond.

1. Need to add #noqa: F811 to the _check calls in torch/__init__.py to address some confusing linter error "Redefinition of unused 'cond'" but only one cond is imported and for these lines that have this error, they don't define the cond but just use it as an argument.
2. Also add cond to the list that allows it to be traced through so as dynamo could trigger the CondHigherOrder logic instead of creating a TorchVariable.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110293
Approved by: https://github.com/zou3519
2023-10-07 20:39:52 +00:00
PyTorch MergeBot
576b80d23e Revert "[HigherOrderOp] expose torch.cond (#110293)"
This reverts commit 601f872831.

Reverted https://github.com/pytorch/pytorch/pull/110293 on behalf of https://github.com/ydwu4 due to Sorry, didn't check the error carefully on the PR. A doc error is related to this pr ([comment](https://github.com/pytorch/pytorch/pull/110293#issuecomment-1751176719))
2023-10-06 17:44:17 +00:00
ydwu4
601f872831 [HigherOrderOp] expose torch.cond (#110293)
This pr expose torch._higher_order_ops.cond as torch.cond.

1. Need to add #noqa: F811 to the _check calls in torch/__init__.py to address some confusing linter error "Redefinition of unused 'cond'" but only one cond is imported and for these lines that have this error, they don't define the cond but just use it as an argument.
2. Also add cond to the list that allows it to be traced through so as dynamo could trigger the CondHigherOrder logic instead of creating a TorchVariable.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110293
Approved by: https://github.com/zou3519
2023-10-06 17:04:31 +00:00
Tobias Ringwald
460fc9da62 Disabled UserWarnings for some public functions in torch.overrides (#109890)
Fixes #109842.

This disables the implicit `UserWarning`s that were raised for deprecated `torch` attributes. The filtering was designed to be as specific as possible, in order to not filter any other warnings that may be raised.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109890
Approved by: https://github.com/ezyang
2023-09-23 20:40:04 +00:00
Yanan Cao
a09539f454 Add torch.export.register_dataclass API (#109152)
`register_dataclass` allows dataclass to be used as valid input/output types of torch.export.export

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109152
Approved by: https://github.com/ydwu4
2023-09-13 04:17:12 +00:00
Jun Luo
8289ad8e5e Support is_mtia attribute. (#108307) (#108310)
Summary:

FBGEMM uses `self.iter.is_cuda` to check if the tensor is for CUDA. This diff enables similar feature `self.iter.is_mtia` for tensors with MTIA device key.

Test Plan: See diff D48693225

Reviewed By: jackm321

Differential Revision: D48809191

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108310
Approved by: https://github.com/albanD
2023-09-01 01:25:40 +00:00
gmagogsfm
bfb09204bd Expose torch.export.{save,load} APIs (#107888)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107888
Approved by: https://github.com/angelayi
2023-08-25 06:06:36 +00:00
Digant Desai
8a7a6867b9 [PyTorch][Tensor] Introduce tensor.dim_order (#106835)
Summary:
This is a stride based attribute for a tensor available in Python.

This can help inspect tensors generated using `torch.empty_permuted(.., physical_layout, ...)`, where physical_layout should match the dim_order returned here. `empty_permuted` will be renamed to use dim_order as the param name in the future. And also help Executorch export pipeline with implementing dim_order based tensors.

Differential Revision: D48134476

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106835
Approved by: https://github.com/ezyang
2023-08-25 00:06:03 +00:00
soulitzer
f6cce3c468 Fix sym_{sizes,strides} slow path (#107839)
Previously, when SymInt is returned from sym_sizes slow path, it would segfault.

This is useful for tensors that have symbolic sizes and use the sym_sizes slow path, e.g. NestedTensor returning SingletonSymInt as its sizes in the slow path.

See also: https://github.com/pytorch/pytorch/pull/106405/files#r1303714865
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107839
Approved by: https://github.com/ezyang
2023-08-24 17:28:05 +00:00
Jane Xu
6e71ad0509 Add tensor post accumulate grad hook API (#107063)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107063
Approved by: https://github.com/albanD, https://github.com/soulitzer
2023-08-24 00:19:35 +00:00
PyTorch MergeBot
432fce4e0d Revert "Add tensor post accumulate grad hook API (#107063)"
This reverts commit 3f655277d4.

Reverted https://github.com/pytorch/pytorch/pull/107063 on behalf of https://github.com/ZainRizvi due to Diff train weirdness. Need to temporarily revert this PR and will right land it soon afterwards ([comment](https://github.com/pytorch/pytorch/pull/107063#issuecomment-1690799057))
2023-08-24 00:12:34 +00:00
gmagogsfm
652ccfadc1 Expose torch.export.constrain_as_{size,value} APIs (#107735)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107735
Approved by: https://github.com/avikchaudhuri
2023-08-23 20:13:40 +00:00
Aaron Gokaslan
660e8060ad [BE]: Update ruff to 0.285 (#107519)
This updates ruff to 0.285 which is faster, better, and have fixes a bunch of false negatives with regards to fstrings.

I also enabled RUF017 which looks for accidental quadratic list summation. Luckily, seems like there are no instances of it in our codebase, so enabling it so that it stays like that. :)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107519
Approved by: https://github.com/ezyang
2023-08-22 23:16:38 +00:00
PyTorch MergeBot
d59a6864fb Revert "[BE]: Update ruff to 0.285 (#107519)"
This reverts commit 88ab3e4322.

Reverted https://github.com/pytorch/pytorch/pull/107519 on behalf of https://github.com/ZainRizvi due to Sorry, but this PR breaks internal tests. @ezyang, can you please hep them get unblocked? It seems like one of the strings was prob accidentally modified ([comment](https://github.com/pytorch/pytorch/pull/107519#issuecomment-1688833480))
2023-08-22 19:53:32 +00:00
gmagogsfm
137d96a26e Expose torch.export.dynamic_dim() API (#107635)
With updated doc

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107635
Approved by: https://github.com/avikchaudhuri
2023-08-22 18:40:49 +00:00
Jane Xu
3f655277d4 Add tensor post accumulate grad hook API (#107063)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107063
Approved by: https://github.com/albanD, https://github.com/soulitzer
2023-08-22 15:15:57 +00:00
gmagogsfm
bbb216bca4 Move torch.export() to torch.export.export() (#107609)
New plan:

torch.export.export() as the main API

All other utilities will be torch.export.foo_utilities
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107609
Approved by: https://github.com/tugsbayasgalan, https://github.com/msaroufim
2023-08-22 00:38:32 +00:00
Aaron Gokaslan
88ab3e4322 [BE]: Update ruff to 0.285 (#107519)
This updates ruff to 0.285 which is faster, better, and have fixes a bunch of false negatives with regards to fstrings.

I also enabled RUF017 which looks for accidental quadratic list summation. Luckily, seems like there are no instances of it in our codebase, so enabling it so that it stays like that. :)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107519
Approved by: https://github.com/ezyang
2023-08-20 01:36:18 +00:00
gmagogsfm
ddba7a5a55 Expose torch.export() API (#106904)
Other class definitions and utilities will be moved in subsequent PRs

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106904
Approved by: https://github.com/avikchaudhuri
2023-08-16 10:47:26 +00:00
Tugsbayasgalan Manlaibaatar
20c5add133 [export] Refactor constrain_as_value and constrain_as_size (#106591)
Some notable changes:
1. `constrain_as_size` allows min value to be less than 2 as it will unconditionally assume min >= 2 for compiler purposes. Instead, we add additional check to make sure max value is always greater than 2.
2. Previously, we used to runtime assert on the unbacked symint's val range which would be always between [2, max]. I modified this logic to assert on [0, max] unless user explicitly specifies the min range.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106591
Approved by: https://github.com/gmagogsfm, https://github.com/ezyang
2023-08-15 05:41:43 +00:00
PyTorch MergeBot
745d29b0cc Revert "[export] Refactor constrain_as_value and constrain_as_size (#106591)"
This reverts commit 18989890bf.

Reverted https://github.com/pytorch/pytorch/pull/106591 on behalf of https://github.com/izaitsevfb due to Breaks inductor test on trunk ([comment](https://github.com/pytorch/pytorch/pull/106591#issuecomment-1675069091))
2023-08-11 16:37:47 +00:00
Tugsbayasgalan Manlaibaatar
18989890bf [export] Refactor constrain_as_value and constrain_as_size (#106591)
Some notable changes:
1. `constrain_as_size` allows min value to be less than 2 as it will unconditionally assume min >= 2 for compiler purposes. Instead, we add additional check to make sure max value is always greater than 2.
2. Previously, we used to runtime assert on the unbacked symint's val range which would be always between [2, max]. I modified this logic to assert on [0, max] unless user explicitly specifies the min range.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106591
Approved by: https://github.com/gmagogsfm, https://github.com/ezyang
2023-08-11 05:29:22 +00:00
Justin Chu
79c5e33349 [BE] Enable ruff's UP rules and autoformat nn/ mps/ and torch/ (#105436)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105436
Approved by: https://github.com/malfet, https://github.com/albanD
2023-07-21 07:38:46 +00:00
Nikita Vedeneev
437bc5b1b7 sparse_mask: backward support for sparse lhs (take 2) (#104341)
This is a copy of https://github.com/pytorch/pytorch/pull/95165 with some bug fixes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/104341
Approved by: https://github.com/albanD, https://github.com/pearu, https://github.com/amjames
2023-07-03 14:12:44 +00:00
Jinku Cui
27eecf32bd Remove redundant dummy overrides (#103992)
# Tidy the code in [overrides.py](https://github.com/pytorch/pytorch/blob/main/torch/overrides.py)

## Duplicate APIs in the [get_testing_overrides()](https://github.com/pytorch/pytorch/blob/main/torch/overrides.py#L335) function:

| APIs  | Line number|
|-------|-------|
| torch.fft.fft| L544 L564 |
| torch.logsumexp | L670 L672
| torch.narrow_copy | L733 L1126 |
| torch.native_norm | L740 L741 L742 |
| torch.nn.init.constant_ | L885 L887 |
| torch.squeeze_copy | L1134 L1135 |
| torch.view_copy | L1148 L1149 |
| Tensor.\_coalesced\_ | L1236 L1261 |

## Testing script

```Python

import torch
import inspect
import functools
from typing import Dict, Set, Callable

"""
@functools.lru_cache(None)
def get_testing_overrides() -> Dict[Callable, Callable]:
    ...
    Tensor = torch.Tensor
    ret: Dict[Callable, Callable] = {
        # ...
        torch.fft.fft: lambda input, n=None, dim=-1, norm=None: -1,                         # L544
        torch.fft.fft: lambda input, n=None, dim=-1, norm=None: -1,                         # L564
        torch.logsumexp: lambda input, names, keepdim=False, out=None: -1,                  # L670
        torch.logsumexp: lambda input, names, keepdim=False, out=None: -1,                  # L672
        torch.narrow_copy: lambda input, dim, start, length: -1,                            # L733
        torch.narrow_copy: lambda self, dim, start, length: -1,                             # L1126
        torch.native_norm: lambda input, p=2: -1,                                           # L740
        torch.native_norm: lambda input, p=2: -1,                                           # L741
        torch.native_norm: lambda input, p=2, dim=None, keepdim=False, dtype=None: -1,      # L742
        torch.squeeze_copy: lambda self: -1,                                                # L1134
        torch.squeeze_copy: lambda self, dim: -1,                                           # L1135
        torch.view_copy: lambda self, size: -1,                                             # L1148
        torch.view_copy: lambda self, dtype: -1,                                            # L1149
        Tensor._coalesced_: lambda self: -1,                                                # L1236
        Tensor._coalesced_: lambda self, coalesced: -1,                                     # L1261
        # ...
    }
    ...
"""

if __name__ == "__main__":
    ret = torch.overrides.get_testing_overrides()

    Tensor = torch.Tensor
    dups = {"torch.fft.fft": torch.fft.fft,
            "torch.logsumexp": torch.logsumexp,
            "torch.narrow_copy": torch.narrow_copy,
            "torch.native_norm": torch.native_norm,
            "torch.squeeze_copy": torch.squeeze_copy,
            "torch.view_copy": torch.view_copy,
            "Tensor._coalesced_": Tensor._coalesced_}

    for k,v in dups.items():
        print(f"{k:18} {inspect.signature(ret[v])}")

```

## Testing output

```Shell
torch.fft.fft      (input, n=None, dim=-1, norm=None)
torch.logsumexp    (input, names, keepdim=False, out=None)
torch.narrow_copy  (self, dim, start, length)
torch.native_norm  (input, p=2, dim=None, keepdim=False, dtype=None)
torch.squeeze_copy (self, dim)
torch.view_copy    (self, dtype)
Tensor._coalesced_ (self, coalesced)

```

## Explanation:
The function `get_testing_overrides()` returns a `Dict[Callable, Callable]`. The later dummy overrides will cover the previous dummy overrides in the returned `Dict`. Therefore, removing the dummy overrides with homonym API names can tidy the code and increase the readability of the code.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103992
Approved by: https://github.com/kit1980
2023-06-28 01:59:56 +00:00
Meghan
6ff4548b6e [AMP] Support XLA:TPU (#96370)
With https://github.com/pytorch/xla/pull/5148, https://github.com/pytorch/xla/pull/4740

With these changes
XLA:GPU users should use `torch.cuda.amp.autocast()` for AMP with float16
XLA:TPU users should use `torch.amp.autocast('xla')` for AMP with bfloat16

Pull Request resolved: https://github.com/pytorch/pytorch/pull/96370
Approved by: https://github.com/bdhirsh, https://github.com/malfet
2023-06-23 19:46:42 +00:00
PyTorch MergeBot
7274582390 Revert "sparse_mask: backward support for sparse lhs (#95165)"
This reverts commit f090fdf3b4.

Reverted https://github.com/pytorch/pytorch/pull/95165 on behalf of https://github.com/huydhn due to Sorry for reverting this. I think one of the tests test_sparse.py::TestSparseCUDA::test_sparse_mask_backward_cuda_complex128 is failing on slow gradcheck f090fdf3b4 ([comment](https://github.com/pytorch/pytorch/pull/95165#issuecomment-1604696109))
2023-06-23 18:40:15 +00:00
Nikita Vedeneev
f090fdf3b4 sparse_mask: backward support for sparse lhs (#95165)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/95165
Approved by: https://github.com/pearu, https://github.com/cpuhrsch
2023-06-23 12:27:27 +00:00
xuanqi
a152b3e3b8 [RFC] Create functional aten assertion ops (#103751)
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom):

* #103887
* #103757
* __->__ #103751

Prep PR to create functional version of assertions. Concrete logic will be implemented in future PRs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103751
Approved by: https://github.com/tugsbayasgalan
2023-06-23 06:20:42 +00:00
Muralidhar Andoorveedu
4e204ff87b Added is_xla (#103100)
This change creates `is_xla` which is congruent with `is_cuda` and `is_cpu`. Useful in situations like: https://github.com/pytorch/pytorch/pull/102858

```
>>> x = torch.tensor([1], device=xm.xla_device())
>>> x.is_xla
True
>>> x.is_cpu
False
>>> x = torch.tensor([1])
>>> x.is_cpu
True
>>> x.is_xla
False
```

Attn: @albanD
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103100
Approved by: https://github.com/albanD
2023-06-22 23:31:04 +00:00
Charlie West-Taylor
5eb7325bc7 Add autocast support for IPU (#103890)
As part of this, a new `AutocastIPU` dispatch key has been added.

There's an existing PR, #85043, to make `Autocast` a proper per-backend functionality key, but it ran into issues with layering with other functionality keys and went stale.

This has been tested in the out-of-tree IPU PyTorch backend.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103890
Approved by: https://github.com/albanD
2023-06-22 15:38:45 +00:00
Aleksandar Samardžić
09fdea8564 Fix autograd issue with identity conversions (#92022)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92022
Approved by: https://github.com/pearu, https://github.com/mtaaooby, https://github.com/amjames, https://github.com/cpuhrsch
2023-06-21 21:23:03 +00:00
xuanqi
b27c3558a4 [RFC]: Create aten native op for constrain_range (#103346)
At high current implementation of constrains functions (constrain_as_**) will raise exception for the following code snippets:
```
def f(x):
    a = x.item()
    constrain_as_size(a, 4, 7)
    return torch.empty((a, 4))

inp = torch.tensor([5])
ep = torch._export.export(f, (inp,))
```

The reason is because current constrain logic is:
1) Purely python so it won't survive AOT export (the full node is gone after AOT export since AOT export only maintains aten level op).
2) Utilize side effect to add range constraints for traced symbol's shape env ([code](9591e52880/torch/fx/experimental/symbolic_shapes.py (L370-L372))).
3) If runtime assertion is turned on (by default). [`_AddRuntimeAssertionsForConstraintsPass`](9591e52880/torch/_export/passes/add_runtime_assertions_for_constraints_pass.py (L98-L100)) will try to append assertion node based on range constrains extracted from shape env of symbol during another interpretation round.
4). However, since 1), in the round of AOT export, range constraints logic won't run for symbols generated during this round. And later there is no range constrains information available for assertion round and caused issue.
5) As a result of above, it will failure at `torch.empty((a, 4))` (there is no constrains for `a` that it must be positive).

The fix here is just to implement range constrain logic as a native aten op (CPU implementation as no-op) to make it be able to survive AOT export.

**NOTE:**
[Logic](2d745b95d7/torch/fx/experimental/symbolic_shapes.py (L350-L365C15)) within [`constrain_range`](2d745b95d7/torch/fx/experimental/symbolic_shapes.py (LL313C74-L313C74)) is split out as `constrain_range_int` to capture case when non `SymInt` is passed in and reused in the new `_constrain_range`. The reason is when non `SymInt` is provided:
* If it directly calls `sym_constrain_range`, the C++ version will be called which will be no-op.
* So in this case it calls `constrain_range_int` instead to be able to capture issue like user provides a input whose tensor's shape could be out of range during exporting, like the following for above code example:
```
...
inp = torch.tensor([10])
ep = torch._export.export(f, (inp,)) # immediately raise error
```

Differential Revision: [D46734204](https://our.internmc.facebook.com/intern/diff/D46734204)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103346
Approved by: https://github.com/tugsbayasgalan
2023-06-16 14:55:40 +00:00
Nikita Vedeneev
056d92e2a0 sparse.mm backward: performance improvements (#94991)
`torch.sparse.mm` - faster and without syncs in "most" cases.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94991
Approved by: https://github.com/Skylion007, https://github.com/pearu, https://github.com/cpuhrsch
2023-06-12 20:57:29 +00:00
Richard Zou
74f10b9ea5 Switch most Python RAII guard usages to context manager (#102642)
There are some I can't easily switch due to reasons like:
- Dynamo modelling the guard
- BC concerns (for torch.autograd.set_multithreading_enabled)

Test Plan:
- existing tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/102642
Approved by: https://github.com/albanD
2023-06-01 16:28:37 +00:00
leslie-fang-intel
488a4303a5 Enable quantized_max_pool3d (#101654)
**Summary**
Enable `quantized_max_pool3d` kernel to fix the issue https://github.com/pytorch/pytorch/issues/101386.

**Test Plan**
```
clear && python -u -m pytest -s -v test_quantized_op.py -k test_max_pool3d
clear && python -u -m pytest -s -v test_quantized_op.py -k test_max_pool3d_nhwc
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/101654
Approved by: https://github.com/albanD, https://github.com/jgong5, https://github.com/mingfeima
2023-05-23 00:45:38 +00:00
Tugsbayasgalan Manlaibaatar
d4bf76c2a4 Persist torch.assert in aten graph (#100101)
This PR introduces a new operator called aten._assert_async.msg, which allows passing a tensor value and assertion message as inputs. As part of TorchDynamo, we're replacing the use of torch._assert with this new operator so that make_fx also knows how to handle assertions. This is subset of https://github.com/pytorch/pytorch/pull/98878, refer there for historic reviews.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/100101
Approved by: https://github.com/jansel
2023-04-28 07:31:43 +00:00
Justin Chu
6e3cdcad08 Fix flake8 lint errors - part 2 - manual fixes (#99799)
<!--
copilot:all
-->
### <samp>🤖 Generated by Copilot at 8aef78f</samp>

### Summary
📝🚀🛠️

<!--
1.  📝 for modifying the logging format and style
2.  🚀 for improving performance and avoiding unnecessary string creation
3.  🛠️ for fixing flake8 issues
-->
This pull request updates some logging calls to use old-style string formatting with `%s` placeholders instead of f-strings in `torch/_dynamo/logging.py`, `torch/_functorch/compilers.py`, and `torch/fx/passes/pass_manager.py` as part of a logging standardization effort. It also adds a `# noqa: F404` comment to the `import __future__` statement in `torch/overrides.py` to fix a flake8 warning.

> _`log` uses old style_
> _formatting strings with `%s`_
> _logging is faster_

### Walkthrough
*  Standardize logging format and style to use old-style string formatting with `%s` placeholders instead of f-string syntax for performance and consistency ([link](https://github.com/pytorch/pytorch/pull/99799/files?diff=unified&w=0#diff-18807f7fd187b8bc8e69e93722566195b36d5bf269099b415a6f90b552228d6bL55-R55), [link](https://github.com/pytorch/pytorch/pull/99799/files?diff=unified&w=0#diff-fae8a66564055743ec031edb87eb22edeebf7fdebef9d21660d5e6a6252e5222L370-R373), [link](https://github.com/pytorch/pytorch/pull/99799/files?diff=unified&w=0#diff-5f3e37ded032f24e247dcf4a3be4b73ea0cf21382e342631742e5a04550202e1L72-R72))
*  Suppress flake8 warning for `import __future__` statement in `torch/overrides.py` with `# noqa: F404` comment ([link](https://github.com/pytorch/pytorch/pull/99799/files?diff=unified&w=0#diff-4f601fe7f31e875ee4354882c0bb490bc35e51d3d413d058cc5fda3be8ca9f15L23-R23))

Pull Request resolved: https://github.com/pytorch/pytorch/pull/99799
Approved by: https://github.com/Skylion007
2023-04-24 06:03:26 +00:00
Guang Yang
c377a8590b Add nonzero_static() op to pytorch to unblock export (#97417)
Summary: Add new experimental python op (`torch.nonzero_static`) for export. There is NO cuda impl included in this PR

Example:

Say input tensor is `x = torch.tensor([[1, 0], [3, 2]])`

call regular `nonzero()` on x will give you a tensor `tensor([[0, 0], [1, 0], [1, 1])`
call `nonzero_static(x, size=4)` on x will give you a tensor `tensor([[0, 0], [1, 0], [1, 1], [fill_value, fill_value])` (padded)
call `nonzero_static(x, size=2)` on x will give you a tensor `tensor([[0, 0], [1, 0])` (truncated)

Test Plan:
**Unit Tests**
```
buck test @mode/dev-nosan //caffe2/test:test_dynamo -- 'caffe2/test:test_dynamo - test_export.py::ExportTests::test_export_with_nonzero_static' -- 'caffe2/test:test_dynamo - test_misc.py::MiscTests::test_nonzero_static'
```

**PT2 Export with `nonzero_static()`**
Example of `GraphModule` in the exported graph
```
def forward(self, x):
    arg0, = fx_pytree.tree_flatten_spec(([x], {}), self._in_spec)
    nonzero_static_default = torch.ops.aten.nonzero_static.default(arg0, size = 4);  arg0 = None
    return pytree.tree_unflatten([nonzero_static_default], self._out_spec)
```

Differential Revision: D44324808

Pull Request resolved: https://github.com/pytorch/pytorch/pull/97417
Approved by: https://github.com/ezyang
2023-04-11 05:13:36 +00:00
BJ Hargrave
555ab310dc Add itemsize and nbytes properties to Tensor (#98322)
Adds properties for itemsize and nbytes to Tensor matching the properties in NumPy.

Fixes https://github.com/pytorch/pytorch/issues/12728

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98322
Approved by: https://github.com/ezyang
2023-04-05 12:11:55 +00:00
Joel Schlosser
77e73b9b7a Refactor NT offsets metadata to be a Tensor (#96909)
It's tedious work, but somebody's gotta do it.

Benefits:
* Enable access to offsets metadata from Python via private API (for validation, etc.)
* Consistency with nested sizes / strides metadata
* Needed for SymInt-ifying offsets metadata
* more TBD

Bonus:
* Remove `_tensor` suffixes from metadata / getter names
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96909
Approved by: https://github.com/drisspg
2023-03-21 18:51:35 +00:00
Pearu Peterson
2abcafcfd8 Add masked_grad kw argument to to_dense (#96095)
As in the title.

The `masked_grad` kw argument is required for `to_dense` backward to distinguish the expected semantics of sparse tensors. `masked_grad=True` means that the `to_dense` backward will apply a mask to the returned gradient where the mask is defined by the input indices. The default semantics implies `masked_grad==True` for BC but see the [comment](https://github.com/pytorch/pytorch/pull/96095/files#diff-d4df180433a09071e891d552426911c227b30ae9b8a8e56da31046e7ecb1afbeR501-R513) in `to_dense_backward`.

As a consequence, existing code that is run through autograd engine must replace `.to_dense()` calls with `.to_dense(masked_grad=False)`. For example,
```python
torch.autograd.gradcheck(lambda x: torch.sum(x, [0]).to_dense())
torch.autograd.gradcheck(lambda x: torch.sparse.sum(x, [0]).to_dense())
```
(recall, gradcheck has `masked=False` as default) must be updated to
```python
torch.autograd.gradcheck(lambda x: torch.sum(x, [0]).to_dense(masked_grad=False))
torch.autograd.gradcheck(lambda x: torch.sparse.sum(x, [0]).to_dense(masked_grad=True), masked=True)
```

Fixes https://github.com/pytorch/pytorch/issues/95550

Pull Request resolved: https://github.com/pytorch/pytorch/pull/96095
Approved by: https://github.com/cpuhrsch
2023-03-16 21:38:11 +00:00
Edward Z. Yang
ce950b412f Reland "Add torch.empty_permuted (#95069)" (#95208)
This reverts commit 92e03cd583.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/95208
Approved by: https://github.com/albanD
2023-02-21 18:02:48 +00:00
PyTorch MergeBot
92e03cd583 Revert "Add torch.empty_permuted (#95069)"
This reverts commit bedeb1f014.

Reverted https://github.com/pytorch/pytorch/pull/95069 on behalf of https://github.com/jeanschmidt due to Breaking internal builds. More in https://fburl.com/phabricator/ztrxrroq
2023-02-21 12:05:20 +00:00
Edward Z. Yang
bedeb1f014 Add torch.empty_permuted (#95069)
torch.empty_permuted is a generalized version of torch.empty(memory_format=...), where you can pass an arbitrary physical layout as a tuple of dims to allow you to setup dense, non-overlapping tensors with non-standard memory format. Check the docblock for a full description of semantics.

The initial motivation for this PR is with guard-less unbacked SymInts. Traditionally, the way we allocate dense tensors with arbitrary layout is with `empty_strided`. However, `empty_strided` does not know that the given strides are actually contiguous, and must test this manually to find out if it is the case. With `empty_permuted`, this is known statically to be the case and helps us skip some 0/1 guards.

However, I also think torch.empty_permuted is a useful API in its own right. It is technically possible to simulate this with an empty and a permute; however, there are some downsides:

* The manual incant is tricky to work out. To allocate an NHWC tensor, the invocation is `torch.empty(N, H, W, C).permute(0, 3, 1, 2)`; the permute call has to take NHWC to NCHW, and is the *inverse* of the permutation people are typically thinking of when they talk about NHWC (0, 2, 3, 1). Instead, torch.empty_permuted lets you say `torch.empty_permuted((N, C, H, W), (0, 2, 3, 1))`, letting you provide the intuitive permutation. It can be literally be read off as NHWC if you assign N=0, C=1, H=2, W=3.
* An empty(requires_grad=True).permute() is no longer a leaf tensor. You can force it to be a leaf with a detach(), but it is more straightforward and less error prone to allow directly allocating a tensor with the correct permutation.

It is also technically possible to simulate this with empty_strided. However, this requires the user to manually compute the contiguous output strides and is bad from a reduction of guards perspective. For what it's worth, this is one of the more common uses of as_strided in the wild, and it would be nice to get rid of it.

A nice enhancement of this feature would be to accept `physical_layout` anywhere `memory_format` is accepted. However, this would be a pretty involved change, so I'm doing the easy thing instead.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/95069
Approved by: https://github.com/malfet, https://github.com/ngimel, https://github.com/albanD, https://github.com/dagitses
2023-02-20 00:23:10 +00:00
Mikayla Gawarecki
c7c7238976 Fix bug in unsqueeze_nested stride calculation (#88688)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88688
Approved by: https://github.com/cpuhrsch
2023-02-10 17:00:04 +00:00
Aaron Gokaslan
1e2d82b8e4 [BE] Merge isinstance calls together (#94419)
Simplify and speeds up isinstance calls by checking for multiple types at the same time.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94419
Approved by: https://github.com/ezyang
2023-02-09 00:47:26 +00:00
albanD
496c0a207b Make segment_reduce properly private. (#93166)
I am attempting not to change the aten function to reduce the amount of BC issues on the torchscript side.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/93166
Approved by: https://github.com/ngimel
2023-02-06 18:32:23 +00:00