Commit Graph

120 Commits

Author SHA1 Message Date
Elias Ellison
a5b627a0bf add assert statements (#13408)
Summary:
Adding assert statements to unblock standard library.

The same limitations that apply to the existing implementation of Exceptions apply to this as well
(No control-flow logic, & we ignore the specific Exception thrown).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13408

Reviewed By: driazati

Differential Revision: D12876451

Pulled By: eellison

fbshipit-source-id: 767ba5a50ba7c5dd6a857ed4845ac076a81cf305
2018-11-01 10:01:07 -07:00
David Riazati
404f8660e7 Add string.format() (#13157)
Summary:
This PR adds `aten::format` as a builtin op for strings with the basic formatting semantics of Python.

It also adds varargs to the schema parser (with the limitation that the varargs item is the last argument, i.e. `(*args, **kwargs)` is not supported) and to the compiler
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13157

Differential Revision: D12832537

Pulled By: driazati

fbshipit-source-id: 17c1a5615bb286c648fc9e38f2ebe501b064c732
2018-10-31 12:50:56 -07:00
Elias Ellison
59f8e8ada7 First step at adding exceptions (#12789)
Summary:
This is a first step towards adding exceptions. We need minimal support in order to begin converting the torch library to weak script mode (which is the main goal here).

Some limitations (that are documented in the tests & compiler):
1. Cannot assign exceptions to variables
2. Any name after raise is being treated as a valid Exception
3. No control flow analysis yet. Below a will be undefined:

if True:
     a = 1
else:
     raise Exception("Hi")
return a
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12789

Differential Revision: D12848936

Pulled By: eellison

fbshipit-source-id: 1f60ceef2381040486123ec797e97d65b074862d
2018-10-30 20:25:50 -07:00
James Sun
4d62eef505 Add Future to IValue (#12976)
Summary:
Future now is an IValue. prim::Wait now is replaced by aten::wait

This PR is built on top of #12925
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12976

Differential Revision: D10861483

Pulled By: highker

fbshipit-source-id: 9e17926a625bc502fb12335ef9ce819f25776be7
2018-10-27 10:00:35 -07:00
Wanchao Liang
7ca995c815 Add optional default type annotation to support JIT None default value (#13161)
Summary:
As titled, this PR is a part of tasks to unblock exporting the standard library
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13161

Differential Revision: D10866927

Pulled By: wanchaol

fbshipit-source-id: 50038dbe6840b097b98cbed9d46a189a64e82302
2018-10-26 11:38:50 -07:00
Zachary DeVito
ce0d3e9b35 Bind inplace and _out variants into JIT (#13093)
Summary:
This commit is a minimial initial pass at adding inplace and _out variants to the JIT.
It changes gen_jit_dispatch.py to add bindings for these operators, and it also
supplements the FunctionSchema with alias information for these operators and for
viewing operators.

Tests are very minimal and will need to be improved in future commits.

Notes:

* Custom operator tests needed to be changed since _out variants add overloads, which
  the custom operator pipeline does not handle when called from python. This commit
  registers special test ops in the _test namespace for this purpose.
* Extends the schema parser to parse alias annotations more robustly.
* Extends FunctionSchema with `writes()` a set of alias set names that the op will write to,
  and `annotatedType()` which will return AnnotatedType objects which contain the alias_set
  information that was parsed from the schema.
* Disables all optimizations in graph executor when a mutable operator is found. This
  is something that will be improved in the future but is necessary for correctness now.
* Adds annotate_ops to gen_jit_dispatch which adds aliasing information to all of the
  aten ops.
* Adds AnnotatedType to the type hierarchy which is used to mark List and Tensor types
  with their alias_set. These types only appear in schema when you call annotatedType
  and are erased from types in normal use.
* Extends jit::Type with .containedTypes() and .withContained(new_types). The first returns all types contained
  within the type (e.g. T for T[], or {T,L} for a tuple (T, L)). The second constructs a new
  version of the same type, replacing the contained types with new_types. This simplifies
  a lot of logic for recursively cleaning up types.
* Refactor List[T] into a common part that is shared with Annotated[T] and can be shared
  with Optional[T] and Future[T] when they are merged.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13093

Differential Revision: D10848176

Pulled By: zdevito

fbshipit-source-id: d057f23eeb99cde8881129b42d3f151ed5e7655d
2018-10-26 10:37:20 -07:00
Wanchao Liang
4e1c64caee Add c10::optional to type syntax (#12582)
Summary:
This PR adds optional type to ATen native, autograd, JIT schema and Python Arg parser, closes #9513. It allows us to use optional default values (including None) for function signature and implementations like clamp, etc., and also let us remove the python_default_init hack.

Follow up:

remove python_default_init completely.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12582

Differential Revision: D10417423

Pulled By: wanchaol

fbshipit-source-id: 1c80f0727bb528188b47c595629e2996be269b89
2018-10-25 16:08:29 -07:00
Zachary DeVito
6c8d47f2af Add methods to FunctionSchema (#12967)
Summary:
We are beginning to use this class in a wider reaching set of use-cases. This PR refactors it so that we always access schema properties through methods. This will make adding extra information like alias information easier (i.e. we can a version of `type()` that returns the type with alias information and another version that returns a type without that information).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12967

Differential Revision: D10502674

Pulled By: zdevito

fbshipit-source-id: a88783ed8f20ab3be6460c12da95f9f940891c44
2018-10-24 10:32:27 -07:00
Elias Ellison
f9b7ce9c99 Add tuple indexing support for constant integers (#11492)
Summary:
Add support indexing tuples with constant integers by creating a new prim::TupleIndex operator.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11492

Differential Revision: D9811996

Pulled By: eellison

fbshipit-source-id: a458c2522b3c81476252d920e27a8d6c7b9a036b
2018-10-23 17:52:03 -07:00
Elias Ellison
f3e1fe5ca5 add string as supported input / output of script functions (#12731)
Summary:
Add strings to our set of built-in types for annotations. This is used in the the functional library.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12731

Differential Revision: D10453153

Pulled By: eellison

fbshipit-source-id: f54177c0c529f2e09f7ff380ddb476c3545ba5b0
2018-10-19 11:17:19 -07:00
Zachary DeVito
c8ac878b98 Fix bug in script for where (#12385)
Summary:
Where is declared as:

```
where(Tensor condition, Tensor self, Tensor other)
```

Previously the compiler assumed that self must be the first argument.
But this is not true in practice for `where` and for a few other exceptions.

This changes the compiler to take an explicit self argument which gets matched
to the `self` that appears in the schema.

Note that this requires renaming a variant of pow, which referred to
an exponent Tensor as `self` because otherwise that would cause `t^3`
to match against `t` being the exponent.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12385

Differential Revision: D10364658

Pulled By: zdevito

fbshipit-source-id: 39e030c6912dd19b4b0b9e35fcbabc167b4cc255
2018-10-16 21:05:14 -07:00
Zachary DeVito
86aa6a61e0 Dedup MethodValue and FunctionValue (#12589)
Summary:
... they are basically the same class and I didn't see it in the initial PR. I also got resolvers back onto std::functions by keeping the function_table logic local to defineMethodInModules.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12589

Differential Revision: D10383103

Pulled By: zdevito

fbshipit-source-id: 1b0a85eb4f112bc28256cac44446d671d803d3a2
2018-10-15 15:00:54 -07:00
Yangqing Jia
713e706618 Move exception to C10 (#12354)
Summary:
There are still a few work to be done:

- Move logging and unify AT_WARN with LOG(ERROR).
- A few header files are still being plumbed through, need cleaning.
- caffe2::EnforceNotMet aliasing is not done yet.
- need to unify the macros. See c10/util/Exception.h

This is mainly a codemod and not causing functional changes. If you find your job failing and trace back to this diff, usually it can be fixed by the following approaches:

(1) add //caffe2/c10:c10 to your dependency (or transitive dependency).
(2) change objects such as at::Error, at::Optional to the c10 namespace.
(3) change functions to the c10 namespace. Especially, caffe2::MakeString is not overridden by the unified c10::str function. Nothing else changes.

Please kindly consider not reverting this diff - it involves multiple rounds of rebasing and the fix is usually simple. Contact jiayq@ or AI Platform Dev for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/12354

Reviewed By: orionr

Differential Revision: D10238910

Pulled By: Yangqing

fbshipit-source-id: 7794d5bf2797ab0ca6ebaccaa2f7ebbd50ff8f32
2018-10-15 13:33:18 -07:00
Xiang Gao
97eec33f80 Allow tensor.device, tensor.dtype, and tensor.shape in JIT (#12363)
Summary:
Closes https://github.com/pytorch/pytorch/issues/12364
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12363

Differential Revision: D10362491

Pulled By: ezyang

fbshipit-source-id: f2716e656977370c5ec51cb15f62b6376798e617
2018-10-12 11:29:04 -07:00
James Reed
a4120fa132 Get rid of emitApplyIdent (#12504)
Summary:
And reroute builtin/CompilationUnit function resolution through one resolution pathway
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12504

Differential Revision: D10319920

Pulled By: jamesr66a

fbshipit-source-id: 3ab9877664dd32b97136a7625d0688e1adc0c022
2018-10-11 10:53:53 -07:00
Elias Ellison
00aedfc0e2 constant pooling pass (#12222)
Summary:
Add a pass to move all constants to the beginning of the graph, and deduplicate.

This extends https://github.com/pytorch/pytorch/pull/10231 to also handle constants introduced in inlining, constant propagation, etc.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12222

Reviewed By: driazati

Differential Revision: D10201616

Pulled By: eellison

fbshipit-source-id: bc9c5be26868c8b5414257a0d4462de025aeb9bd
2018-10-08 11:55:02 -07:00
David Riazati
d1ac1eba3b Add bool type to IR (#11834)
Summary:
This PR adds a bool type to `IValue` and puts it into place.

* changes conds for `prim::If` and `prim::Loop` to use `bool` type
* changes operators that take `bool`s to match their native ops
* fixes ambiguous `aten` ops `aten::std` and `aten::var`
	* fixes tests in `test_jit.py TestJitGenerated`
		```
		'test_std_dim',
		'test_std_dim_1d',
		'test_std_dim_1d_neg0',
		'test_std_dim_neg0',
		'test_var_dim',
		'test_var_dim_1d',
		'test_var_dim_1d_neg0',
		'test_var_dim_neg0'
		```
* adds `prim::BoolToTensor` and `prim::TensorToBool`

apaszke zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11834

Differential Revision: D9928570

Pulled By: driazati

fbshipit-source-id: 373c53df2f1a8ffa9e33d9a517002fbeef25f3eb
2018-10-03 12:40:03 -07:00
Zachary DeVito
e7e10e60e0 Introduce builtin script functions (#12141)
Summary:
This functionality replaces the Scalar-Tensor builtin operators,
with builtin functions.

Builtin functions are used in place of operators where one operator
can be defined using a composition of another. This simplifies later
optimization passes by allowing us to have fewer operator.

In the future, builtin functions can be used for other purposes.
For example, we can define derivative functions as code rather than
building graphs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12141

Reviewed By: ezyang

Differential Revision: D10088065

Pulled By: zdevito

fbshipit-source-id: a2acb06346e649c4c8a2fe423b420871161c21cf
2018-09-28 10:55:08 -07:00
Michael Suo
7f35e92af2 mutable lists (#10700)
Summary:
This PR implements the design that we discussed. Changes:
- Added a World token IValue and type. The IValue is basically a dummy struct for now, in the future we may extend it (say, add thread-local state).
- Effectful ops explicitly declare they are mutable by having World tokens as inputs and outputs in their schema.
- Purely functional ops that use mutable values will get "fenced" and the world token will be threaded through the fences
- AnnotateEffects pass which wires up all the world tokens together.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10700

Reviewed By: eellison

Differential Revision: D9547881

Pulled By: michaelsuo

fbshipit-source-id: ebbd786c31f15bf45e2ddb0c188438ff2f5f3c88
2018-09-27 19:25:13 -07:00
Zachary DeVito
478803a75f Introduce type variables to implement generic list operators (#12040)
Summary:
We generate specialized list operations for int, float, and Tensor lists so that small lists of integers like the arguments to conv do not involve tons of boxing code.

This PR adds a fallback GenericList for List types that contain any other type. It does so by adding type variables to `jit::Type`, and machinery for matching/replacing the type variables during `tryMatchSchema` and operator lookup.

It also modifies the builtin list ops to include a fallback that works on a GenericList object that simply holds IValues. This is distinguished from IValue's tuple type so that conversion to/from Python still happens losslessly.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12040

Differential Revision: D10037098

Pulled By: zdevito

fbshipit-source-id: 0c5f2864d12e7d33554bf34cc29e5fb700dde150
2018-09-26 17:02:51 -07:00
David Riazati
7671f4ab1c Add math to scope when using inf in tests (#11302)
Summary:
This fixes #8515 which was mostly issues in the test themselves. As long
as `math` is imported in the scope in which the script runs it resolves
to a `prim::Constant` with value `inf` correctly. This PR adds this to
the `test_jit.py` tests involving `inf` and adds a test to demonstrate
`inf` in a non-generated test.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11302

Differential Revision: D9684336

Pulled By: driazati

fbshipit-source-id: 73df2848dfdb45ab50690a7c88df8fda269a64eb
2018-09-17 14:08:32 -07:00
David Riazati
6f53b4efea Remove implicit bool casts (#11503)
Summary:
In order to comply with Python's rules on implicit casting of
non-booleans to booleans, this PR removes implicit casting in favor of
explicit casts via `bool()`

cc zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11503

Differential Revision: D9780869

Pulled By: driazati

fbshipit-source-id: c753acaca27f4e79dddf424c6b04674f44a6aad9
2018-09-13 11:26:45 -07:00
Zachary DeVito
ab3a2d25fb Improve error messages when trying to use nested lists.
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/11606

Differential Revision: D9806949

Pulled By: zdevito

fbshipit-source-id: c38abc4ce745a63d26a64f6aa1b41350e4b1acd5
2018-09-13 11:10:38 -07:00
Wanchao Liang
739e6af869 Add reminder % to the jit
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/11557

Reviewed By: apaszke

Differential Revision: D9784642

Pulled By: wanchaol

fbshipit-source-id: b7c60c3e9534555c9d7db83769965b3f2f277cdf
2018-09-12 12:40:38 -07:00
Zachary DeVito
289a8c9b7d Allow train/eval, and non-Tensor arguments to python functions (#11505)
Summary:
This whitelists train/eval functions in script modules, and tests that nested nn.Modules still work.

This also changes the code for calling python functions from script to allow non-tensor inputs/outputs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11505

Differential Revision: D9765466

Pulled By: zdevito

fbshipit-source-id: 1177bff931324422b69e18fa0bbaa82e3c98ec69
2018-09-11 15:05:09 -07:00
James Reed
deac304b6b Bugfix for basic slicing
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/11428

Differential Revision: D9753999

Pulled By: jamesr66a

fbshipit-source-id: cfc4163a5a06b41beb808a4e24650d71f5d91f4f
2018-09-11 09:39:29 -07:00
Richard Zou
4d678790c5 enable advanced indexing with tensors (#10862)
Summary:
On the way to #10774

This PR adds advanced indexing with tensors.
The approach is to desugar advanced indexing into an at::index op.
This is exactly how normal pytorch does it.
[(I used this code as reference)](https://github.com/pytorch/pytorch/blob/master/torch/csrc/autograd/python_variable_indexing.cpp)

Supporting sequences is a little tricky because JIT script doesn't have
an easy way to turn arbitrary n-dimensional python lists into a tensor
(it would be easy if we supported `torch.tensor`), so that'll come
in a future PR.

cc jamesr66a zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10862

Differential Revision: D9659449

Pulled By: zou3519

fbshipit-source-id: 56d293720d44c0fd27909e18327ab3985ddfced6
2018-09-06 16:41:45 -07:00
David Riazati
fef52cc1f8 Add resolver for 'torch' module (#10847)
Summary:
This lets you compile builtin functions from C++ without having a dependence on Python

```cpp
auto module = torch::jit::compile(JIT"(
def my_script_method(x, y):
    return torch.relu(x) + y
)");
IValue result = module->run_method("my_script_method", 1, 2);
```

goldsborough zdevito apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10847

Differential Revision: D9543461

Pulled By: driazati

fbshipit-source-id: 6160dae094030ca144a0df93cb9f26aa78c8cf27
2018-09-06 12:42:21 -07:00
Elias Ellison
539579aa9a Logical short circuit (#11116)
Summary:
Adding short circuit evaluation to AND or OR. The second expression of and AND or OR gets lifted into an if branch, which is conditionally evaluated.

BatchOps was using the expression `dims = dims1 or dims2`, where dims is often an empty tensor. This nows throws an error, because dims1 gets cast to a boolean, and you can't convert an empty tensor to a scalar. It now matches the behavior of pytorch in python.

One thing that came up is if the second expression in an and/or in python gets returned, it does not get coerced to a boolean.

`tensor == (False or tensor)`
`tensor == (True and tensor)`

We do not currently support this.

edit: wording
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11116

Differential Revision: D9618168

Pulled By: eellison

fbshipit-source-id: 93b202be2f222d41f85d38d9c95f04d1749e8343
2018-09-04 09:25:13 -07:00
Owen Anderson
7eba9849c1 Pool constants during script compilation. (#10231)
Summary:
This places all constants in the entry block of the graph, and de-duplicates them.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10231

Differential Revision: D9601501

Pulled By: resistor

fbshipit-source-id: daa10ed8c99e9894830d6f3e5d65c8d3ab5ea899
2018-09-01 22:40:50 -07:00
Adam Paszke
f3c3127c67 Don't flatten output lists in the JIT IR (#10949)
Summary:
Operators like aten::chunk used to return a number of tensors, but
now return a list. To make it easier to do shape prop through
aten::chunk and fuse it, I've also introduced prim::ConstantChunk,
which behaves like the previous implementation (has a variable length
output list).

The downside of this PR is that the introduction of more lists to the IR causes the LSTM and MiLSTM graphs to be considered as non-differentiable by the graph executor. I verified that they are still optimize correctly, and my next patch (that changes how the specializations/differentiation works) will restore those.

zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10949

Reviewed By: zdevito

Differential Revision: D9556823

Pulled By: apaszke

fbshipit-source-id: 33e63b17fc7247cac6cfc05eb7eb9bf069b499ee
2018-08-30 19:54:39 -07:00
James Reed
beeec47041 Sanity checks for tracing (#10841)
Summary:
TODO: integrate into torch.onnx.export -- separate PR

*Problem:* We have a facility to trace PyTorch operations on Python code, but there are several failure modes where the trace is not representative of the actual underlying computation:

* The tracer encountered dynamic control flow
* Some computation escaped the tracer, and appeared as a Constant tensor node in the graph
* Some stateful function was traced, e.g. someone did an optimization in Python by memoizing function outputs

*Objective*: In an ideal world, this whole process would be automated and the user can trust that the system will magically capture the intended semantics from the program. Realistically speaking, we will likely have to settle with a human-in-the-loop error reporting system, allowing for the user to identify problems and modify the source code to allow for tracing.

*Stage 1* (this PR): Output-level checking & graph diff. torch.jit.trace gains a kwarg 'check_inputs', which is a list of tuples of input arguments. We will iterate through the list and trace the function again for each set of check inputs. We'll also interpret the original trace with these inputs and compare output values and graphs, printing a diff of the graph if there is a difference.

Examples:

```
torch.jit.trace(torch.rand(3, 4), check_inputs=[(torch.rand(4, 5),)])
def foo(x):
    y = torch.arange(0, x.shape[0]).float()
    return x + y.unsqueeze(1)
```

```
torch.jit.TracingCheckError: Tracing failed sanity checks!
ERROR: Graphs differed across invocations!
	Graph diff:
		  graph(%0 : Dynamic) {
		-   %1 : Dynamic = prim::Constant[value= 0  1  2 [ CPULongType{3} ]]()
		?                                                              ^
		+   %1 : Dynamic = prim::Constant[value= 0  1  2  3 [ CPULongType{4} ]]()
		?                                                +++              ^
		    %2 : int = prim::Constant[value=0]()
		    %3 : Dynamic = aten::_cast_Float(%1, %2)
		    %4 : int = prim::Constant[value=1]()
		    %5 : Dynamic = aten::unsqueeze(%3, %4)
		    %6 : int = prim::Constant[value=1]()
		    %7 : Dynamic = aten::add(%0, %5, %6)
		    return (%7);
		  }
	Node diff:
		- %1 : Dynamic = prim::Constant[value= 0  1  2 [ CPULongType{3} ]]()
		?                                                            ^
		+ %1 : Dynamic = prim::Constant[value= 0  1  2  3 [ CPULongType{4} ]]()
		?                                              +++              ^
	Trace source location:
		dank.py(5): foo
		/Users/jamesreed/onnx-fairseq/pytorch/torch/jit/__init__.py(402): wrapper
		dank.py(3): <module>
	Check source location:
		dank.py(5): foo
		/Users/jamesreed/onnx-fairseq/pytorch/torch/jit/__init__.py(281): check_trace
		/Users/jamesreed/onnx-fairseq/pytorch/torch/jit/__init__.py(408): wrapper
		dank.py(3): <module>
ERROR: Tensor-valued Constant nodes differed in value across invocations. This often indicates that the tracer has encountered untraceable code.
	Node:
		%1 : Dynamic = prim::Constant[value= 0  1  2 [ CPULongType{3} ]]()
	Source Location:
		dank.py(5): foo
		/Users/jamesreed/onnx-fairseq/pytorch/torch/jit/__init__.py(402): wrapper
		dank.py(3): <module>
	Comparison exception:
		Not equal to tolerance rtol=1e-07, atol=0

		(shapes (3,), (4,) mismatch)
		 x: array([0, 1, 2])
		 y: array([0, 1, 2, 3])

```
==

```
torch.jit.trace(torch.rand(3, 4), check_inputs=[(torch.rand(3, 4),)])
def foo(x):
    y = x.data
    return x + y
```

```
torch.jit.TracingCheckError: Tracing failed sanity checks!
ERROR: Traced function outputs do not match the Python function outputs.
ERROR: Tensor-valued Constant nodes differed in value across invocations. This often indicates that the tracer has encountered untraceable code.
	Node:
		%1 : Dynamic = prim::Constant[value=<Tensor>]()
	Source Location:
		dank.py(6): foo
		/Users/jamesreed/onnx-fairseq/pytorch/torch/jit/__init__.py(402): wrapper
		dank.py(3): <module>
	Comparison exception:
		Not equal to tolerance rtol=1e-07, atol=0

		(mismatch 100.0%)
		 x: array([0.397137, 0.956105, 0.169478, 0.560292, 0.392568, 0.108441,
		       0.97645 , 0.34412 , 0.951246, 0.793061, 0.557595, 0.770245],
		      dtype=float32)
		 y: array([0.243178, 0.315964, 0.972041, 0.0215  , 0.927751, 0.457512,
		       0.951092, 0.97883 , 0.048688, 0.118066, 0.779345, 0.271272],
		      dtype=float32)
```

==

```
import torch

torch.jit.trace(torch.rand(3, 4), check_inputs=[(torch.rand(4, 4),)])
def foo(x):
    for _ in range(x.size(0)):
        x = torch.neg(x)
    return x
```

```
torch.jit.TracingCheckError: Tracing failed sanity checks!
ERROR: Traced function outputs do not match the Python function outputs.
ERROR: Graphs differed across invocations!
	Graph diff:
		  graph(%0 : Dynamic) {
		    %1 : Dynamic = aten::neg(%0)
		    %2 : Dynamic = aten::neg(%1)
		    %3 : Dynamic = aten::neg(%2)
		+   %4 : Dynamic = aten::neg(%3)
		-   return (%3);
		?            ^
		+   return (%4);
		?            ^
		  }
```

==

```
import torch

def foo(x):
    if not hasattr(foo, 'cache'):
        foo.cache = torch.neg(x)
    return x + foo.cache

traced = torch.jit.trace(torch.rand(3, 4), check_inputs=[(torch.rand(3, 4),)])(foo)
```

```
torch.jit.TracingCheckError: Tracing failed sanity checks!
ERROR: Traced function outputs do not match the Python function outputs.
ERROR: Graphs differed across invocations!
	Graph diff:
		  graph(%0 : Dynamic) {
		-   %1 : Dynamic = aten::neg(%0)
		+   %1 : Dynamic = prim::Constant[value=<Tensor>]()
		    %2 : int = prim::Constant[value=1]()
		    %3 : Dynamic = aten::add(%0, %1, %2)
		    return (%3);
		  }
	Node diff:
		- %1 : Dynamic = aten::neg(%0)
		+ %1 : Dynamic = prim::Constant[value=<Tensor>]()
	Trace source location:
		test.py(5): foo
		/Users/jamesreed/onnx-fairseq/pytorch/torch/jit/__init__.py(402): wrapper
		test.py(8): <module>
	Check source location:
		test.py(6): foo
		/Users/jamesreed/onnx-fairseq/pytorch/torch/jit/__init__.py(281): check_trace
		/Users/jamesreed/onnx-fairseq/pytorch/torch/jit/__init__.py(408): wrapper
		test.py(8): <module>
```

The following two examples show instances where program semantics are lost in the Python -> trace transformation, and repeated invocation does not give us useful debug information. Further design in underway for catching these scenarios.

```
import torch

torch.jit.trace(torch.rand(3, 4), check_inputs=[(torch.rand(3, 4),)])
def foo(x):
    for i in range(3):
        x[i, :] = torch.zeros(4)
    return x
```

```
torch.jit.TracingCheckError: Tracing failed sanity checks!
ERROR: Traced function outputs do not match the Python function outputs.
Exception:
Not equal to tolerance rtol=1e-07, atol=0

(mismatch 100.0%)
 x: array([0.830221, 0.915481, 0.940281, 0.555241], dtype=float32)
 y: array([0., 0., 0., 0.], dtype=float32)
```

==

```
import torch

torch.jit.trace(torch.rand(3, 4), check_inputs=[(torch.rand(5, 6),)])
def foo(x):
    x.view(-1).add_(-x.view(-1))
    return x
```

```
torch.jit.TracingCheckError: Tracing failed sanity checks!
ERROR: Traced function outputs do not match the Python function outputs.
Exception:
Not equal to tolerance rtol=1e-07, atol=0

(mismatch 100.0%)
 x: array([0.734441, 0.445327, 0.640592, 0.30076 , 0.891674, 0.124771],
      dtype=float32)
 y: array([0., 0., 0., 0., 0., 0.], dtype=float32)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10841

Differential Revision: D9499945

Pulled By: jamesr66a

fbshipit-source-id: 1f842a32d0b0645259cc43b29700b86d99c59a45
2018-08-28 20:25:26 -07:00
Zachary DeVito
6ce799edd6 Tuples/Lists can now be inputs/outputs to script and other simple fixes. (#10812)
Summary:
* Fix the necessary pathways so that tuples and lists can be inputs to the script.

* prevent linear algebra functions from being run in shape prop because
they frequently will error out for nonsense data.

* favor schema-driven python input conversion where possible.
remaining cases where we directly create Stacks without schema are
only for debugging

* Make the error messages when calling script/trace functions more pythonic

* Simplify FlattenTuples -- now that tuples are supported we can choose to only flatten tuples when needed. This may have to be revisited pending onnx test results, but is necessary for making tuple io work.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10812

Differential Revision: D9477982

Pulled By: zdevito

fbshipit-source-id: ed06fc426e6ef6deb404602a26c435a7fc40ea0c
2018-08-27 14:40:40 -07:00
Adam Paszke
c8b246abf3 Prevent JIT from overspecializing to every single size configuration (#10844)
Summary:
Please review the expects carefully to make sure there are no regressions. I tried to go over them one by one when they changed, but it's sometimes easy to miss finer details.

Summary of changes:

- Renamed `TensorType` to `CompleteTensorType`. Added a new `TensorType` which records only the scalar type, number of dimensions, and device of a value. The argument behind the rename is to encourage people to use `CompleteTensorType` less, as most passes will only have limited information available. To make transition easier `complete_type->cast<TensorType>()` works, and makes our passes work with both kinds of specialization if they don't need extra the extra detail.
- Renamed `ArgumentSpec` to `CompleteArgumentSpec`. Added a new `ArgumentSpec`, which matches argument only at the level of the new `TensorType`.
- Shape analysis can process graphs with both `CompleteTensorType` and `TensorType`.
- Fuser was a part that heavily relied on full shape information being available. Now, we simply try to fuse the largest possible graphs, and have to do run-time checks to make sure they match the code we generate. If they don't, we fall back to regular interpretation. The shape checks are implementing using an optimized method exploiting algebraic properties of shapes with broadcasting, and the relations of broadcasting with pointwise ops. A full written proof of correctness of the shape checking algorithm is included in a comment in `graph_fuser.cpp`.

zdevito ezyang mruberry ngimel csarofeen
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10844

Differential Revision: D9498705

Pulled By: apaszke

fbshipit-source-id: 0c53c2fcebd871cc2a29c260f8d012276479cc61
2018-08-26 09:54:48 -07:00
Elias Ellison
74e6a666b3 If none of the schema match, add ImplicitTensorToNum conversions where needed. (#10180)
Summary:
When matching schema, first try to match without adding TensorToNum conversions. Then make another pass where TensorToNum conversions are allowed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10180

Differential Revision: D9438153

Pulled By: eellison

fbshipit-source-id: 80541b5abd06e9d4187e89dda751f44dab6f58c5
2018-08-24 16:02:00 -07:00
Richard Zou
ca567862b2 Support multidimensional indexing (#10787)
Summary:
Part of #10774.

This PR does the following:
- Support ast.ExtSlice in the frontend. This is done by returning a
  list of ast.Index and ast.Slice.
- Support multidimensional indexing with ints and slices

The general approach is to desugar multidimensional indexing into
at::slice, at::select operations. This is exactly how normal pytorch
does indexing (by desugaring it into at::slice, at::select, and other ops).

I used [this code](https://github.com/pytorch/pytorch/blob/master/torch/csrc/autograd/python_variable_indexing.cpp) as reference.
We should be able to copy the rest of this to implement the missing
indexing features in script (indexing with ellipses, tensors, sequences, etc).

After I'm done implementing the missing indexing features in future prs, I can try to
templatize python_variable_indexing.cpp so that it can work with both JIT
script and normal pytorch indexing, but right now I'm not sure if that's
a good idea or not.

cc zdevito jamesr66a apaszke wanchaol
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10787

Differential Revision: D9481402

Pulled By: zou3519

fbshipit-source-id: 78c9fa42771a037d157879e23e20b87401cf1837
2018-08-24 08:10:32 -07:00
Zachary DeVito
3d43a82440 Add support for vararg style functions. (#10250)
Summary:
Things like `zeros(1,2,3, dtype=torch.int)` are now supported in the script by altering tryMatchSchema to auto-construct the list `[1,2,3]` when it sees inlined members of the list as the last positional arguments.

I suggest reading the commits individually, since the first two incrementally change how we do tryMatchSchema to get it ready for adding vararg list conversion, while the third actually does the modification.

closes #10632
closes #8516
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10250

Differential Revision: D9478235

Pulled By: zdevito

fbshipit-source-id: 0c48caf7a6184e463d9293d97015e9884758ef9c
2018-08-23 15:10:36 -07:00
Elias Ellison
5c0eece2fd Force types on values returned from if blocks to be equivalent (#10281)
Summary:
When emitting if Branches, check that the types on each value returned are equivalent. As with reassignment of values, tensors are not forced to be the same shape or subtype.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10281

Differential Revision: D9466566

Pulled By: eellison

fbshipit-source-id: 746abdeb34a0f68806b8e73726ad5003b536911c
2018-08-22 19:55:38 -07:00
Richard Zou
6c84f7fea0 Relax RHS type assert for augassign (#10730)
Summary:
Augassign (i.e., `x += 1`) gets desugared to an assignment of a binop (`x = x + 1`).
Right now we assert that the RHS of the binop is a tensor,
but it really doesn't have to be because we support scalar/scalar ops and also
list-list ops (i.e., `[1, 2] + [2, 3]`).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10730

Differential Revision: D9465110

Pulled By: zou3519

fbshipit-source-id: 7b118622701f09ce356aca81b8db743d9611097b
2018-08-22 15:10:33 -07:00
Peter Goldsborough
71ddd837d7 Support custom ops in ScriptModule and tidy up test files (#10610)
Summary:
This PR adds support for using custom ops in ScriptModules, the last step for our custom op strategy. You can now write

```
import torch

torch.ops.load_library('libcustom_ops.so')

class Model(torch.jit.ScriptModule):
    def __init__(self):
        super(Model, self).__init__()

    torch.jit.script_method
    def forward(self, input):
        return torch.ops.custom.op(input) + 1

model = Model()
model.forward(torch.ones(5)) # Works
model.save("model.pt") # Works
model = torch.jit.load("model.pt") # Works
```

You can then load the `model.pt` in C++ and execute its `forward` method!

Missing for this was the fact that the script compiler didn't know to convert `ops.custom.op` into a `BuiltinFunction` which then emits a function call. For this I came up with  the following strategy inside `torch/csrc/jit/scrip/init.cpp`:

1. When we access `torch.ops`, we return a `CustomOpValue` (subclass of `PythonValue`), whose purpose is only to return a `CustomOpNamespaceValue` (subclass of `PythonValue`) whenever something under it is accessed.
2. `CustomOpNamespaceValue` will then for each field accessed on it return a `BuiltinFunction`.

This doesn't reduce performance for any calls that are not to `torch.ops` (as opposed to inspecting every function call's name the call site, for example).

I also had to fix `BuiltinFunction` to not assume the namespace is always `aten::`.

A lot of other changes are just tidying up the Python and C++ test harness before I integrate it in CI.

zdevito dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10610

Differential Revision: D9387832

Pulled By: goldsborough

fbshipit-source-id: c00f431db56c7502a66fe1f813fe78067f428ecb
2018-08-21 18:41:27 -07:00
Michael Suo
9e75ec11fb Make empty list literals construct empty Tensor[] (#10705)
Summary:
This will make the common case more natural (no need to do `_construct_empty_tensor_list()`)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10705

Differential Revision: D9411622

Pulled By: michaelsuo

fbshipit-source-id: 2d91fbc5787426748d6e1c8e7bbeee737544dc96
2018-08-20 18:28:28 -07:00
James Reed
585e6b581f Allow method-style casts on tensors (#10641)
Summary:
Closes https://github.com/pytorch/pytorch/issues/10631
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10641

Differential Revision: D9407598

Pulled By: jamesr66a

fbshipit-source-id: a0331f4e9e55d92718cde7a1112fe8c705206b1f
2018-08-20 14:10:21 -07:00
James Reed
32bb4040dd Unified type annotation parsing for script frontends (#10279)
Summary:
After this, all combinations of {String frontend, Python AST Frontend}{Python 3-style type annotations, MyPy-style type comments}{Script method, Script function} should properly accept type annotations.

Possible TODOs:
- Clean up the functions marked HACK
- Clean up the Subscript tree-view to better match the Python AST versions
- Can we use this for Python functions? That's the only place annotations.get_signature() is still needed
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10279

Differential Revision: D9319726

Pulled By: jamesr66a

fbshipit-source-id: b13f7d4f066b0283d4fc1421a1abb9305c3b28fa
2018-08-14 18:13:15 -07:00
Zachary DeVito
61bedc96f0 Schema-based creation of graph nodes (#10198)
Summary:
This commit adds the ability to insert a node with inputs, using the schema to check the inputs are valid types, fill in any default values, and perform standard implicit conversions. Since it is schema based, it will discover and use the right overload.
Constructors to `NamedValue` enable it to be constructed using `IValue` constants so it is possible to use constant values in the input list as well:

```
g.insert(aten::add, {v, 3});
```

Keyword arguments are also supported:

```
g.insert(aten::add, {v}, {{"other", t}, {"scalar", 1}});
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10198

Differential Revision: D9307252

Pulled By: zdevito

fbshipit-source-id: 644620aa85047d1eae1288383a619d50fec44d9b
2018-08-14 10:25:38 -07:00
Michael Suo
0950d7a98d support list slicing (#10318)
Summary:
As title.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10318

Differential Revision: D9254351

Pulled By: michaelsuo

fbshipit-source-id: be891a584dc295b5e353f7f5257d64a356fb9586
2018-08-09 17:25:13 -07:00
Michael Suo
b6402648f4 fix off-by-one bug in open-ended slicing (#10286)
Summary:
Previously, `tensor[i:]` was transformed to `tensor[i:-1]`. This incorrectly leaves off the last element. Noticed this when implementing slicing for list types.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10286

Differential Revision: D9193292

Pulled By: michaelsuo

fbshipit-source-id: df372b815f9a3b8029830dd9e8769f9985a890e7
2018-08-07 00:39:42 -07:00
Michael Suo
5a7c710548 Support some basic list operations (#10225)
Summary:
Support a few basic operators:
- eq
- add
- len
- select (indexing)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10225

Differential Revision: D9172338

Pulled By: michaelsuo

fbshipit-source-id: 6e75ec1453b9589b0fb4698598ecdba5a5fccff9
2018-08-07 00:39:40 -07:00
Michael Suo
1bae6e24c9 Change empty list literal compiler error to match actual builtin name (#10265)
Summary:
I changed the name of this builtin to match Python's native style, but forgot to change the compiler error to match.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10265

Differential Revision: D9192963

Pulled By: michaelsuo

fbshipit-source-id: 225ca4cd50fbbe3b31c369deeb3123a84342aab1
2018-08-07 00:39:39 -07:00
Sebastian Messmer
f51f15bb27 Update include paths for ATen/core (#10130)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10130

Update some include paths to make them internally consistent

Reviewed By: ezyang

Differential Revision: D9119906

fbshipit-source-id: b44e5cab8e8e795ee18afe9ffc6caf1f2b413467
2018-08-03 11:57:02 -07:00
Peter Goldsborough
cb0e72e00d Add registerOperator overloads that infer the schema (#10048)
Summary:
This PR adds a way to infer the JIT/script schema of a function from its signature, and then create an operator from the schema and implementation. The implementation function is wrapped into another function, which pops values from the stack into an argument tuple, then invokes the function and pushes the return value back onto the stack, sometimes unpacking the return value if it is a tuple.

Currently the method is called `createOperator`. We may want to think of a nicer way of registering ops in tandem with `RegisterOperators`. It might be very cumbersome to add a template constructor to `Operator`, so maybe we can come up with a chaining method on `RegisterOperators` like `RegisterOperators(schema, func).op(schema.func).op(schema, func)` -- it has to work at startup time (for a static variable) though. We can solve this in another PR.

zdevito apaszke smessmer dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10048

Differential Revision: D9125975

Pulled By: goldsborough

fbshipit-source-id: de9e59888757573284a43787ae5d94384bfe8f9a
2018-08-03 11:45:49 -07:00