Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65674
Before this PR user had to use the eager mode static quantization APIs to quantize Embedding/EmbeddingBag modules.
With this PR they can use either the static or dynamic quantization APIs for Embedding quantization
The only qconfig supported for embedding quantization is float_qparams_weight_only_qconfig whcih is currently enforced in the from_float
method of the quantized Embedding/Embedding modules.
To combine embedding quantization with Linear dynamic quantization, user can use the qconfig_dict to specify different qconfig for each module type.
The prepare/convert APIs can still be used to quantize Embeddings, with the caveat that user need to ensure input to Embedding ops are FP32.
Addresses Issue #65185
ghstack-source-id: 139935419
Test Plan:
python test/test_quantization.py
Imported from OSS
Reviewed By: gchanan
Differential Revision: D31211199
fbshipit-source-id: 8c747881caee5ccbf8b93c6704b08d132049dea4
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64919
AO Team is migrating the existing torch.quantization into torch.ao.quantization. We are doing it one file at a time to make sure that the internal callsites are updated properly. This migrates the quantization utilities.
ghstack-source-id: 138303325
Test Plan: `buck test mode/dev //caffe2/test:quantization`
Reviewed By: jerryzh168
Differential Revision: D30899082
fbshipit-source-id: 85eb38c419e417147e71758b682cd095308dd0c9