## Summary
- add a CuBLASReductionOption enum so the CUDA context can track reduced-precision and split-K options
- extend the Python bindings, backend helpers, and docs to accept an optional allow_splitk argument for fp16/bf16 matmul controls
- update cuBLAS/cuBLASLt call sites plus dynamo guards and tests to respect the new combinations
## Testing
- python test/test_cuda.py TestCuda.test_cublas_allow_fp16_reduced_precision_reduction_get_set -v *(fails: ModuleNotFoundError: No module named 'psutil')*
------
https://chatgpt.com/codex/tasks/task_e_68e404623178832f8a3e1d34e1e175da
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164766
Approved by: https://github.com/malfet, https://github.com/albanD
Fixes#141884
This fixes the issue for all optimizers and parameter options.
A member function `overwrite_from` is added to the optimizer base class. Each optimizer then implements this function for comparing their accepted parameters to defaults. A SFINAE approach to handle the different optimizer parameters generically (in optimizer.h only) was evaluated, but I think this is easier to review and maintain.
This mirrors the Python API up to one edge case. An example of the edge case is provided below.
Python can distinguish between 1) Key not present in dict = "not specified" and 2) Key present in dict = "explicitly set". The C++ implementation cannot.
The issue hinges on whether or not to track if a particular parameter was set by the user explicitly or not (discrepancy in the case when the constructor default is explicitly passed in).
To track this seems like it will take more intervention than would be worth it (modify TORCH_ARG to keep track, use std::optional for the parameter types, use bitset tracking) and was not pursued in the current PR. I'm happy to alter the design if appropriate.
### Example of edge case hinging on CONSTRUCTOR DEFAULTS vs OPTIMIZER DEFAULTS
1. CONSTRUCTOR DEFAULTS:
These are the values you get when calling AdamOptions()
AdamOptions().lr() = 0.001
AdamOptions().weight_decay() = 0
AdamOptions().eps() = 1e-08
2. OPTIMIZER DEFAULTS:
These are the values the user chose when creating the optimizer
User's optimizer defaults:
optimizer.lr() = 0.005
optimizer.weight_decay() = 0.1
optimizer.eps() = 1e-07
3. THE PROBLEM SCENARIO:
User wants to add a parameter group with explicit weight_decay=0.0
User sets: weight_decay(0)
4. THE CONFUSION:
Constructor default weight_decay: 0
User's explicit weight_decay: 0
Are they equal? YES
Since they're equal, our overwrite_from() logic thinks:
"User didn't set weight_decay explicitly, use optimizer default"
5. CURRENT BEHAVIOR:
Final weight_decay: 0.1
User expected: 0
Match? ❌ NO
=== KEY INSIGHT ===
Constructor defaults are built into the C++ class definition.
Optimizer defaults are chosen by the user at runtime. We want to respect the user intention.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161825
Approved by: https://github.com/janeyx99
Seems that we can release input activations' gradients early in `stage_backward()` in PP, which helps to reduce the peak memory.
I tested this using `1F1B` and `Interleaved1F1B` PP strategy (for simplicity, I use 4 decoder layers of llama3, set PP size to 2 and set num_microbatches to 128) based on torchtitan
run command using torchtitan:
```bash
CUDA_VISIBLE_DEVICES=4,5 LOG_RANK=0,1 NGPU=2 CONFIG_FILE=./torchtitan/models/llama3/train_configs/llama3_8b.toml ./run_train.sh --metrics.log_freq 1 --training.seq_len 8192 --training.steps 10 --parallelism.data_parallel_shard_degree 1 --activation_checkpoint.mode full --model.tokenizer_path /workspace/torchtitan-v0.1.0/torchtitan/torchtitan/datasets/tokenizer/original/tokenizer.model --tr
aining.dataset wikipedia --parallelism.pipeline_parallel_degree 2 --training.local_batch_size 128 --parallelism.pipeline_parallel_microbatch_size 1 --training.dataset_path /workspace/wikipedia_subset --training.seed 42 --parallelism.pipeline_parallel_schedule 1F1B
```
## 1F1B torchtitan train results
### before fix
<img width="1526" height="606" alt="b8e281cce1dac15e827c216e7d83f402" src="https://github.com/user-attachments/assets/545c0a80-6276-40c0-893f-fd2df0a53b8d" />
### after fix
<img width="1526" height="594" alt="70d5ceba311a8398d041189bf8897cfc" src="https://github.com/user-attachments/assets/0d606e08-238a-4115-a1c0-b40df101d867" />
after fix, the memory usage on rank1, i.e., non first stages saving 6.9GB compare to before fix. the memory usage on rank0 remains unchanged (rank0 represents stage0)
## Interleaved1F1B torchtitan train results
### before fix
<img width="1514" height="601" alt="a28b7f9704b9234870619c43194e8a72" src="https://github.com/user-attachments/assets/2c28565f-ffff-4747-a8f5-722b5c65dc7e" />
### after fix
<img width="1526" height="621" alt="2d8d6d956b72885186f8c7059146c41a" src="https://github.com/user-attachments/assets/8c4a4ff2-336b-4e0b-8ac4-014ae22c2ed1" />
after fix, the memory usage on rank1 saving 14.57GB (rank1 holds layer1 and layer3) and rank0 saving 7.5GB (rank0 holds layer0 and layer2)
## Memory snapshot results
also, I have dumped the memory snapshot to observe the memory under the 1F1B PP strategy.
### before fix
<img width="1906" height="918" alt="6fd4e4ba82b8bacf9ca6edee4f3d5581" src="https://github.com/user-attachments/assets/d1b9245c-b09f-43c5-87ce-87ba48533a70" />
we can see the memory is increasing as pp step_microbatches running. (the lifetime of input activation's gradient, i.e., the output of `FusedRMSNormBackward` lasts too long)
### after fix
<img width="1903" height="918" alt="2e415f25af6750d06e5e647683b212b9" src="https://github.com/user-attachments/assets/b657c8f6-5a56-46bd-8743-f3b8375c81b0" />
after fix, we got more steady memory usage during training. (the input activation's gradient will be released or return allocator soon)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164329
Approved by: https://github.com/H-Huang
If there is a single autotuner choice, the wrong type of input node is used to instantiate `TritonTemplateBuffer` through `TritonTemplateCaller.output_node`. This PR distinguishes the input nodes used in `AlgorithmSelectorCache.__call__` between the actual inputs passed to the kernel at runtime, vs the possibly viewed inputs that influence scheduling behaviour (e.g. `MemoryDeps`) and codegen. See the added unit test for more detail.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163752
Approved by: https://github.com/eellison
Modified `multimem_one_shot_all_reduce_out` function to accept a `root` argument, making it a `multimem_reduce` op.
The original `multimem_one_shot_all_reduce` op becomes a caller of the `multimem_reduce`, with each rank providing its own rank id as root.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164517
Approved by: https://github.com/ngimel
Summary:
1\ Certain checkpoint load use cases are not aware of the properties of the data/tensors they want to load.
2\ These usecases include data loader checkpoints, reading data for post processing (when the original model definition is not available).
3\ There, we have to use saved checkpoint (metadata) as our source of truth.
4\ This RFC proposal exposes the checkpoint metadata using a public API.
In this proposal we expose the stored state-dict metadata (minus associated storage/chunk metadata).
Chunk/storage details should not be exposed to the users and is a impl detail of the storage writer/reader.
Test Plan:
UT.
Rollback Plan:
Differential Revision: D80231457
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160610
Approved by: https://github.com/saumishr
Summary: We have an internal request to help understand why the hash of `post_grad_custom_post_pass` is changing between attempts. We don't get useful info from the debug output, because we just print "<bytes>". Instead, attempt to print at least _some_ of the value in case it contains readable characters.
Test Plan:
Registered a dummy post_grad_custom_pass and printed codecache debug output
`TORCH_LOGS=+torch._inductor.codecache python ~/foo.py`
Yields something like:
```
V1007 16:41:19.024000 3546009 /data/users/slarsen/pytorch-3.10_4/torch/_inductor/codecache.py:989] [0/0] [law2ujt2wzjb5tyiu6jh64r2lxpvl62yvxcsmdouhg3qyelhhdv] post_grad_custom_post_pass: HelloWorld!����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������...
```
Differential Revision: [D84108770](https://our.internmc.facebook.com/intern/diff/D84108770)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164898
Approved by: https://github.com/oulgen
First fix for https://github.com/pytorch/pytorch/issues/164756
In the pipeline IR we call `UNSHARD` and `RESHARD`, but there is a bug because when we call `module.unshard()` these do not recursively call the FSDP modules, hence leading to sometime call allgather before the module forward.
Since we want the pipeline IR to explicitly handle this, we can call `group.unshard` instead which ensures that all the modules are unsharded.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164775
Approved by: https://github.com/weifengpy
**Summary**
This PR provides an interface for users to specify how to load-balance the attention
input. The load-balance is essentially a rearrangement of the input tensor(s) over the
seq_dim before sharding and can be specified via an index tensor `rearrange` such
that Q[rearrange] is the balanced Q users want (i.e. `rearrange[i] == j` where `i` is the new
index of `Q[j]` in the balanced Q). An example is the `_generate_round_robin_indices()` added
in https://github.com/pytorch/pytorch/pull/155442.
**New `_LoadBalancer` classes**
New `_LoadBalancer` class (defined in `torch/distributed/tensor/experimental/_load_balancer.py`)
provides one interface for defining load-balance behavior: `_generate_indices(self, restore: bool = False)`.
When `restore == False`, this method should output an index Tensor (namely `rearrange_idx`) such
that QKV will be transformed into Q' K' V' in a way that `Q'[i] == Q[rearrange_idx[i]]` (same applies
to K and V).
When `restore == True`, this method outputs an index Tensor (namely `restore_idx` such that
`Q'[restore_idx] == Q` (same applies to K and V).
**Impact**
2 public CP APIs and 1 private CP API is modified. This PR should be backward-compatible by:
- For uses w/ SDPA, existing users must be using the `context_parallel()` API which does not
take in the extra `load_balancer` argument and solely determines from the global var
`_cp_options.enable_load_balance`.
- For new users including who want to try `flex_attention()`, we require to use the new API
`_context_parallel_buffers` to explicitly shard the QKV input instead of using `context_parallel()`
because we no longer rely on TorchDispatchMode nor TorchFunctionMode for op replacement. And
we also require users to explicitly pass in a `load_balancer` argument if load-balancing is demanded.
**Load-Balance Behavior**
`context_parallel_unshard()`, and `create_cp_block_mask()` APIs now take an extra optional argument
`load_balancer`. This argument is optional because of backward compatibility but we require new users
to explicitly pass in a `load_balancer` if load-balancing is demanded:
- if `load_balancer == None` and `_cp_options.enable_load_balance == False`, CP performs
no load-balancing on input Tensors.
- if `load_balancer == None` and `_cp_options.enable_load_balance ==True`, CP performs
head-tail load-balancing (e.g. split a Tensor into 2*N chunks and first N are called head and
the rest are called tail. Place the first head chunk the last tail chunk on rank 0, and the second
head along with the second last tail chunk on rank 1, and so on).
`_context_parallel_buffers()` also takes the extra optional argument `load_balancer`, but the behavior
is slightly different from the other 2 APIs -- it doesn't branch on `_cp_options.enable_load_balance` :
- if `load_balancer == None`, no load-balancing will be performed
- otherwise, apply load-balancing using `load_balancer._generate_indices()` before sharding.
**Changes**
This PR moves the index Tensor generation logic into a set of LoadBalancer classes and
make LoadBalancer the common interface for Context Parallel APIs that leverages
load-balancing:
* _context_parallel_buffers
* context_parallel_unshard
* create_cp_block_mask
The `_LoadBalancer` classes added are:
- `_LoadBalancer`: the abstract base class that provides “_generate_indices” interface index Tensor generation.
- `_HeadTailLoadBalancer`: Implements head-tail balancing logic.
- `_PerDocumentHeadTailLoadBalancer`: Supports per-document head-tail balancing for batched sequences.
**Test**
`pytest test/distributed/tensor/test_attention.py`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161062
Approved by: https://github.com/fegin
BlockMask has batch dimension information. So PP has to split it as well just like all other tensors. All the tensors in BlockMask have the batch dimension, so we can just split it without too many issues. However, `mask_mod` requires the batch index as the input, which the value is going to be changed after the split. So we have to wrap it inside a closure to modify the batch index.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164111
Approved by: https://github.com/H-Huang
During 2.9 rc testing I am seeing an issue on Amazon Linux 2023 with CUDA 13.0 builds
This is related to:
https://github.com/pytorch/pytorch/issues/152756
Workflow: https://github.com/pytorch/test-infra/actions/runs/18324074610/job/52184079262
Error:
```
WARNING: There was an error checking the latest version of pip.
+ python3.11 .ci/pytorch/smoke_test/smoke_test.py --package torchonly
Traceback (most recent call last):
File "/usr/local/lib64/python3.11/site-packages/torch/__init__.py", line 333, in _load_global_deps
ctypes.CDLL(global_deps_lib_path, mode=ctypes.RTLD_GLOBAL)
File "/usr/lib64/python3.11/ctypes/__init__.py", line 376, in __init__
self._handle = _dlopen(self._name, mode)
^^^^^^^^^^^^^^^^^^^^^^^^^
OSError: libcudart.so.13: cannot open shared object file: No such file or directory
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/pytorch/pytorch/.ci/pytorch/smoke_test/smoke_test.py", line 12, in <module>
import torch
File "/usr/local/lib64/python3.11/site-packages/torch/__init__.py", line 425, in <module>
_load_global_deps()
File "/usr/local/lib64/python3.11/site-packages/torch/__init__.py", line 383, in _load_global_deps
_preload_cuda_deps(lib_folder, lib_name)
File "/usr/local/lib64/python3.11/site-packages/torch/__init__.py", line 317, in _preload_cuda_deps
raise ValueError(f"{lib_name} not found in the system path {sys.path}")
Traceback (most recent call last):
ValueError: libnvToolsExt.so.*[0-9] not found in the system path ['/pytorch/pytorch/.ci/pytorch/smoke_test', '/usr/lib64/python311.zip', '/usr/lib64/python3.11', '/usr/lib64/python3.11/lib-dynload', '/usr/local/lib64/python3.11/site-packages', '/usr/local/lib/python3.11/site-packages', '/usr/lib64/python3.11/site-packages', '/usr/lib/python3.11/site-packages']
File "/home/ec2-user/actions-runner/_work/test-infra/test-infra/test-infra/.github/scripts/run_with_env_secrets.py", line 102, in <module>
main()
File "/home/ec2-user/actions-runner/_work/test-infra/test-infra/test-infra/.github/scripts/run_with_env_secrets.py", line 98, in main
run_cmd_or_die(f"docker exec -t {container_name} /exec")
File "/home/ec2-user/actions-runner/_work/test-infra/test-infra/test-infra/.github/scripts/run_with_env_secrets.py", line 39, in run_cmd_or_die
raise RuntimeError(f"Command {cmd} failed with exit code {exit_code}")
RuntimeError: Command docker exec -t 7d9c5bd403cac9a9ee824d63a1d6f6057ecce89a7daa94a81617dbf8eff0ff2e /exec failed with exit code 1
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164870
Approved by: https://github.com/Camyll
Co-authored-by: Eli Uriegas <1700823+seemethere@users.noreply.github.com>
This PR adds infrastructure support for gfx1100 in the rocm workflow. Nodes have been allocated for this effort.
@dnikolaev-amd contributed all the test skips.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148355
Approved by: https://github.com/jeffdaily
Co-authored-by: Dmitry Nikolaev <dmitry.nikolaev@amd.com>
Co-authored-by: Jeff Daily <jeff.daily@amd.com>
Adding source_get_cache also to AOT compile case. Since the guard manager loader code can be shared between AOT and caching, we added a new function load_guard_manager to avoid code duplication between two workflows, for loading guards.
Test Plan: test_guard_serialization.py
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164773
Approved by: https://github.com/yiming0416, https://github.com/dolpm