Commit Graph

581 Commits

Author SHA1 Message Date
Soumith Chintala
a356276d79 add note to Contribution Guide around recently released research (#23513)
Summary:
Thanks adefazio for the feedback, adding a note to the Contribution guide so that folks don't start working on code without checking with the maintainers.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23513

Differential Revision: D16546685

Pulled By: soumith

fbshipit-source-id: 1ee8ade963703c88374aedecb8c9e5ed39d7722d
2019-07-29 12:24:59 -07:00
Hong Xu
64e4152064 Clarify that torch.device without an index will always represent the current device (#23468)
Summary:
Per discussion in https://github.com/pytorch/pytorch/issues/23448
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23468

Differential Revision: D16532950

Pulled By: soumith

fbshipit-source-id: 48c97060aaf55f1d7589afab42c6cd623d71a9a7
2019-07-27 06:49:52 -07:00
Yuxin Wu
23f963e4a8 Update distributed.rst (#23289)
Summary:
Different backend is supported since https://github.com/pytorch/pytorch/pull/18595
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23289

Differential Revision: D16528229

Pulled By: soumith

fbshipit-source-id: 57753e84c015817661ba30835278ee3a899aa2d0
2019-07-26 16:55:52 -07:00
BowenBao
46224ef89e Update ONNX docs (#23185)
Summary:
This is still work in progress.

There are several more items to add to complete this doc, including

- [x] LHS indexing, index assignments.
- [x] Tensor List.
- [x] ~Shape/Type propagation.~
- [x] FAQs

Please review and share your thoughts, feel free to add anything that you think should be included as well. houseroad spandantiwari lara-hdr neginraoof
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23185

Differential Revision: D16459647

Pulled By: houseroad

fbshipit-source-id: b401c005f848d957541ba3b00e00c93ac2f4609b
2019-07-26 00:14:54 -07:00
Horace He
1c00e0fc3f Added a flatten module (#22245)
Summary:
https://github.com/pytorch/pytorch/issues/2118

I'm not sure I'm doing it correctly, so I'll add tests if we decide that it's roughly correct.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22245

Differential Revision: D16508957

Pulled By: Chillee

fbshipit-source-id: a8dc7af999ba698c921006889f71cb1bc5a59d50
2019-07-25 22:48:52 -07:00
Pavel Belevich
dd79d45c5a Added torch.bitwise_not docstr (#23397)
Summary:
Fixing https://github.com/pytorch/pytorch/issues/23311
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23397

Differential Revision: D16505107

Pulled By: pbelevich

fbshipit-source-id: 8d515fc27e253469393941c8da23d8e0510e64df
2019-07-25 18:32:58 -07:00
Kexuan Sun
ba6f65cf33 Add document of functions nn.init.ones_/zeros_ (#23145)
Summary:
Functions `nn.init.ones_` and `nn.init.zeros_` were not documented. As mentioned in https://github.com/pytorch/pytorch/issues/9886
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23145

Differential Revision: D16427108

Pulled By: soumith

fbshipit-source-id: 4fac31e79717a436411ef5e107a829b403e576c9
2019-07-25 06:09:50 -07:00
Pieter Noordhuis
95e822622b Enhance interpretation of GLOO_SOCKET_IFNAME (#22978)
Summary:
With this change you can now list multiple interfaces separated by
comma. ProcessGroupGloo creates a single Gloo context for every device
in the list (a context represents a connection to every other
rank). For every collective that is called, it will select the context
in a round robin fashion. The number of worker threads responsible for
executing the collectives is set to be twice the number of devices.

If you have a single physical interface, and wish to employ increased
parallelism, you can also specify
`GLOO_SOCKET_IFNAME=eth0,eth0,eth0,eth0`.  This makes ProcessGroupGloo
use 4 connections per rank, 4 I/O threads, and 8 worker threads
responsible for executing the collectives.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/22978
ghstack-source-id: 87006270

Differential Revision: D16339962

fbshipit-source-id: 9aa1dc93d8e131c1714db349b0cbe57e9e7266f1
2019-07-25 04:52:38 -07:00
Dmytro Dzhulgakov
d6dcec37b6 Add docs about prod ecosystem features (#23010)
Summary:
Covering fleet-wide profiling, api logging, etc.

It's my first time writing rst, so suggestions are definitely welcomed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23010

Differential Revision: D16456721

Pulled By: dzhulgakov

fbshipit-source-id: 3d3018f41499d04db0dca865bb3a9652d8cdf90a
2019-07-24 14:15:33 -07:00
Edward Yang
895e79adf1 Revert D16441000: Switch from KaTeX to imgmath for documentation rendering.
Differential Revision:
D16441000

Original commit changeset: c1ab557cb816

fbshipit-source-id: cbfec2ca648b614b291debd6b3e215db9fbeb57b
2019-07-24 11:43:17 -07:00
Will Feng
3ed79f4b6c Fix argument names in torch doc (#22973)
Summary:
I manually went through all functions in `torch.*` and corrected any mismatch between the arguments mentioned in doc and the ones actually taken by the function. This fixes https://github.com/pytorch/pytorch/issues/8698.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22973

Differential Revision: D16419602

Pulled By: yf225

fbshipit-source-id: 5562c9b0b95a0759abee41f967c45efacf2267c2
2019-07-24 11:22:45 -07:00
Edward Yang
174f7a586f Switch from KaTeX to imgmath for documentation rendering.
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/23025

Test Plan: Imported from OSS

Differential Revision: D16441000

Pulled By: ezyang

fbshipit-source-id: c1ab557cb8163e9c69585c32d237c076582a6d73
2019-07-23 09:44:37 -07:00
Kexuan Sun
45d3f495ef Add document of function torch.as_strided (#22842)
Summary:
Documentation of `torch.as_strided` and `Tensor.as_strided` is missing. As mentioned in https://github.com/pytorch/pytorch/issues/9886
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22842

Differential Revision: D16254106

Pulled By: soumith

fbshipit-source-id: dee142483fb9ef7bea84bd44a970b6eccdcdc471
2019-07-23 06:06:00 -07:00
Orion Reblitz-Richardson
858d4a6a04 Cleanup API and remove 'experimental' warning (#23000)
Summary:
This fixes ASAN test issues with https://github.com/pytorch/pytorch/pull/21786 seen at https://circleci.com/api/v1.1/project/github/pytorch/pytorch/2212325/output/105/0?file=true and lands it again.

This cleans up the `torch.utils.tensorboard` API to remove all kwargs usage (which isn't clear to the  user) and removes the "experimental" warning in prep for our 1.2 release.

We also don't need the additional PyTorch version checks now that we are in the codebase itself.

cc yf225, lanpa, natalialunova
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23000

Reviewed By: sanekmelnikov

Differential Revision: D16349734

Pulled By: orionr

fbshipit-source-id: 604a9cad56868a55e08b509a0c6f42b84f68de95
2019-07-22 12:10:05 -07:00
Elias Ellison
2ee0f0bc3a add break continue to docs
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/23091

Differential Revision: D16382604

Pulled By: eellison

fbshipit-source-id: 47432d844c811ecd87ad97155e835b07ae8056cc
2019-07-19 12:17:00 -07:00
vishwakftw
6dfecc7e01 Remove deprecated linear algebra functions (and methods) (#22841)
Summary:
Changelog:
- Removed the following linear algebra functions in PyTorch in favor of the renamed operations
  - `btrifact` (use `lu` instead)
  - `btrifact_with_info` (use `lu` with `get_infos=True` instead)
  - `btrisolve` (use `lu_solve` instead)
  - `btriunpack` (use `lu_unpack` instead)
  - `gesv` (use `solve` instead)
  - `pstrf` (use `cholesky` instead)
  - `potrf` (use `cholesky` instead)
  - `potri` (use `cholesky_inverse` instead)
  - `potrs` (use `cholesky_solve` instead)
  - `trtrs` (use `triangular_solve` instead)

- Removed dead code after the removal of `pstrf`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22841

Test Plan:
- All existing tests should pass to verify that the removal is clean

Closes https://github.com/pytorch/pytorch/issues/22832

Differential Revision: D16346184

Pulled By: zou3519

fbshipit-source-id: f748d16ed7609c028de6adcbc28684d5a1af0678
2019-07-19 11:43:06 -07:00
Shen Li
84d892b645 Remove DistributedDataParallelCPU as DDP now supports CPU models (#22864)
Summary:
cc ailzhang aazzolini yifuwang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22864

Differential Revision: D16358011

Pulled By: mrshenli

fbshipit-source-id: 8db2dc035dea03f07a32c749e754f625fda1bf28
2019-07-18 12:50:45 -07:00
Orion Reblitz-Richardson
e24f18cea0 Revert D15854892: [pytorch][PR] [tensorboard] Cleanup API and remove 'experimental' warning
Differential Revision:
D15854892

Original commit changeset: 06b849882694

fbshipit-source-id: 588edc4616d020a23645f8c8181782c8412c4c6e
2019-07-17 16:45:54 -07:00
George Guanheng Zhang
3c0814ffeb add docs to onnx APIs (#22938)
Summary:
Add docs to onnx APIs, including
  - export
  - export_to_pretty_string
  - is_in_onnx_export

Fix https://github.com/pytorch/pytorch/issues/14698
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22938

Differential Revision: D16296182

Pulled By: zhangguanheng66

fbshipit-source-id: 1a1fa769b430db6428e6dfafba5447e6e2a75517
2019-07-17 10:50:41 -07:00
Orion Reblitz-Richardson
4861527446 Cleanup API and remove 'experimental' warning (#21786)
Summary:
This cleans up the `torch.utils.tensorboard` API to remove all kwargs usage (which isn't clear to the  user) and removes the "experimental" warning in prep for our 1.2 release.

We also don't need the additional PyTorch version checks now that we are in the codebase itself.

cc ezyang lanpa natalialunova
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21786

Reviewed By: natalialunova

Differential Revision: D15854892

Pulled By: orionr

fbshipit-source-id: 06b8498826946e578824d4b15c910edb3c2c20c6
2019-07-17 10:34:00 -07:00
Iurii Zdebskyi
bd88fd0793 Added .bfloat16() (#22852)
Summary:
Add conversion method for bfloat16
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22852

Differential Revision: D16256760

Pulled By: izdeby

fbshipit-source-id: 01d75495f9df513a0cdf78791c3eb013ab92bd95
2019-07-15 09:32:18 -07:00
shihongzhi
45cf33a731 add fill_diagonal function (#21892)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/21796
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21892

Differential Revision: D16164678

Pulled By: colesbury

fbshipit-source-id: 85df8ae9b7a6a91b6023fe7295b3a8124e4526ea
2019-07-11 09:20:44 -07:00
Hong Xu
e2dc1fc715 Add a bitwise NOT operator for integer and Boolean types (CPU).
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/22283

Test Plan: Imported from OSS

Differential Revision: D16183576

Pulled By: colesbury

fbshipit-source-id: 2e539fab8ff885dddb9bff334d1d784b28d65b8f
2019-07-10 12:17:44 -07:00
Arul
43d36415b9 torch.utils.data.Dataloader: documentation about RNG state consumption (#22540)
Summary:
the outcome from the pytorch forum issue: https://discuss.pytorch.org/t/dataloader-problem-problem-arises-when-shuffle-true/45631

The discussion is here: https://github.com/pytorch/pytorch/pull/20749
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22540

Differential Revision: D16131777

Pulled By: ezyang

fbshipit-source-id: 566deda1b44dc7fae54250e9b508d120851a2848
2019-07-08 08:22:04 -07:00
Michael Acar
a4b2f3e213 Implement AdamW optimizer (#21250)
Summary:
# What is this?
This is an implementation of the AdamW optimizer as implemented in [the fastai library](803894051b/fastai/callback.py) and as initially introduced in the paper [Decoupled Weight Decay Regularization](https://arxiv.org/abs/1711.05101). It decouples the weight decay regularization step from the optimization step during training.

There have already been several abortive attempts to push this into pytorch in some form or fashion: https://github.com/pytorch/pytorch/pull/17468, https://github.com/pytorch/pytorch/pull/10866, https://github.com/pytorch/pytorch/pull/3740, https://github.com/pytorch/pytorch/pull/4429. Hopefully this one goes through.
# Why is this important?
Via a simple reparameterization, it can be shown that L2 regularization has a weight decay effect in the case of SGD optimization. Because of this, L2 regularization became synonymous with the concept of weight decay. However, it can be shown that the equivalence of L2 regularization and weight decay breaks down for more complex adaptive optimization schemes. It was shown in the paper [Decoupled Weight Decay Regularization](https://arxiv.org/abs/1711.05101) that this is the reason why models trained with SGD achieve better generalization than those trained with Adam. Weight decay is a very effective regularizer. L2 regularization, in and of itself, is much less effective. By explicitly decaying the weights, we can achieve state-of-the-art results while also taking advantage of the quick convergence properties that adaptive optimization schemes have.
# How was this tested?
There were test cases added to `test_optim.py` and I also ran a [little experiment](https://gist.github.com/mjacar/0c9809b96513daff84fe3d9938f08638) to validate that this implementation is equivalent to the fastai implementation.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21250

Differential Revision: D16060339

Pulled By: vincentqb

fbshipit-source-id: ded7cc9cfd3fde81f655b9ffb3e3d6b3543a4709
2019-07-02 09:09:10 -07:00
Pieter Noordhuis
6ff0c6ca3f Remove THD (#22065)
Summary:
It's been ~9 months since moving THD to the `torch.distributed.deprecated` namespace (see https://github.com/pytorch/pytorch/issues/11405) and we haven't seen issues related to it, so it's time to remove it.

Closes https://github.com/pytorch/pytorch/issues/18967.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22065

Reviewed By: mrshenli

Differential Revision: D15983669

Pulled By: pietern

fbshipit-source-id: 2a2f5866f9a63040bc7cef3956d5fd215aba7165
2019-06-25 12:19:13 -07:00
Hong Xu
a45898931c Document the Boolean tensor type.
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/21601

Differential Revision: D15971573

Pulled By: gchanan

fbshipit-source-id: c07c57f989980149cb1307dcca6ba64dce52d0ef
2019-06-24 14:16:36 -07:00
byronhe
6edaa11e5a fix broken link
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/22064

Differential Revision: D15951107

Pulled By: mrshenli

fbshipit-source-id: 0b8f97bd2bbac26855cd2889e1fc619770974ee2
2019-06-24 07:34:16 -07:00
Tongzhou Wang
058beae411 Add IterableDataset (#19228)
Summary:
This is a modified version of https://github.com/pytorch/pytorch/pull/14705 since commit structure for that PR is quite messy.

1. Add `IterableDataset`.
3. So we have 2 data loader mods: `Iterable` and `Map`.

    1. `Iterable` if the `dataset` is an instance of `IterableDataset`
    2. `Map` o.w.

3. Add better support for non-batch loading (i.e., `batch_size=None` and `batch_sampler=None`). This is useful in doing things like bulk loading.
3. Refactor `DataLoaderIter` into two classes, `_SingleProcessDataLoaderIter` and `_MultiProcessingDataLoaderIter`. Rename some methods to be more generic, e.g., `get_batch` -> `get_data`.
4. Add `torch.utils.data.get_worker_info` which returns worker information in a worker proc (e.g., worker id, dataset obj copy, etc.) and can be used in `IterableDataset.__iter__` and `worker_init_fn` to do per-worker configuration.
5. Add `ChainDataset`, which is the analog of `ConcatDataset` for `IterableDataset`.
7. Import torch.utils.data in `torch/__init__.py`
9. data loader examples and documentations
10. Use `get_worker_info` to detect whether we are in a worker process in `default_collate`

Closes https://github.com/pytorch/pytorch/issues/17909, https://github.com/pytorch/pytorch/issues/18096, https://github.com/pytorch/pytorch/issues/19946, and some of https://github.com/pytorch/pytorch/issues/13023
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19228

Reviewed By: bddppq

Differential Revision: D15058152

fbshipit-source-id: 9e081a901a071d7e4502b88054a34b450ab5ddde
2019-06-20 20:12:44 -07:00
Syed Tousif Ahmed
effcc398c4 Refactor Random Number Generators in ATen (#21555)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21555
ghimport-source-id: dd900a8c3e1ef9ef1e011b8bb5476626d18cc462

Test Plan: Imported from OSS

Differential Revision: D15875780

Pulled By: ezyang

fbshipit-source-id: 6e04e90af62ab9c9593d74f344a3a084aaaf6f43
2019-06-19 13:54:09 -07:00
Jerry Zhang
94f903654c Add qscheme() method (#20608)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20608

Exposing QScheme in python as Python objects like `torch.qscheme.per_tensor_affine` etc.

Reviewed By: zafartahirov

Differential Revision: D15364354

fbshipit-source-id: 4d6a96d67e9ead051cf4a8f934553a8c7232fdb7
2019-06-14 16:29:29 -07:00
Ailing Zhang
16b4a12ed8 better example for local weights (#21685)
Summary:
fixes https://github.com/pytorch/hub/issues/29
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21685

Differential Revision: D15817774

Pulled By: ailzhang

fbshipit-source-id: d2f615e5d431186d45a21d8300fb9ba3c37b246c
2019-06-13 17:56:25 -07:00
Edward Yang
b858f42e16 Document that no_grad is thread local. (#21755)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21755
ghimport-source-id: dfb53759024d9ba9d104fdb2a8151ab996e55234

Differential Revision: D15811172

Pulled By: ezyang

fbshipit-source-id: c8c7c1c15277d8fe8cc513e20af449257d7ff15c
2019-06-13 13:47:09 -07:00
Guanheng Zhang
756a20de93 Add/edit docs for nn.transformer (#21746)
Summary:
Add docs for TransformerEncoder and TransformerDecoder, plus minor edits.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21746

Differential Revision: D15807498

Pulled By: zhangguanheng66

fbshipit-source-id: 388efb5821c4c3d25865cecea70902e9b2bf5d15
2019-06-13 12:27:26 -07:00
Brennan Vincent
699de487db numerical integration "trapz" function. (#21610)
Summary:
This is intended to match [numpy.trapz](https://docs.scipy.org/doc/numpy/reference/generated/numpy.trapz.html): numerical integration based on the trapezoid rule.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21610

Differential Revision: D15747618

Pulled By: umanwizard

fbshipit-source-id: 8eadb2e75c9877b07592d875ca0b2cca6cb72297
2019-06-12 15:30:13 -07:00
Syed Tousif Ahmed
ae342fd076 Refactor Random Number Generators in ATen (#21364)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21364
ghimport-source-id: ca7d37e10190ba46dc8512f437404ca9216d3369

Differential Revision: D15696497

Pulled By: ezyang

fbshipit-source-id: 2e713b8566ae915e175b5a79ac1dd9b86cc2a23d
2019-06-12 13:01:30 -07:00
Guanheng Zhang
83cec5f3ee nn.Transformer (#20170)
Summary:
Accidentally rebased the old PR and make it too messy. Find it here (https://github.com/pytorch/pytorch/pull/19274)

Create a PR for comments. The model is still WIP but I want to have some feedbacks before moving too far. The transformer model depends on several modules, like MultiheadAttention (landed).

Transformer is implemented based on the paper (https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf). Users have the flexibility to build a transformer with self-defined and/or built-in components (i.e encoder, decoder, encoder_layer, decoder_layer). Users could use Transformer class to build a standard transformer model and modify sub-layers as needed.

Add a few unit tests for the transformer module, as follow:
TestNN.test_Transformer_cell
TestNN.test_transformerencoderlayer
TestNN.test_transformerdecoderlayer
TestNN.test_transformer_args_check
TestScript.test_scriptmodule_transformer_cuda

There is another demonstration example for applying transformer module on the word language problem. https://github.com/pytorch/examples/pull/555
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20170

Differential Revision: D15417983

Pulled By: zhangguanheng66

fbshipit-source-id: 7ce771a7e27715acd9a23d60bf44917a90d1d572
2019-06-12 12:22:12 -07:00
Sergey Zagoruyko
dd439bc39e Rename hubconf.conf to hubconf.py in docs (#21631)
Summary:
It's a typo I guess. cc fmassa
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21631

Differential Revision: D15764909

Pulled By: soumith

fbshipit-source-id: 5ffc7bde181c13e151332e7de3c0da36505b495e
2019-06-11 12:22:43 -07:00
Brian Johnson
4610347fdf Breaks up NN module in docs so it loads faster.
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/21291

Differential Revision: D15760935

Pulled By: ezyang

fbshipit-source-id: 114da4c52b78949e631e9adcae4eb620546124fb
2019-06-11 09:38:41 -07:00
Ailing Zhang
1e6c99a6e0 update hub doc (#21568)
Summary:
update doc as pointed out in https://github.com/pytorch/hub/pull/22
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21568

Differential Revision: D15732927

Pulled By: ailzhang

fbshipit-source-id: 78ab026539e5ee59e7c3a8144e2c9fcbbc225733
2019-06-10 09:39:35 -07:00
Brennan Vincent
e268fc97c3 Re-add Tensor.T (#21175)
Summary:
Something flaky is going on with `test_inplace_view_saved_output` on Windows.

With my PR #20598 applied, the test fails, even though there is no obvious reason it should be related, so the PR was reverted.

Based on commenting out various parts of my change and re-building, I think the problem is with the name -- renaming everything from `T` to `asdf` seems to make the test stop failing. I can't be sure that this is actually the case though, since I could just be seeing patterns in non-deterministic build output...

I spoke with colesbury offline and we agreed that it is okay to just disable this test on Windows for now and not block landing the main change. He will look into why it is failing.

**Test Plan:** I will wait to make sure the Windows CI suite passes before landing this.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21175

Differential Revision: D15566970

Pulled By: umanwizard

fbshipit-source-id: edf223375d41faaab0a3a14dca50841f08030da3
2019-06-04 17:38:25 -07:00
Brennan Vincent
77c2f5dd75 fix copyright notice in docs
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/21372

Differential Revision: D15631889

Pulled By: umanwizard

fbshipit-source-id: cf764432c27cb1b01d8137ed60ec7de361450d0e
2019-06-04 14:53:45 -07:00
Bram Vanroy
38d68ad803 Update randomness.rst (#21337)
Summary:
Following [this question on the forums](https://discuss.pytorch.org/t/reproducibility-and-performance/46504), I propose the following doc change. It clarifies that 'performance reduction' concerns the processing speed (and not the training accuracy).

Related website commit: https://github.com/pytorch/pytorch.github.io/pull/211
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21337

Differential Revision: D15622151

Pulled By: soumith

fbshipit-source-id: f0edeb20049f2ee715c400e7c57abb966864d621
2019-06-04 07:38:00 -07:00
Ailing Zhang
7c823312d3 hub doc improvements
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/21307

Differential Revision: D15610441

Pulled By: ailzhang

fbshipit-source-id: 2b2a28ed808936cf7c93db31afc6b5ea888ab1b1
2019-06-03 16:29:39 -07:00
Xiaomeng Yang
93ae040ff0 Add gelu activation in pytorch (#20665)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20665

Add gelu activation forward on CPU in pytorch

Compare to current python implemented version of gelu in BERT model like

  def gelu(self, x):
      x * 0.5 * (1.0 + torch.erf(x / self.sqrt_two))

The torch.nn.functional.gelu function can reduce the forward time from 333ms to 109ms (with MKL) / 112ms (without MKL) for input size = [64, 128, 56, 56] on a devvm.

Reviewed By: zheng-xq

Differential Revision: D15400974

fbshipit-source-id: f606b43d1dd64e3c42a12c4991411d47551a8121
2019-06-02 09:08:47 -07:00
Sovvo
5bc7c1f83d fix contribution and governance links (#21243)
Summary:
Updated web links on contribution_guide and governance documentation
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21243

Differential Revision: D15591065

Pulled By: soumith

fbshipit-source-id: fdcfc518605a08a2ac35a10c146122d7d0a3f609
2019-05-31 21:02:13 -07:00
Jerry Zhang
7f960a9c01 remove quantize_linear from Tensor method (#21196)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21196

we'll add `quantize(quantizer)` as a tensor method later when we expose `quantizer` in Python frontend
Python
```
torch.quantize_linear(t, ...)
```
C++
```
at::quantize_linear(t, ...)
```

Differential Revision: D15577123

fbshipit-source-id: d0abeea488418fa9ab212f84b0b97ee237124240
2019-05-31 12:01:10 -07:00
Edward Yang
e161360b62 Revert D15558784: [reland][pt1][quant] remove quantize_linear from Tensor method
Differential Revision:
D15558784

Original commit changeset: 0b194750c423

fbshipit-source-id: d180a7f76bb05ad7470f17bc3d2bd614fab16529
2019-05-31 06:20:05 -07:00
Jerry Zhang
f91f24764e remove quantize_linear from Tensor method (#21156)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21156

we'll add `quantize(quantizer)` as a tensor method later when we expose `quantizer` in Python frontend
Python
```
torch.quantize_linear(t, ...)
```
C++
```
at::quantize_linear(t, ...)
```

Differential Revision: D15558784

fbshipit-source-id: 0b194750c423f51ad1ad5e9387a12b4d58d969a9
2019-05-30 22:02:12 -07:00
Edward Yang
c4a90ca18e Revert D15477933: [pt1][quant] remove quantize_linear and dequantize from Tensor method
Differential Revision:
D15477933

Original commit changeset: c8aa81f681e0

fbshipit-source-id: ec494fbbab72e20da262bdd8657887e1fdd173cb
2019-05-30 05:04:12 -07:00