Commit Graph

87 Commits

Author SHA1 Message Date
Xuehai Pan
a28bfb5ed5 [4/N][Easy] fix typo for usort config in pyproject.toml (kown -> known): sort functorch (#127125)
The `usort` config in `pyproject.toml` has no effect due to a typo. Fixing the typo make `usort` do more and generate the changes in the PR. Except `pyproject.toml`, all changes are generated by `lintrunner -a --take UFMT --all-files`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127125
Approved by: https://github.com/Skylion007
ghstack dependencies: #127122, #127123, #127124
2024-05-25 22:45:38 +00:00
angelayi
8be4c1bc2f [export] Add metadata for nodes insert_deferred_runtime_asserts (#125414)
Fixes [internal error](https://fb.workplace.com/groups/1075192433118967/permalink/1416709435633930/).

The issue is that the asserting nodes added in the `insert_deferred_runtime_assertion` pass do not contain metadata that the ExportedProgram requires the graph to have. One solution to fix this is to retrace the entire module, or another solution is to manually add back this metadata.

This diff implements the latter solution (manually add back the metadata) through hooking into fx.graph's `create_node` function, and adding export-specific metadata for every node that is created. The reason I did this is so that the `insert_deferred_runtime_assertion` does not have to know about what metadata export wants.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125414
Approved by: https://github.com/zhxchen17, https://github.com/BoyuanFeng
2024-05-07 23:15:21 +00:00
ydwu4
0302dc68bf [Reland] Fakify script object inputs and attributes for non-strict ex… (#125490)
A re-land of #124239.

This PR fakify ScriptObject inputs and attributes in export non-strict mode by default.

The basic idea is to only fakify the script object during tracing (i.e. aot_export). After we get the traced graph module, eagerly executing, serializing, or running more passes will use the real script objects. This is essentially treating the script object as constant tensor.

Concretely, we

fakify all the script object inputs, and module attributes (gathered by constant_attrs).
patch the module's attributes with fakified script object
right after aot_export, remove the patching (to avoid changing the original module) then modify the exported graph module's attribute to real script object.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125490
Approved by: https://github.com/angelayi
2024-05-04 02:39:42 +00:00
PyTorch MergeBot
f1f142c44f Revert "Fakify script object inputs and attributes for non-strict export (#124239)"
This reverts commit ecc2e034f7.

Reverted https://github.com/pytorch/pytorch/pull/124239 on behalf of https://github.com/kit1980 due to breaking internal builds ([comment](https://github.com/pytorch/pytorch/pull/124239#issuecomment-2089305447))
2024-05-01 23:56:00 +00:00
Avik Chaudhuri
746da8755c switch tests from constrain_as* to torch._check* (#125253)
To fix data-dependent errors we want to recommend that people use `torch._check*` APIs. The `constrain_as*` APIs should be fully subsumed by them, and in the future we should kill them entirely.

Differential Revision: D56774333

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125253
Approved by: https://github.com/ezyang
2024-05-01 21:01:27 +00:00
ydwu4
ecc2e034f7 Fakify script object inputs and attributes for non-strict export (#124239)
This PR fakify ScriptObject inputs and attributes in export non-strict mode by default.

The basic idea is to `only fakify the script object during tracing (i.e. aot_export)`. After we get the traced graph module, eagerly executing, serializing, or running more passes will use the real script objects. This is essentially treating the script object as constant tensor.

Concretely, we
1. fakify all the script object inputs, and module attributes (gathered by constant_attrs).
2. patch the module's attributes with fakified script object
3. right after aot_export, remove the patching (to avoid changing the original module) then modify the exported graph module's attribute to real script object.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124239
Approved by: https://github.com/zou3519
2024-04-30 15:57:25 +00:00
Pian Pawakapan
946e202c07 [export] Restore user input names to unlifted graph modules (#124765)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/122842

Currently, calling ep.module() on an ExportedProgram leads to a GraphModule with a default forward signature (e.g. arg_0, arg_1, ...). This leads to original placeholder names disappearing for retracing/re-exporting.

Fixing this issue by creating a forward_arg_names field (will take renaming suggestions for this), that stores the positional & keyword arg names that are used. These names aren't present in the call_spec currently stored, and requires a major version bump for the ExportedProgram schema.

Test Plan: Tests exist for export, but names are now changed from generic (e.g. arg_0, arg_1) to follow user inputs (e.g. x, y)

Differential Revision: D56484994

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124765
Approved by: https://github.com/zhxchen17
2024-04-29 20:58:17 +00:00
Tugsbayasgalan (Tugsuu) Manlaibaatar
674e15ae07 Back out "Switch to predispatch" (#124860)
Summary:
Original commit changeset: 1f155b3a0bfc

Original Phabricator Diff: D56273267

Test Plan: CI

Differential Revision: D56526505

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124860
Approved by: https://github.com/angelayi
2024-04-24 17:28:33 +00:00
Tugsbayasgalan Manlaibaatar
c933af2709 Switch to predispatch (#123573)
This PR switches export IR from aot-dispatch to pre-dispatch IR.

**What is pre-dispatch IR and why should you care?**

Currently the default IR returned by torch.export can contain only functional ATen operators after ALL pytorch dispatcher decompositions (for example, CompositeImplicitAutograd) run.

In contrast, pre-dispatch IR refers to an IR that can contain all functional ATen operators (i.e., not just from the core subset), before any decomposition happens, as well as operators that manipulate autograd state. Pre-dispatch IR closely resembles eager PyTorch computation, but is still functional and serializable by torch.export. As a result:
- You can train the pre-dispatch IR in eager mode as the IR contains necessary information for the autograd engine to automatically generate a backward graph.
- You can write sound graph transformations more easily as the IR is functional.
- Since it is an ATen IR, it is still normalized. For example, torch.add has multiple overloads, but aten.add.Tensor is unique in this IR.

If you want to get the core aten IR out of `torch.export`, you will need to:
```
ep = torch.export.export(M(), inputs)
ep_for_core_aten = ep.run_decompositions()
```

Differential Revision: [D56273267](https://our.internmc.facebook.com/intern/diff/D56273267)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123573
Approved by: https://github.com/gmagogsfm
2024-04-24 00:51:09 +00:00
FFFrog
fe4d1aff05 UFMT formatting on test/export (#123520)
Partially addresses https://github.com/pytorch/pytorch/issues/123062

Ran lintrunner on:
test/export

Detail:
```Shell
$ lintrunner -a --take UFMT --all-files
ok No lint issues.
Successfully applied all patches.
```

Co-authored-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123520
Approved by: https://github.com/ezyang
2024-04-10 05:38:42 +00:00
PyTorch MergeBot
786c6db519 Revert "UFMT formatting on test/export (#123520)"
This reverts commit ec7551d1b7.

Reverted https://github.com/pytorch/pytorch/pull/123520 on behalf of https://github.com/PaliC due to lint is still broken ([comment](https://github.com/pytorch/pytorch/pull/123520#issuecomment-2046223260))
2024-04-10 00:06:30 +00:00
FFFrog
ec7551d1b7 UFMT formatting on test/export (#123520)
Partially addresses https://github.com/pytorch/pytorch/issues/123062

Ran lintrunner on:
test/export

Detail:
```Shell
$ lintrunner -a --take UFMT --all-files
ok No lint issues.
Successfully applied all patches.
```

Co-authored-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123520
Approved by: https://github.com/shink, https://github.com/ezyang
2024-04-09 23:24:13 +00:00
Pian Pawakapan
d7f23f6826 [export] Restore original placeholder names (part 1: top-level renaming) (#122904)
Summary:
This PR restores original names to placeholder nodes, replacing the default names arg0_1, arg1_1, and so on.

User inputs now follow the signature of mod.forward(), for example forward(x, y) produces nodes x, y. If the tensors are nested in dictionaries, lists, tuples, or dataclasses, the names are a concatenation of the path to the tensor, e.g. x = {'a': torch.randn(4), 'b': [torch.randn(4), torch.randn(4)]} produces nodes x_a, x_b_0, x_b_1.

Parameters, buffers, constants, and custom objects follow the FQN of the object, prefixed by "p", "b", "c", and "obj" respectively. For example, self.bar.l0.weight gets you p_bar_l0_weight.
Effect tokens are named token_1, token_2, and so on, since they are not grounded in model inputs or named attributes.

note: breaking the original diff into 3 parts (top-level renaming, higher-order-op subgraphs, constant input de/serialization) because of its size.

Examples:
```python
# params, buffers, constants, inputs, torch.cond

ExportedProgram:
    class GraphModule(torch.nn.Module):
        def forward(self, p_l0_weight: "f32[4, 4]", p_l0_bias: "f32[4]", c_alpha: "f32[4]", b_beta: "f32[4]", x_0_a: "f32[4, 4]", y: "f32[4, 4]"):
            # No stacktrace found for following nodes
            mul: "f32[4, 4]" = torch.ops.aten.mul.Tensor(x_0_a, x_0_a)
            t: "f32[4, 4]" = torch.ops.aten.t.default(p_l0_weight);  p_l0_weight = None
            addmm: "f32[4, 4]" = torch.ops.aten.addmm.default(p_l0_bias, y, t);  p_l0_bias = y = t = None
            return addmm

# model code

class Bar(torch.nn.Module):
    def forward(self, x):
        return x * x
class Foo(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.bar = Bar()
        self.l0 = torch.nn.Linear(4, 4)
        self.alpha = torch.randn(4)
        self.register_buffer('beta', torch.randn(4))
    def forward(self, x, y):
        x = x[0]['a']
        mul = self.bar(x)
        z1 = self.l0(y)
        return z1

# custom objects, dataclasses, tokens, constant inputs

ExportedProgram:
    class GraphModule(torch.nn.Module):
        def forward(self, token_1: "f32[0]", obj_attr, data_x: "f32[4, 4]", data_y: "f32[4, 4]", mode):
            # No stacktrace found for following nodes
            mul: "f32[4, 4]" = torch.ops.aten.mul.Scalar(data_x, 30);  data_x = None
            div: "f32[4, 4]" = torch.ops.aten.div.Tensor_mode(data_y, 1.0, rounding_mode = 'floor');  data_y = None
            add: "f32[4, 4]" = torch.ops.aten.add.Tensor(mul, div);  mul = div = None
            with_effects = torch._higher_order_ops.effects.with_effects(token_1, torch.ops._TorchScriptTesting.takes_foo.default, obj_attr, add);  token_1 = obj_attr = add = None
            getitem: "f32[0]" = with_effects[0]
            getitem_1: "f32[4, 4]" = with_effects[1];  with_effects = None
            return (getitem, getitem_1)

# model code

class Foo(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.attr = torch.classes._TorchScriptTesting._Foo(10, 20)
    def forward(self, data, a=1.0, mode="floor"):
        x = self.attr.add_tensor(data.x) + torch.div(data.y, a, rounding_mode=mode)
        x = torch.ops._TorchScriptTesting.takes_foo(self.attr, x)
        return x

dataclass
class DataClass:
    x: Tensor
    y: Tensor
register_dataclass_as_pytree_node(
    DataClass,
    serialized_type_name="test.DataClass"
)

args = (DataClass(x=torch.randn(4, 4), y=torch.randn(4, 4)), )
kwargs = {'mode': 'floor'}
ep = torch.export.export(Foo(), args, kwargs, strict=False)

```

Test Plan: verification checks on placeholder names for all export() calls, unit test in test/export/test_export.py

Differential Revision: D55456418

Pull Request resolved: https://github.com/pytorch/pytorch/pull/122904
Approved by: https://github.com/angelayi, https://github.com/thiagocrepaldi
2024-04-05 18:56:00 +00:00
angelayi
fb57d1699b [export] Fix handling output in remove_effect_tokens_pass (#122357)
Added handling for updating the output_spec in the graph signature if the the result of a with_effects call is an output.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122357
Approved by: https://github.com/zhxchen17
2024-03-22 03:35:59 +00:00
Jacob Szwejbka
c84f81b395 [export] add pass to remove auto functionalized hop (#122246)
Summary: Adds a pass that blindly removes the functionalize hop without consideration on if its safe. Useful for ExecuTorch today and other usecases that have additional logic that can reason about when this pass is safe to use

Test Plan: added unit test

Differential Revision: D55103867

Pull Request resolved: https://github.com/pytorch/pytorch/pull/122246
Approved by: https://github.com/angelayi
2024-03-20 19:31:52 +00:00
Zhengxu Chen
8aeb247a3d [export] Remove WrapperModule. (#121042)
Summary: WrapperModule seems a good idea but may introduce some surprising behavior to users, for example, it never registers enclosed modules as submodules and therefore it's unclear that's the state dict for the exported program should look like, because some people may argue to include every state in state dict but others want to keep them as constants.

Test Plan: CI

Reviewed By: tugsbayasgalan

Differential Revision: D54326331

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121042
Approved by: https://github.com/angelayi
2024-03-05 18:10:22 +00:00
ydwu4
306642b66d [export] fix test_passes on ci (#120322)
We put the test cases generation in unitest.setUp to avoid running export on machines that runs with Python 3.12, where dynamo is not supported.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120322
Approved by: https://github.com/angelayi, https://github.com/huydhn, https://github.com/malfet
2024-02-21 21:23:40 +00:00
ydwu4
ac2ba7889d [export] turn on replace_set_grad_with_hop_pass in pre_dispatch (#119915)
This PR turns on replace_set_grad_with_hop_pass for pre_dispatch export. To do that, we need to propagate the meta-data from original submodule to the new higher order op and fix the names of nodes as is required by the _sig_to_specs pass.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119915
Approved by: https://github.com/tugsbayasgalan
ghstack dependencies: #119732, #119736, #119810, #119913, #119914
2024-02-17 02:18:35 +00:00
ydwu4
737630268c [export] manuually create test cases for split and inline (#119914)
This PR makes the tests for inline and sequential_split stop relying on set_grad_enabled to be in the graph. Because they'll be gone if we turn on the replace_set_grad_with_hop_pass in the following diff. Instead, we'll manually insert them into the graph.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119914
Approved by: https://github.com/tugsbayasgalan
ghstack dependencies: #119732, #119736, #119810, #119913
2024-02-17 02:18:35 +00:00
ydwu4
8d81e61fb6 [export] make node_inline_ also inline the get_item calls (#119913)
As titled. Before the PR, after we split then inline_, there will be getitem calls in the graph while the original graph module doesn't have them. This PR removes the additional get_item calls by inlining.

Test Plan:
Added new test cases for graphs that return multiple outputs and takes multiple inputs
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119913
Approved by: https://github.com/tugsbayasgalan
ghstack dependencies: #119732, #119736, #119810
2024-02-17 02:18:27 +00:00
ydwu4
812f05d731 [export] add replace_set_grad_with_hop_pass (#119810)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119810
Approved by: https://github.com/tugsbayasgalan
ghstack dependencies: #119732, #119736
2024-02-17 02:18:19 +00:00
ydwu4
4769e6916a [export] add node_inline_ to prepare replacing set_grad_enabled with hop (#119736)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119736
Approved by: https://github.com/tugsbayasgalan
ghstack dependencies: #119732
2024-02-17 02:18:11 +00:00
ydwu4
068659ddc2 [export] add sequential_split to prepare replacing set_grad_enabled with hop (#119732)
This pr is the 1/N pr of transforming the global state mutating ops  such as torch._C.set_grad_enabled calls in pre-dispatch graph into a higher order op so that the graph becomes more functional. We make use of split_module to help us do the transformation.

This pr preserves the node.name in original module by adding a new kwarg `keep_original_node_name` to split_module.

For a graph looks like this:
```python
def forward(self, arg_0):
    arg0_1, = fx_pytree.tree_flatten_spec(([arg_0], {}), self._in_spec)
    add = torch.ops.aten.add.Tensor(arg0_1, 1);  arg0_1 = None
    sin = torch.ops.aten.sin.default(add);  add = None
    sum_1 = torch.ops.aten.sum.default(sin);  sin = None
    _set_grad_enabled = torch._C._set_grad_enabled(False)
    add_1 = torch.ops.aten.add.Tensor(sum_1, 1);  sum_1 = None
    _set_grad_enabled_1 = torch._C._set_grad_enabled(True)
    sub = torch.ops.aten.sub.Tensor(add_1, 1)
    return pytree.tree_unflatten((add_1, sub), self._out_spec)
```
Before the change, split graph returns the following graphs and subgraphs (notice the change from `add` -> `add_tensor`, `sin` -> `sin_default`:
```python
def forward(self, arg_0):
    arg0_1, = fx_pytree.tree_flatten_spec(([arg_0], {}), self._in_spec)
    submod_0 = self.submod_0(arg0_1);  arg0_1 = None
    submod_1 = self.submod_1(submod_0);  submod_0 = None
    submod_2 = self.submod_2(submod_1)
    return pytree.tree_unflatten((submod_1, submod_2), self._out_spec)

# submod_0
def forward(self, arg0_1):
    add_tensor = torch.ops.aten.add.Tensor(arg0_1, 1);  arg0_1 = None
    sin_default = torch.ops.aten.sin.default(add_tensor);  add_tensor = None
    sum_default = torch.ops.aten.sum.default(sin_default);  sin_default = None
    return sum_default

# submod_1
def forward(self, sum_1):
    _set_grad_enabled = torch._C._set_grad_enabled(False)
    add_tensor = torch.ops.aten.add.Tensor(sum_1, 1);  sum_1 = None
    return add_tensor

# submod_2
def forward(self, add_1):
    _set_grad_enabled = torch._C._set_grad_enabled(True)
    sub_tensor = torch.ops.aten.sub.Tensor(add_1, 1);  add_1 = None
    return sub_tensor
    """)

```

After the change, the test produce the following graph, all the node names in original graph module are preserved in sub_modules.
```python

def forward(self, arg_0):
    sub, = fx_pytree.tree_flatten_spec(([arg_0], {}), self._in_spec)
    submod_0 = self.submod_0(sub);  sub = None
    submod_1 = self.submod_1(submod_0);  submod_0 = None
    submod_2 = self.submod_2(submod_1)
    return pytree.tree_unflatten((submod_1, submod_2), self._out_spec)

# submod_0
def forward(self, arg0_1):
    add = torch.ops.aten.add.Tensor(arg0_1, 1);  arg0_1 = None
    sin = torch.ops.aten.sin.default(add);  add = None
    sum_1 = torch.ops.aten.sum.default(sin);  sin = None
    return sum_1

# submod_1
def forward(self, sum_1):
    _set_grad_enabled = torch._C._set_grad_enabled(False)
    add_1 = torch.ops.aten.add.Tensor(sum_1, 1);  sum_1 = None
    return add_1

# submod_2
def forward(self, add_1):
    _set_grad_enabled_1 = torch._C._set_grad_enabled(True)
    sub = torch.ops.aten.sub.Tensor(add_1, 1);  add_1 = None
    return sub

```

Note that currently, we call split_module on the graph after pre-dispatch aot. The difference is even larger if we `split_module` the graph module produced by dynamo, where all the original variables names in user program are preserved after dynamo but  lost after `split_module` without this change.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119732
Approved by: https://github.com/tugsbayasgalan
2024-02-17 02:18:04 +00:00
gs-olive
e0f6fa6a7c Windows Dynamo Error Removal CI Check (#115969)
Rebase of #111313 onto `main`, for CI validation

Co-authored-by: Stella Laurenzo <stellaraccident@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115969
Approved by: https://github.com/PaliC, https://github.com/thiagocrepaldi
2024-02-14 21:14:36 +00:00
PyTorch MergeBot
4a5b2cd6cb Revert "Windows Dynamo Error Removal CI Check (#115969)"
This reverts commit 45e7af5818.

Reverted https://github.com/pytorch/pytorch/pull/115969 on behalf of https://github.com/PaliC due to this pr ended up breaking some of our periodic tests ([comment](https://github.com/pytorch/pytorch/pull/115969#issuecomment-1942934386))
2024-02-14 01:11:46 +00:00
gs-olive
45e7af5818 Windows Dynamo Error Removal CI Check (#115969)
Rebase of #111313 onto `main`, for CI validation

Co-authored-by: Stella Laurenzo <stellaraccident@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115969
Approved by: https://github.com/ezyang
2024-02-08 21:23:45 +00:00
Michael Suo
bf4e171539 [export] support non-persistent buffers (#118969)
Summary:
X-link: https://github.com/pytorch/executorch/pull/1817

Basic support for non-persistent buffers, which are buffers that do not show up in the state dict.

One weird twist is that most of our other systems (FX, aot_export, dynamo) have completely buggy handling of non-persistent buffers. I tried to go on a wild goose chase to fix them all, but it got to be too much. So I introduced some sad rewrite passes in `_export` make the final state dict correctly align with the original module's state dict.

This exposed some bugs/ambiguous handling of parameters/buffers in existing test code. For example, `TestSaveLoad.test_save_buffer` traced over a module that was not in the root module hierarchy and caused some weird behavior. I think we should error explicitly on use cases like this: https://github.com/pytorch/pytorch/issues/118410. For now I just rewrote the tests or skipped them.

As a side effect, this diff tightened up quite a few sloppy  behaviors around state dict handling:
- Tensor attributes were getting promoted to be buffers—bad!
- Tracing through a module not in the children of the root module would add its parameters/buffers to the state dict—bad!

This behavior is unlikely to show up in user code since the model would be totally broken, but did show up in a bunch of tests.

#buildmore

Test Plan:
unit tests
sandcastle

Differential Revision: D53340041

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118969
Approved by: https://github.com/guangy10, https://github.com/huydhn, https://github.com/titaiwangms
2024-02-02 19:16:08 +00:00
PyTorch MergeBot
221747507d Revert "[export] support non-persistent buffers (#118612) (#118722)"
This reverts commit a43c28368c.

Reverted https://github.com/pytorch/pytorch/pull/118722 on behalf of https://github.com/atalman due to broke linux-jammy-py3-clang12-executorch ([comment](https://github.com/pytorch/pytorch/pull/118722#issuecomment-1921484565))
2024-02-01 14:39:29 +00:00
Michael Suo
a43c28368c [export] support non-persistent buffers (#118612) (#118722)
Summary:
X-link: https://github.com/pytorch/executorch/pull/1769

Basic support for non-persistent buffers, which are buffers that do not show up in the state dict.

One weird twist is that most of our other systems (FX, aot_export, dynamo) have completely buggy handling of non-persistent buffers. I tried to go on a wild goose chase to fix them all, but it got to be too much. So I introduced some sad rewrite passes in `_export` make the final state dict correctly align with the original module's state dict.

This exposed some bugs/ambiguous handling of parameters/buffers in existing test code. For example, `TestSaveLoad.test_save_buffer` traced over a module that was not in the root module hierarchy and caused some weird behavior. I think we should error explicitly on use cases like this: https://github.com/pytorch/pytorch/issues/118410. For now I just rewrote the tests or skipped them.

Test Plan: added a unit test

Differential Revision: D53253905

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118722
Approved by: https://github.com/SherlockNoMad, https://github.com/angelayi
2024-02-01 00:36:09 +00:00
suo
4ee8aa6028 [export] adopt KeyPath API in nonstrict mode (#118609)
This PR rewrites two paths to use the newly-added keypaths API in pytree:
First: we were hand-rolling a tree_map during fakification because we wanted to track sources. This PR uses keypaths instead, which can do the same thing without needing custom code.

Second: our constraint error formatting was referencing placeholder names in error messages. These placeholder names are not otherwise user-visible, so they are super confusing to users (e.g. "which input does arg1_3 correspond to?"). This diff uses the `keystr` API to format the error message.

This necessitated some small refactors—generating the keystr is expensive so doing it in an f-string was very bad.

It can also be further improved—we can inspect the signature so that instead of `*args[0]` we can give people the actual argument name, which would be the ideal UX. But leaving that for later.

Differential Revision: [D53139358](https://our.internmc.facebook.com/intern/diff/D53139358/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118609
Approved by: https://github.com/zhxchen17
ghstack dependencies: #118607, #118608
2024-01-30 19:14:11 +00:00
Angela Yi
413a434846 [export] Convert all export tests to .module() (#118425)
Test Plan: CI

Differential Revision: D53075379

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118425
Approved by: https://github.com/suo
2024-01-29 23:06:54 +00:00
Edward Z. Yang
903e1913ff Rename unbacked SymInt prefix to u (#117859)
Currently, it conflicts with Inductor's naming convention for index
variables

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117859
Approved by: https://github.com/lezcano, https://github.com/jansel, https://github.com/avikchaudhuri
2024-01-22 20:53:47 +00:00
suo
2ae66ddba0 [export] fix test ownership (#117886)
as title

Differential Revision: [D52924188](https://our.internmc.facebook.com/intern/diff/D52924188/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117886
Approved by: https://github.com/ydwu4
2024-01-21 01:18:16 +00:00
suo
02c96f6949 [export] modify torch.export tests to pass a Module in (#117572)
We have a lot of tests that pass a function to torch.export.

We are planning to disallow this, so fix up the tests to pass a module in.

Differential Revision: [D52791309](https://our.internmc.facebook.com/intern/diff/D52791309/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117572
Approved by: https://github.com/tugsbayasgalan
ghstack dependencies: #117570, #117571
2024-01-18 03:40:40 +00:00
Zhengxu Chen
5ac57a06eb [export] Refactor ExportPassBase. (#116778)
Summary:
X-link: https://github.com/pytorch/executorch/pull/1532

as title. This diff decouple the pass base library from torch export and exir, so that different layers can evolve in their own fashion, and we have more head room to divide and conquer in the future.

Test Plan: CI

Reviewed By: angelayi

Differential Revision: D52514517

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116778
Approved by: https://github.com/angelayi
2024-01-04 21:32:14 +00:00
Zhengxu Chen
43fb1b671c [export] Improve verifier to not specialize on dialect. (#116705)
Summary:
Currently we have a very ugly specialization on edge dialect in verifier like the following:
```
 # TODO Remove this branch.
            if ep.dialect == "EDGE":  # !!! Don't change this allowlist. !!!
                pass
            else:
                raise e
```
In this diff we do some additional work to make signature checking also work in exir. We decouple the transformation stack in torch export and exir so that different layers of the stack can evolve in their own fashion and the team can divide and conquer them seperately.

Test Plan: CI

Differential Revision: D52499225

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116705
Approved by: https://github.com/tugsbayasgalan
2024-01-04 17:17:23 +00:00
Angela Yi
8e2d63cbc3 [export][reland] Remove runtime assertion pass (#115597)
Summary:
Reland of https://github.com/pytorch/pytorch/pull/115196
D52054112 to fix internal failures.

Test Plan: CI

Differential Revision: D52054110

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115597
Approved by: https://github.com/ydwu4, https://github.com/zhxchen17
2023-12-15 03:22:03 +00:00
angelayi
92fd3927b0 [export][reland] Add math.* ops to pass base (#115559)
Reland of https://github.com/pytorch/pytorch/pull/115271/
Fixes https://github.com/pytorch/pytorch/issues/115209
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115559
Approved by: https://github.com/zhxchen17, https://github.com/atalman
ghstack dependencies: #115556, #115557, #115558
2023-12-12 10:46:41 +00:00
angelayi
36199747f3 [export][reland][refactor][2/n] Move tracing logic (#115557)
Reland of https://github.com/pytorch/pytorch/pull/114768
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115557
Approved by: https://github.com/zhxchen17
ghstack dependencies: #115556
2023-12-12 05:37:07 +00:00
atalman
24a463c46c Revert "[export][refactor][2/n] Move tracing logic (#114768)" (#115503)
Github first oncall.
This reverts commit 0ab57ee7ea.

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115503
Approved by: https://github.com/angelayi, https://github.com/kit1980
2023-12-10 19:30:15 +00:00
PyTorch MergeBot
af925a56a1 Revert "[export] Add math.* ops to pass base (#115271)"
This reverts commit 6c0a4ced53.

Reverted https://github.com/pytorch/pytorch/pull/115271 on behalf of https://github.com/atalman due to ghfirst issue when importing, will reland this PR ([comment](https://github.com/pytorch/pytorch/pull/115271#issuecomment-1847852211))
2023-12-08 21:17:56 +00:00
PyTorch MergeBot
4186932bac Revert "[export] Remove runtime assertion pass (#115196)"
This reverts commit c163b3c035.

Reverted https://github.com/pytorch/pytorch/pull/115196 on behalf of https://github.com/atalman due to Broke internal test ([comment](https://github.com/pytorch/pytorch/pull/115196#issuecomment-1847778344))
2023-12-08 20:07:04 +00:00
angelayi
6c0a4ced53 [export] Add math.* ops to pass base (#115271)
Fixes https://github.com/pytorch/pytorch/issues/115209

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115271
Approved by: https://github.com/ydwu4
2023-12-07 02:47:04 +00:00
angelayi
c163b3c035 [export] Remove runtime assertion pass (#115196)
Reland of https://github.com/pytorch/pytorch/pull/111949/

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115196
Approved by: https://github.com/avikchaudhuri
2023-12-07 01:44:11 +00:00
angelayi
0ab57ee7ea [export][refactor][2/n] Move tracing logic (#114768)
2/n of refactoring export code:

* Moved tracing logic in torch/_export/init.py to torch/export/_tracer.py

Differential Revision: [D51823961](https://our.internmc.facebook.com/intern/diff/D51823961)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114768
Approved by: https://github.com/ydwu4
ghstack dependencies: #114764
2023-12-06 16:46:47 +00:00
Zhengxu Chen
e0d2a24967 Reland "[export] Support user input mutation. [1/2]" (#114496) (#114596)
Summary:

Serialization not implemented yet. Will do in the next diff.

Resolving Github issues:
https://github.com/pytorch/pytorch/issues/112429
https://github.com/pytorch/pytorch/issues/114142

Test Plan:
onnx doc test
```
python -m xdoctest /opt/conda/envs/py_3.8/lib/python3.8/site-packages/torch/onnx/_internal/exporter.py ONNXProgram.model_signature:0
```

Differential Revision: D51588558

Pull Request resolved: https://github.com/pytorch/pytorch/pull/114596
Approved by: https://github.com/angelayi
2023-11-27 20:19:04 +00:00
PyTorch MergeBot
fa1ccc34c4 Revert "[export] Support user input mutation. [1/2] (#114496)"
This reverts commit b62c0d96bc.

Reverted https://github.com/pytorch/pytorch/pull/114496 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/114496#issuecomment-1827289635))
2023-11-27 07:52:21 +00:00
Zhengxu Chen
b62c0d96bc [export] Support user input mutation. [1/2] (#114496)
Summary:
Serialization not implemented yet. Will do in the next diff.

Resolving Github issues:
https://github.com/pytorch/pytorch/issues/112429
https://github.com/pytorch/pytorch/issues/114142

Test Plan:
buck2 run mode/opt caffe2/test:test_export -- -r test_export_
input_mutation

Differential Revision: D51556962

Pull Request resolved: https://github.com/pytorch/pytorch/pull/114496
Approved by: https://github.com/tugsbayasgalan
2023-11-27 04:53:38 +00:00
Peter Bell
bbd5b935e4 Use pytree.tree_leaves everywhere (#112324)
This changes all the instances I could find of `tree_flatten(...)[0]` or
`x, _ = tree_flatten` to use `tree_leaves`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/112324
Approved by: https://github.com/lezcano
ghstack dependencies: #112327, #112323
2023-10-30 03:39:04 +00:00
Tugsbayasgalan Manlaibaatar
547a116fcf Fix redundant asserts (#111445)
Fixes: https://github.com/pytorch/pytorch/issues/109852

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111445
Approved by: https://github.com/zhxchen17
2023-10-18 23:57:31 +00:00