Commit Graph

1706 Commits

Author SHA1 Message Date
Blaine Burton Rister
a2753e376b [Inductor] Support tiling reduction dimensions (#137243)
Fixes #134277 and https://github.com/pytorch/pytorch/issues/142317.

Sub-PRs containing refactors from this one:
 - https://github.com/pytorch/pytorch/pull/141733
 - https://github.com/pytorch/pytorch/pull/141738
 - https://github.com/pytorch/pytorch/pull/141751 (based off the former)
 - https://github.com/pytorch/pytorch/pull/142249
 - https://github.com/pytorch/pytorch/pull/142020
 - https://github.com/pytorch/pytorch/pull/143135

 These refactor PRs should land before the main one.

# Feature

*Note: to minimize risk, multi-dimensional reductions are gated by the flag `config.triton.tile_reductions`, which defaults to False.*

Instead of having a single reduction dimension called `"r"`, we can now support 2D reductions with `"r0_"` and `"r1_"` dimensions. 2D reductions generate two nested loops, with different block pointer advancements in each loop body. Most of the implementation is generic to ND reductions, but for now the tiling algorithm sets a hard limit at 2D.

Here's an example of a 2D persistent reduction kernel:
```
@triton.jit
def triton_per_fused_sum_0(in_ptr0, out_ptr0, xnumel, r0_numel, r1_numel, XBLOCK : tl.constexpr):
    xnumel = 1
    r0_numel = 15
    R0_BLOCK: tl.constexpr = 16
    r1_numel = 15
    R1_BLOCK: tl.constexpr = 16
    xoffset = tl.program_id(0) * XBLOCK
    xindex = xoffset + tl.arange(0, XBLOCK)[:, None, None]
    xmask = tl.full([XBLOCK, R0_BLOCK, R1_BLOCK], True, tl.int1)
    r0_index = tl.arange(0, R0_BLOCK)[None, :, None]
    r0_offset = 0
    r0_mask = r0_index < r0_numel
    r1_index = tl.arange(0, R1_BLOCK)[None, None, :]
    r1_offset = 0
    r1_mask = r1_index < r1_numel
    rnumel = r0_numel * r1_numel
    RBLOCK: tl.constexpr = R0_BLOCK*R1_BLOCK
    roffset = r1_offset + (r0_offset*r1_numel)
    rindex = r1_index + (r0_index*r1_numel)
    r0_0 = r0_index
    r1_1 = r1_index
    tmp0 = tl.load(tl.make_block_ptr(in_ptr0, shape=[15, 15], strides=[30, 1], block_shape=[R0_BLOCK, R1_BLOCK], order=[1, 0], offsets=[r0_offset, r1_offset]), boundary_check=[0, 1], padding_option='zero')[None, :, :]
    tmp1 = tl.broadcast_to(tmp0, [XBLOCK, R0_BLOCK, R1_BLOCK])
    tmp3 = tl.where(r0_mask & r1_mask, tmp1, 0)
    tmp4 = tl.reshape(tmp3, [XBLOCK, RBLOCK])
    tmp5 = tl.sum(tmp4, 1)[:, None, None]
    tl.store(out_ptr0 + (tl.full([XBLOCK, 1, 1], 0, tl.int32)), tmp5, None)
''', device_str='cuda')
```

There are a few main differences between this kernel and what Inductor would generate without this PR.
 - Instead of an `r`/`RBLOCK` dimension, we have two reduction dimensions: `r0_`/`R0_BLOCK` and `r1_`/`R1_BLOCK`.
 - There are special size and indexing variables for reductions, which don't directly correspond to any kernel dimension. (`rindex`, `rnumel`, `RBLOCK`, and `roffset`.) These collapse N-D reduction sizes and indices indices into 1D. This simplifies the codegen for reductions, which sometimes want to access linear indices instead of N-dimensional ones. Doing things this way allows us to generate N-D loads and stores, but access this data as if it were 1D, minimizing the blast radius of this PR. Although this makes the code more verbose, it shouldn't have a perf impact because the triton compiler eliminates dead code.
 - We generate the line `tmp4 = tl.reshape(tmp3, [XBLOCK, RBLOCK])` before performing the actual reduction. This reshapes N reduction dimensions into 1D. This allows us to reduce over all N dimensions at once, simplifying the codegen and allowing the Triton complier to decide the order of processing under the hood.

Here's an example of a looped reduction:
```
@triton.jit
def triton_red_fused_sum_0(in_ptr0, out_ptr0, xnumel, r0_numel, r1_numel, XBLOCK : tl.constexpr, R0_BLOCK : tl.constexpr, R1_BLOCK : tl.constexpr):
    xnumel = 3
    r0_numel = 43
    r1_numel = 129
    xoffset = tl.program_id(0) * XBLOCK
    xindex = xoffset + tl.arange(0, XBLOCK)[:, None, None]
    xmask = xindex < xnumel
    r0_base = tl.arange(0, R0_BLOCK)[None, :, None]
    r1_base = tl.arange(0, R1_BLOCK)[None, None, :]
    rnumel = r0_numel * r1_numel
    RBLOCK: tl.constexpr = R0_BLOCK*R1_BLOCK
    rbase = r1_base + (r0_base*r1_numel)
    x0 = xindex
    block_ptr0 = tl.make_block_ptr(in_ptr0, shape=[3, 43, 129], strides=[11094, 258, 1], block_shape=[XBLOCK, R0_BLOCK, R1_BLOCK], order=[2, 1, 0], offsets=[xoffset, 0, 0])
    _tmp2 = tl.full([XBLOCK, R0_BLOCK, R1_BLOCK], 0, tl.float32)
    for r0_offset in range(0, r0_numel, R0_BLOCK):
        r0_index = r0_offset + r0_base
        r0_mask = r0_index < r0_numel
        for r1_offset in range(0, r1_numel, R1_BLOCK):
            r1_index = r1_offset + r1_base
            r1_mask = r1_index < r1_numel
            roffset = r1_offset + (r0_offset*r1_numel)
            rindex = r1_index + (r0_index*r1_numel)
            r0_1 = r0_index
            r1_2 = r1_index
            tmp0 = tl.load(block_ptr0, boundary_check=[0, 1, 2], padding_option='zero', eviction_policy='evict_first')
            tmp1 = tl.broadcast_to(tmp0, [XBLOCK, R0_BLOCK, R1_BLOCK])
            tmp3 = _tmp2 + tmp1
            _tmp2 = tl.where(r0_mask & r1_mask & xmask, tmp3, _tmp2)
            block_ptr0 = tl.advance(block_ptr0, [0, 0, R1_BLOCK])
        block_ptr0 = tl.advance(block_ptr0, [0, R0_BLOCK, (-1)*R1_BLOCK*((128 + R1_BLOCK) // R1_BLOCK)])
    tmp4 = tl.reshape(_tmp2, [XBLOCK, RBLOCK])
    tmp2 = tl.sum(tmp4, 1)[:, None, None]
    tl.store(tl.make_block_ptr(out_ptr0, shape=[3], strides=[1], block_shape=[XBLOCK], order=[0], offsets=[xoffset]), tl.reshape(tmp2, [XBLOCK]).to(tl.float32), boundary_check=[0])
''', device_str='cuda')
```

In addition to the aforementioned changes to the persistent reduction, multidimensional looped reductions have a few more lines of code:
 - They calculate indices inside the loop using `r0_base` and `r1_base`. For compatibility with existing codegen, these are collapsed to the 1D variant `rbase`.
 - Block pointer advancements are more nuanced for multidimensional loops. At the end of each loop body, we emit a `tl.advance` line which not only increments the pointer in its own dimension, but also undoes the cumulative increments of the previous loop level. This is equivalent to the usual practice in nested loops of starting with a fresh iteration variable at each level. Implementing this required refactoring the way we generate pointer advancements into a new `self.pointer_advancements` field of the kernel, which categorizes advancements by dimension.

The biggest difficulty in implementing this feature was that we represented tiling with a tuple like `(5,2)`. In the existing codebase, the compiler can infer that the reduction dimension of `(5,2)` is `2`, since reductions are always the last dimension. This became cumbersome now that we have to support multiple reduction dimensions, so I refactored tiling into a dict like `{"x": 5, "r0_": 2, "r1_": 4}`. This required quite a few code changes, but I don't think it makes the underlying logic much more complex. This will also make it easier to eventually support simultaneous pointwise and reduction tiling, like `{"x": 5, "y": 5, "r0_": 2, "r1_": 4}`. (This is not supported today, but we might want to do it eventually.)

The existing tiling algorithm generalized naturally to support reductions. For pointwise kernels, we tile the pointwise dimensions (`"x"`, `"y"`) as is. For reduction kernels, we never tile the `"x"` dimension, and only tile the reduction dimensions (`"r0_"`, `"r1_"`). Thus we only ever tile pointwise OR reduction dimensions, but not both. In principle it seems possible to support both, but it would likely require changes to the kernel fusion and autotuning logic. I thought it best to keep this PR as minimal as possible since it already touched a lot of different files.

Unfortunately, these changes weren't enough to get block pointers in some seemingly simple test cases. In some tests for `argmax` and `var_mean`, we already collapse reduction dimensions into 1D and generate modular indexing expressions, prior to tiling. So it's not trivial to figure out how to expand the collapsed reduction dimension back to a shape that would simplify the indexing.

To address these cases, this PR adds a new feature to the `config.prefer_nd_tiling` option, which analyzes reads and writes in the kernel, using the same mod-div pattern matching logic that generates block pointers later on. By matching this pattern, we can solve for the tiling splits which *would* simplify the indexing expression, and use then use that tiling to eliminate the modular indexing and emit a block pointer. This tiling mode is still off by default, but it's important for certain applications where we need to get as many block pointers as possible.

# Test plan

This touches pretty much anything that uses the Triton and Halide backends, so the existing CI provides good coverage. However, 2D reductions are gated behind a few feature flags like `config.prefer_nd_tiling` and `config.tile_reductions`, so this really only checks that the PR doesn't break 1D reductions.

In addition to existing CI tests, this PR also adds some new tests that specifically stress 2D reductions:

- `test_2d_reduction_odd_shapes`: test 2D reductions with a variety of ops and sizes. This covers the typical persistent and looped reductions.
-  `test_2d_reduce_no_x_dim`: test 2D reductions with no x dimension.
-  `test_2d_welford_reduction`: test 2D welford reductions with block pointers.
- `test_welford_non_block_pointer`: test a 2D welford reduction when block pointer analysis fails.
- `test_reduction_multiple_discontiguous_dims`: test reducing over more than one discontiguous dimension. We won't get a block pointer for this case, since that would require 3D tiling, but we're currently limited to 2D.
- `test_2d_reduction_multi_kernel`: test multi kernel autotuning on a 2D softmax kernel.
- `test_enable_tiled_reductions`: test that `config.triton.tile_reductions` enables/disables this feature.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137243
Approved by: https://github.com/jansel

Co-authored-by: Yueming Hao <yhao@meta.com>
Co-authored-by: Jason Ansel <jansel@meta.com>
2024-12-31 05:06:46 +00:00
Boyuan Feng
f3e5078c27 [Inductor] Relax size constraints for re-inplacing (#143884)
Current reinplacing requires input buffer and output buffer has exactly the same storage size. However, matmul padding may increase the tensor size slightly for better performance, which prevents reinplacing.

This PR changes the size constraints to be:
- input and output buffer have exactly the same symbolic expression for storage size (i.e., sympy str).
- it's statically known that 0.99 * input_size <= output_size <= input_size

### Apply on llm.c
See the reuse of `buf1`.
Before relaxing size requirements on re-inplacing: ([P1703512078](https://www.internalfb.com/phabricator/paste/view/P1703512078))
![1](https://github.com/user-attachments/assets/1472f550-6eb8-4d5c-9965-49bbb20d81a9)

After relaxing size requirements on re-inplacing: ([P1703513053](https://www.internalfb.com/phabricator/paste/view/P1703513053))
![2](https://github.com/user-attachments/assets/416294dd-30eb-4e12-a36c-1aebf9af530b)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143884
Approved by: https://github.com/eellison
2024-12-31 03:52:47 +00:00
Nikita Shulga
11bb94b7ea [MPSInductor] Fix index generation for transpose (#143973)
Alas, PythonPrinter would not work here, not would CppPrinter, so start building MetalPrinter.

`pytest test/inductor/test_torchinductor.py -k _mps` score is 474 failed, 277 passed, 32 skipped
Before this change:
`pytest test/inductor/test_torchinductor.py -k _mps` reported 506 failed, 245 passed, 32 skipped

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143973
Approved by: https://github.com/jansel
ghstack dependencies: #143948, #143949
2024-12-31 02:04:50 +00:00
xinan.lin
934eaa503f [Inductor XPU] Support max-autotune on XPU and reuse the corresponding Inductor UT. (#143266)
This PR aims to add the functionality support of max-autotune for XPU. The current triton templates and configurations are not well optimized for XPU, so the performance is not ready yet. Also the `mm_plus_mm` template have accuracy issues in some cases. We will address these issues in the next PRs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143266
Approved by: https://github.com/EikanWang, https://github.com/jansel
2024-12-30 23:51:17 +00:00
Jason Ansel
2da7fb5320 [inductor] Make generated kernels deterministic (#143951)
`"compile_id"` had slipped into our generated Triton code (in the
metadata), which will defeat caching because the same kernels generated
in a different order would not cache hit with eachother.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143951
Approved by: https://github.com/oulgen
2024-12-30 23:35:11 +00:00
Benjamin Glass
d260bc4476 cpp_wrapper: minimize pybind11 dependency (#143772)
Only include the parts of `pybind11` that handle GIL management within `cpp_wrapper`. This dramatically improves compilation times by reducing the number of headers we compile. Improvements on my local system are on the order of 2x.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143772
Approved by: https://github.com/Skylion007
2024-12-30 20:41:02 +00:00
PyTorch MergeBot
1b0d19a2cb Revert "[inductor] Make generated kernels deterministic (#143951)"
This reverts commit 79b354ee37.

Reverted https://github.com/pytorch/pytorch/pull/143951 on behalf of https://github.com/wdvr due to failing tests on trunk ([comment](https://github.com/pytorch/pytorch/pull/143951#issuecomment-2564952267))
2024-12-30 02:06:38 +00:00
Jason Ansel
79b354ee37 [inductor] Make generated kernels deterministic (#143951)
`"compile_id"` had slipped into our generated Triton code (in the
metadata), which will defeat caching because the same kernels generated
in a different order would not cache hit with eachother.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143951
Approved by: https://github.com/oulgen
2024-12-29 19:53:33 +00:00
Nikita Shulga
d8c3900d80 [Inductor] Implement primitive Metal compiler (#143893)
Still work in progress, only works for element wise operations. Current implementation could be used to turn something like
```python
def f(x):
  return x[:,::2].sin() + x[:, 1::2].cos()
```
into the following shader
```python
# Topologically Sorted Source Nodes: [sin, cos, add], Original ATen: [aten.sin, aten.cos, aten.add]
# Source node to ATen node mapping:
#   add => add
#   cos => cos
#   sin => sin
# Graph fragment:
#   %sin : [num_users=1] = call_function[target=torch.ops.aten.sin.default](args = (%slice_2,), kwargs = {})
#   %cos : [num_users=1] = call_function[target=torch.ops.aten.cos.default](args = (%slice_4,), kwargs = {})
#   %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sin, %cos), kwargs = {})
mps_lib = torch.mps._compile_shader("""
    kernel void kernel_0(
        device float* out_ptr0,
        constant float* in_ptr0,
        uint xindex [[thread_position_in_grid]]
    ) {
        int x0 = xindex;
        auto tmp0 = in_ptr0[2*x0];
        auto tmp1 = metal::precise::sin(tmp0);
        auto tmp2 = in_ptr0[2*x0 + 1];
        auto tmp3 = metal::precise::cos(tmp2);
        auto tmp4 = tmp1 + tmp3;
        out_ptr0[x0] = static_cast<float>(tmp4);
    }
""")
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143893
Approved by: https://github.com/jansel
ghstack dependencies: #143891, #143892
2024-12-28 06:58:32 +00:00
leslie-fang-intel
74028cfd0c [Inductor][CPP] Fix Data Type issue of frexp (#143746)
**Summary**
Fix issue: https://github.com/pytorch/pytorch/issues/143729. `frexp` has 1 input but 2 output tensor with different data type, current `deduce_dtype_for_cpp_cse_variable` can't deduce the data type for each output correctly due to missing of output index. In this PR, we set the data type of cse var in the codegen of `frexp` and avoid it being overridden in the following flow.

**Test Plan**
```
python -u -m pytest -s -v test/inductor/test_cpu_repro.py -k test_frexp
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143746
Approved by: https://github.com/jgong5
2024-12-28 06:00:13 +00:00
Nikita Shulga
4a7cf0dbff [Inductor] Add MPS device op overrides (#143892)
Mostly dummy interface as MPS backend currently limited to a single device

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143892
Approved by: https://github.com/jansel
ghstack dependencies: #143891
2024-12-28 02:11:45 +00:00
Colin Peppler
b54620f40f [CUTLASS] fix bugs: extra data_ptr() call, wrong size symbol name, bias symbol not added (#143528)
A few small things in this PR:
- fixed a bug where `workspace.data_ptr().data_ptr()` showed up
- for SM80 CUTLASS kernels, the symbol size for W.size(1) was never created
- for addmm kernels, the ldc bias symbol never showed up

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143528
Approved by: https://github.com/henrylhtsang
2024-12-27 23:38:18 +00:00
bobrenjc93
c17d767686 remove allow-untyped-defs from _inductor/codegen/rocm/rocm_template_buffer.py (#143870)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143870
Approved by: https://github.com/aorenste, https://github.com/Skylion007
2024-12-27 23:28:51 +00:00
bobrenjc93
63d6e1f743 remove allow-untyped-defs from _inductor/codegen/aoti_hipify_utils.py (#143916)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143916
Approved by: https://github.com/Skylion007
2024-12-27 23:25:37 +00:00
Animesh Jain
969415885d [inductor][invoke_subgraph] Support None/int as input/output of invoke_subgraph (#139373)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139373
Approved by: https://github.com/eellison
2024-12-27 06:46:09 +00:00
bobrenjc93
d60282c177 remove allow-untyped-defs from _inductor/codegen/cpu_device_op_overrides.py (#143881)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143881
Approved by: https://github.com/aorenste
2024-12-27 04:10:47 +00:00
PyTorch MergeBot
cc4e70b7c3 Revert "Use absolute path path.resolve() -> path.absolute() (#129409)"
This reverts commit 135c7db99d.

Reverted https://github.com/pytorch/pytorch/pull/129409 on behalf of https://github.com/malfet due to need to revert to as dependency of https://github.com/pytorch/pytorch/pull/129374 ([comment](https://github.com/pytorch/pytorch/pull/129409#issuecomment-2562969825))
2024-12-26 17:26:06 +00:00
PyTorch MergeBot
844e6108f6 Revert "[Inductor XPU] Support max-autotune on XPU and reuse the corresponding Inductor UT. (#143266)"
This reverts commit ad750ae320.

Reverted https://github.com/pytorch/pytorch/pull/143266 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it is failing some tests in trunk ([comment](https://github.com/pytorch/pytorch/pull/143266#issuecomment-2561303786))
2024-12-24 17:22:57 +00:00
Xuehai Pan
b77406a9ec [BE][CI] bump ruff to 0.8.4 (#143753)
Changes:

1. Bump `ruff` from 0.7.4 to 0.8.4
2. Change `%`-formatted strings to f-string
3. Change arguments with the `__`-prefix to positional-only arguments with the `/` separator in function signature.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143753
Approved by: https://github.com/Skylion007
2024-12-24 12:24:10 +00:00
Xuehai Pan
135c7db99d Use absolute path path.resolve() -> path.absolute() (#129409)
Changes:

1. Always explicit `.absolute()`: `Path(__file__)` -> `Path(__file__).absolute()`
2. Replace `path.resolve()` with `path.absolute()` if the code is resolving the PyTorch repo root directory.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129409
Approved by: https://github.com/albanD
2024-12-24 08:33:08 +00:00
xinan.lin
ad750ae320 [Inductor XPU] Support max-autotune on XPU and reuse the corresponding Inductor UT. (#143266)
This PR aims to add the functionality support of max-autotune for XPU. The current triton templates and configurations are not well optimized for XPU, so the performance is not ready yet. Also the `mm_plus_mm` template have accuracy issues in some cases. We will address these issues in the next PRs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143266
Approved by: https://github.com/EikanWang, https://github.com/jansel
2024-12-24 05:42:36 +00:00
cyy
1feae27ed6 [16/N] Fix extra warnings brought by clang-tidy-17 (#143714)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143714
Approved by: https://github.com/Skylion007, https://github.com/albanD
2024-12-24 03:29:38 +00:00
Kai Londenberg
434e0c2104 Inductor Cutlass backend: Eliminate unused code. (#143723)
Summary: Eliminates an unused file and some smaller unused code fragments from the inductor cutlass codebase.

Test Plan: CI

Differential Revision: D67579837

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143723
Approved by: https://github.com/ColinPeppler
2024-12-23 09:35:03 +00:00
cyy
09c950cc87 Remove unused <ATen/core/Array.h> inclusion (#143701)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143701
Approved by: https://github.com/albanD
2024-12-22 14:30:11 +00:00
Tom Ritchford
f1cbf4b1b5 Enable ruff's unused variable checking everywhere in pytorch (#136965)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136965
Approved by: https://github.com/cyyever, https://github.com/albanD
2024-12-22 02:33:11 +00:00
leslie-fang-intel
607884c9af [Inductor][CPP] Fix bitwise shift with corner inputs (#143635)
**Summary**
Fix issue https://github.com/pytorch/pytorch/issues/143555 and https://github.com/pytorch/pytorch/issues/143566, we can align the implementation with Eager: 29b586bbad/aten/src/ATen/native/cpu/BinaryOpsKernel.cpp (L501) at these corner inputs.

**Test Plan**
```
python test/inductor/test_cpu_repro.py -k test_bitwise_shift_corner_inputs
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143635
Approved by: https://github.com/jgong5
2024-12-20 13:47:40 +00:00
Rachel Guo
9275091d6e [provenance_tracking] Dump inductor_triton_kernel_to_post_grad_nodes.json info in debug_trace (#143055)
Summary:
This diff mainly adds code changes to dump `inductor_triton_kernel_to_post_grad_nodes.json` artifact which contains mapping info from post_grad -> inductor kernel code:
`{"inductor_triton_kernel_name": [post_grad_node_0, post_grad_node_1, ..., ], "..."}.`

Example paste: P1695235000 verified on the test model.  See "Test Plan":

We use this artifact to demonstrate provenance tracking in the frontend 3-tab highlighter tool:
https://github.com/YUNQIUGUO/compiler_explorer (copy/pasted the input files for demo purpose for now and will integrate with Shangdi's tool to 4-tab)

https://pxl.cl/66BzK

Note: Currently only supports mapping for inductor's`TritonKernel` type. TODO for enhancing more support for `ExternKernel` and other inductor generated kernel type, etc.

Test Plan:
test_model_coverage.sh:
```
#!/bin/sh
MODEL_ENTITY_ID=644688112
SNAPSHOT_ID=32
MODULE=merge

# buck2 build --show-output mode/opt -c=python.package_style=inplace -c fbcode.enable_gpu_sections=true -c fbcode.platform=platform010 -c fbcode.split-dwarf=true -c fbcode.nvcc_arch=a100,h100 caffe2/torch/fb/model_transform/experimental/benchmark:mts_gpu_benchmark

TORCH_COMPILE_DEBUG=1 CUDA_VISIBLE_DEVICES=0 TORCHINDUCTOR_FORCE_DISABLE_CACHES=1 TORCH_LOGS="+inductor, schedule, fusion, output_code" TORCH_TRACE="tmp/guorachel_tt" TORCHINDUCTOR_MAX_AUTOTUNE=1 TORCHINDUCTOR_UNIQUE_KERNEL_NAMES=1 ../buck-out/v2/gen/fbcode/d29ee94b913014f1/caffe2/torch/fb/model_transform/experimental/benchmark/__mts_gpu_benchmark__/mts_gpu_benchmark.par --model-path manifold://ads_storage_fblearner/tree/user/facebook/fblearner/predictor/${MODEL_ENTITY_ID}/${SNAPSHOT_ID}/gpu_lowering/input.predictor.disagg.gpu.merge --lower-backend AOT_INDUCTOR_EP --gpu-trace --aot-inductor-config="{'max_autotune': True}" 2>&1 | tee output.txt
```
 {F1973765026}

```
buck2 test 'fbcode//mode/opt' fbcode//caffe2/test/inductor:provenance_tracing -- --exact 'caffe2/test/inductor:provenance_tracing - test_triton_kernel_post_grad_mapping_aot_inductor (caffe2.test.inductor.test_provenance_tracing.TestProvenanceTracingArtifact)'
```

```
TORCH_LOGS="+inductor, output_code" buck2 run -c fbcode.enable_gpu_sections=true -c fbcode.nvcc_arch=h100 @//mode/opt fbcode//caffe2/test/inductor:provenance_tracing -- -r test_triton_kernel_post_grad_mapping_aot_inductor
```

Differential Revision: D66967510

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143055
Approved by: https://github.com/chenyang78
2024-12-18 06:51:50 +00:00
Jason Ansel
cf46eb3bf5 [inductor] Include types and size hints in MultiKernel cache key (#142349)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/142349
Approved by: https://github.com/eellison, https://github.com/shunting314
2024-12-17 09:26:38 +00:00
bobrenjc93
a42ca5a45b remove allow-untyped-defs for _inductor/codegen/rocm/rocm_template_buffer.py (#143272)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143272
Approved by: https://github.com/aorenste
2024-12-17 05:34:22 +00:00
Bin Bao
467970d683 [AOTI] Relax input alignment assertion (#143236)
Summary: https://github.com/pytorch/pytorch/pull/142136 added a runtime alignment assertion. But the assumption is probably too strict for more flexible use cases of AOTI, e.g. python deployment, see a recent error torchchat ran into for more details, https://github.com/pytorch/torchchat/actions/runs/12322072267/job/34394851280 . This PR relaxes the runtime check and implements copy_misaligned_inputs in cpp instead.

Differential Revision: [D67287922](https://our.internmc.facebook.com/intern/diff/D67287922)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143236
Approved by: https://github.com/malfet, https://github.com/chenyang78
2024-12-17 00:17:39 +00:00
eellison
135a2d4483 Update low prec codegen for div/mod (#142350)
Div/mod in fp16/bf16 requires a downcast to preserve its inputs' dtypes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142350
Approved by: https://github.com/blaine-rister
2024-12-16 21:46:08 +00:00
PyTorch MergeBot
54ed13cdce Revert "Update low prec codegen for div/mod (#142350)"
This reverts commit ca973069ed.

Reverted https://github.com/pytorch/pytorch/pull/142350 on behalf of https://github.com/huydhn due to Sorry for reverting your change but I think it. breaks an internal test ([comment](https://github.com/pytorch/pytorch/pull/142350#issuecomment-2546615951))
2024-12-16 20:05:14 +00:00
eellison
ca973069ed Update low prec codegen for div/mod (#142350)
Div/mod in fp16/bf16 requires a downcast to preserve its inputs' dtypes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142350
Approved by: https://github.com/blaine-rister
2024-12-14 03:53:28 +00:00
leslie-fang-intel
00b0210139 [Inductor] Use sleef implementation for CPP backend asinh codegen (#142360)
**Summary**
Fix https://github.com/pytorch/pytorch/issues/142345. Previously, we use `asinh(x) = log(x + sqrt(1 + x**2))` to calculate the result of `asinh`, the issue happens when input with `-10000.1`, which makes `x + sqrt(1 + x**2)` close to 0 and log(0) is invalid. We use the `sleef` implementation in this PR to fix this issue.

**Test Plan**
```
python -u -m pytest -s -v test/inductor/test_cpu_repro.py -k test_asinh_with_corner_inputs
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142360
Approved by: https://github.com/jgong5
2024-12-14 00:27:55 +00:00
eellison
8621b9ff0c Infer whether prologues can be computed without upcasting to fp32 without changing numerics (#142402)
For prologues which only do either loads like gathers or dtype conversions, and no actual arithmetic on lower-precision types, we can codegen them without upcasting to fp32 without changing numerics.

Prologues that actually do arithmetic will need to use invoke quant. But I would like to to support upcasts/gathers out of the box.

We could potentially extend this in the future to avoid upcasting max pooling operations as well, if there were perf benefits to be had (less likely).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142402
Approved by: https://github.com/jansel
ghstack dependencies: #142401
2024-12-13 23:25:15 +00:00
eellison
ad2faec8bb Add a pass which analyzes whether a prologue preserves zero mask (#142401)
We load inputs to prologue fusion with a mask. That mask must still be zero before we run `tl.dot`. Previously, we would always apply the mask:
```
        tmp0 = tl.load(in_ptr1 + (tl.broadcast_to(xindex, xindex.shape)), a_mask, eviction_policy='evict_last')
        tmp1 = tmp0.to(tl.float32)
        a = tl.where(a_mask, tmp1, 0.0)
```
now we do not need to ->
```
        tmp0 = tl.load(in_ptr1 + (tl.broadcast_to(xindex, xindex.shape)), a_mask, eviction_policy='evict_last')
        tmp1 = tmp0.to(tl.float32)
        a = tmp1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142401
Approved by: https://github.com/jansel
2024-12-13 22:37:33 +00:00
Sam Larsen
60c54467db [logging] Log runtime autotuning timing to scuba (#141919)
See test plan in internal diff [D66679369](https://our.internmc.facebook.com/intern/diff/D66679369)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141919
Approved by: https://github.com/jamesjwu, https://github.com/ezyang
2024-12-13 21:22:13 +00:00
Tom Ritchford
da67a6a7bb [inductor] Replace set by OrderedSet (#138466)
Uses the set_linter from https://github.com/pytorch/pytorch/pull/138454
and considerable manual editing

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138466
Approved by: https://github.com/eellison
2024-12-13 16:08:45 +00:00
eellison
b731ced91f Prologue Fusion (#134532)
This PR extends our ability to fuse pointwise nodes onto triton templates with the ability to fuse pointwise nodes into triton templates - prologue fusion.

Similar to the store_output api:
`{{store_output(("idx_m", "idx_n"), "acc", "mask")}}`

And the modification api:

```
{{ modification(
    subgraph_number=0,
    output_name="post_mod_scores",
    score="qk",
    out="qk"
) | indent_except_first(1) }}
```

We have:

```{{load_input("B", "b", ("idx_m", "idx_n"), mask=None if EVEN_K else "b_mask", indent_width=8)}}```

Because we are now loading the input with explicit indices and mask, I needed to rewrite the mm kernel to no longer update the [pointers by BLOCK_K](bb03ef7aca/torch/_inductor/kernel/mm.py (L110-L111)) on every iteration and instead on each iteration compute indices from the the k_idx of each loop. This did not have any perf difference.

There are a couple main use cases for prologue fusion:

- Fusing dequants into a matmul. particularly for more bandwidth bound scenarios.
- Fusing gather into a matmul. This is useful particularly in MOE. See https://github.com/pytorch/pytorch/issues/134535 for more details.

Prologue fusion is generally much less profitable than epilogue fusion, because it must be applied to an element of an input on each loop of the matmul, compared to only once in the epilogue (gather into matmul is a potential exception). Accordingly, we are much less aggressive in attempting to fuse prologue fusion. We only attempt fusion if it does not increase the number of memory bytes read instead the triton template, multipled by a small factor to allow gathers. This restricts reliably unprofitable fusions like fp32->fp16 inside kernel. In future pr we could potentially have api of being more aggressive if we know we are in a bandwidth bound regime. See: https://github.com/pytorch/pytorch/pull/134532/files#diff-d2539c9c8dc6a3d7e457767a880612e96d3c85752a77ead49a9e4e00a3e4c3c7R3060-R3066

Other notes:

By default we will upcast to fp32 inside every kernel. This matches eager numerics. This is fine enough for epilogue because it is only done once (although it is probably unnecessary for say a relu) but tanks perf for prologue. I am currently using the `codegen_upcast_to_fp32` option to avoid it, but that will not work for libdevice calls that require fp32. We will need https://github.com/pytorch/pytorch/pull/136778/ and dtype-aware codegen to upcast fp16 ops into libdevice calls.

With prologue fusion, we now have essentially separate kernels for each input, and for the output. I had to increase the number of fields that are swapped out in `set_subgraph_body` by a large number :/ I also update the fusion logic because the inputs will have a different group than the outputs. Maybe as part of enabling multiple outputs, this could get cleaned up a bit so..

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134532
Approved by: https://github.com/jansel
2024-12-13 04:18:25 +00:00
eellison
0b75b7ff2b [Easy] factor out inductor ophandler decompositions (#142400)
Factor out inductor operator decompositions

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142400
Approved by: https://github.com/Chillee, https://github.com/jansel
2024-12-12 19:03:26 +00:00
Tom Ritchford
dc23f1944a Remove unused Python variables in torch/[_-a]* (#133492)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133492
Approved by: https://github.com/albanD
2024-12-12 17:39:14 +00:00
Blaine Burton Rister
520ba556cd [Inductor] Refactor "r" reduction prefix to {"r0_", "r1_"}. (#142020)
Preparatory refactor for https://github.com/pytorch/pytorch/pull/137243.

# Feature

This PR changes the `RINDEX` / `"r"` symbol type to `(R0_INDEX, R1_INDEX)` and `("r0_", "r1_")`, respectively. This allows the relevant code to support 2D (often ND) reductions. Unlike the parent PR, this one does not change the tiling algorithm, so `"r1_"` is never used. However, it prepares other parts of the system to handle `"r1_"` once we start using it. This should significantly reduce the chances of hitting merge conflicts, making the parent PR much easier to land.

The only change to the generated triton code is to rename `"rindex"` -> `"r0_index"`, `"RBLOCK"` -> `"R0_BLOCK"`, etc. To maintain compatibilty with existing codegen, this also generates aliases to the old reduction variables like `rindex = r0_index`. If we generated 2D reductions (which this PR will not do), the aliases would be more complicated and would collapse 2D multi-indices to linear indices. See some example kernels in the parent PR.

These aliases can be eliminated by the Triton compiler, and should not impact the final machine code running on the GPU. See the perf testing in the parent PR which confirms the aliases do not impact perf.

# Test plan

The existing CI provides good coverage. This PR modifies the expected code in a few places, renaming reduction variables from `r.*` to `r0_.*`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142020
Approved by: https://github.com/jansel

Co-authored-by: Jason Ansel <jansel@meta.com>
2024-12-12 17:22:20 +00:00
eellison
725526abc5 Fix scan dtypes (#143048)
FIx for https://github.com/pytorch/pytorch/issues/142883. We weren't getting test coverage of scan because the tests were being skipped. see, https://github.com/pytorch/pytorch/issues/143053

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143048
Approved by: https://github.com/arui-meta, https://github.com/blaine-rister
2024-12-12 15:57:00 +00:00
PyTorch MergeBot
cd1b5924d5 Revert "[Inductor] Use sleef implementation for CPP backend asinh codegen (#142360)"
This reverts commit 79cf8fa751.

Reverted https://github.com/pytorch/pytorch/pull/142360 on behalf of https://github.com/jeanschmidt due to seems to have broken macos tests ([comment](https://github.com/pytorch/pytorch/pull/142360#issuecomment-2539143039))
2024-12-12 14:42:55 +00:00
leslie-fang-intel
79cf8fa751 [Inductor] Use sleef implementation for CPP backend asinh codegen (#142360)
**Summary**
Fix https://github.com/pytorch/pytorch/issues/142345. Previously, we use `asinh(x) = log(x + sqrt(1 + x**2))` to calculate the result of `asinh`, the issue happens when input with `-10000.1`, which makes `x + sqrt(1 + x**2)` close to 0 and log(0) is invalid. We use the `sleef` implementation in this PR to fix this issue.

**Test Plan**
```
python -u -m pytest -s -v test/inductor/test_cpu_repro.py -k test_asinh_with_corner_inputs
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142360
Approved by: https://github.com/jgong5
2024-12-12 05:40:48 +00:00
leslie-fang-intel
06075d3d18 [Inductor][CPP] Fix Mask Dtype mismatch (#142103)
**Summary**
Fix issue: https://github.com/pytorch/pytorch/issues/141559. The `vec_mask` store data type doesn't aligned when doing `bitwise_and`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142103
Approved by: https://github.com/jgong5
2024-12-12 01:21:32 +00:00
PyTorch MergeBot
233853a66f Revert "Prologue Fusion (#134532)"
This reverts commit 59ab3825e7.

Reverted https://github.com/pytorch/pytorch/pull/134532 on behalf of https://github.com/clee2000 due to A couple of PRs in this stack are breaking internally on different tests ([comment](https://github.com/pytorch/pytorch/pull/134532#issuecomment-2536643675))
2024-12-11 17:32:26 +00:00
PyTorch MergeBot
f0b80d014d Revert "Update low prec codegen for div/mod (#142350)"
This reverts commit 1fb3d5a4e3.

Reverted https://github.com/pytorch/pytorch/pull/142350 on behalf of https://github.com/clee2000 due to A couple of PRs in this stack are breaking internally on different tests ([comment](https://github.com/pytorch/pytorch/pull/134532#issuecomment-2536643675))
2024-12-11 17:32:26 +00:00
PyTorch MergeBot
829a93562a Revert "[Easy] factor out inductor ophandler decompositions (#142400)"
This reverts commit fa746e3eeb.

Reverted https://github.com/pytorch/pytorch/pull/142400 on behalf of https://github.com/clee2000 due to A couple of PRs in this stack are breaking internally on different tests ([comment](https://github.com/pytorch/pytorch/pull/134532#issuecomment-2536643675))
2024-12-11 17:32:26 +00:00
PyTorch MergeBot
9e88279737 Revert "Add a pass which analyzes whether a prologue preserves zero mask (#142401)"
This reverts commit 1a0bd40243.

Reverted https://github.com/pytorch/pytorch/pull/142401 on behalf of https://github.com/clee2000 due to A couple of PRs in this stack are breaking internally on different tests ([comment](https://github.com/pytorch/pytorch/pull/134532#issuecomment-2536643675))
2024-12-11 17:32:25 +00:00