Preferring dash over underscore in command-line options. Add `--command-arg-name` to the argument parser. The old arguments with underscores `--command_arg_name` are kept for backward compatibility.
Both dashes and underscores are used in the PyTorch codebase. Some argument parsers only have dashes or only have underscores in arguments. For example, the `torchrun` utility for distributed training only accepts underscore arguments (e.g., `--master_port`). The dashes are more common in other command-line tools. And it looks to be the default choice in the Python standard library:
`argparse.BooleanOptionalAction`: 4a9dff0e5a/Lib/argparse.py (L893-L895)
```python
class BooleanOptionalAction(Action):
def __init__(...):
if option_string.startswith('--'):
option_string = '--no-' + option_string[2:]
_option_strings.append(option_string)
```
It adds `--no-argname`, not `--no_argname`. Also typing `_` need to press the shift or the caps-lock key than `-`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94505
Approved by: https://github.com/ezyang, https://github.com/seemethere
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61471
Make sure `rdzv_configs[timeout]` is not getting overwritten
Test Plan: sandcastle
Differential Revision: D29638606
fbshipit-source-id: e164cdddaed77e7e35412ed58ac1ee312e9d489d
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61294
Pull Request resolved: https://github.com/pytorch/pytorch/pull/60925
* Make `torch.distributed.launch` restarts to 0
* Remove unnecessary `-use_env` warning, move `-use_env` warnings
* Move `-use_env` warnings to `torch.distributed.launch`
* Make default log level WARNING
* Add new doc section around transitioning to `torch.distributed.run`
* Make `torch.distributed.launch` not use error-propagation
* Set default events handler to `null` that does not print events to console
* Add reference from `torch.distributed.launch` to `torch.distributed.run`
* Set correct preexec function that sends SIGTERM to child processes when parent dies
Issues resolved:
https://github.com/pytorch/pytorch/issues/60716https://github.com/pytorch/pytorch/issues/60754
Test Plan:
sandcastle
python -m torch.distributed.launch --nproc_per_node 2 main.py -> uses 0 restarts
python -m torch.distributed.run --nproc_per_node 2 main.py -> uses default for torchelastic, 0 restarts
python -m torch.distributed.launch --nproc_per_node=4 --use_env --no_python main.py -> produces error
python -m torch.distributed.launch --nproc_per_node=4 --use_env main.py -> no warning
python -m torch.distributed.launch --nproc_per_node=4 --no_python main.py ->warning
Output of running torch.distributed.launch without --use_env:
$path/torch/distributed/launch.py:173: FutureWarning: The module torch.distributed.launch is deprecated
and will be removed in future. Use torch.distributed.run.
Note that --use_env is set by default in torch.distributed.run.
If your script expects `--local_rank` argument to be set, please
change it to read from `os.environ('LOCAL_RANK')` instead.
New section:
{F628923078}
{F628974089}
Reviewed By: cbalioglu
Differential Revision: D29559553
fbshipit-source-id: 03ed9ba638bf154354e1530ffc964688431edf6b
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/60925
* Make `torch.distributed.launch` restarts to 0
* Remove unnecessary `-use_env` warning, move `-use_env` warnings
* Move `-use_env` warnings to `torch.distributed.launch`
* Make default log level WARNING
* Add new doc section around transitioning to `torch.distributed.run`
* Make `torch.distributed.launch` not use error-propagation
* Set default events handler to `null` that does not print events to console
* Add reference from `torch.distributed.launch` to `torch.distributed.run`
* Set correct preexec function that sends SIGTERM to child processes when parent dies
Issues resolved:
https://github.com/pytorch/pytorch/issues/60716https://github.com/pytorch/pytorch/issues/60754
Test Plan:
sandcastle
python -m torch.distributed.launch --nproc_per_node 2 main.py -> uses 0 restarts
python -m torch.distributed.run --nproc_per_node 2 main.py -> uses default for torchelastic, 0 restarts
python -m torch.distributed.launch --nproc_per_node=4 --use_env --no_python main.py -> produces error
python -m torch.distributed.launch --nproc_per_node=4 --use_env main.py -> no warning
python -m torch.distributed.launch --nproc_per_node=4 --no_python main.py ->warning
Output of running torch.distributed.launch without --use_env:
$path/torch/distributed/launch.py:173: FutureWarning: The module torch.distributed.launch is deprecated
and will be removed in future. Use torch.distributed.run.
Note that --use_env is set by default in torch.distributed.run.
If your script expects `--local_rank` argument to be set, please
change it to read from `os.environ('LOCAL_RANK')` instead.
New section:
{F628923078}
{F628974089}
Reviewed By: kiukchung, cbalioglu
Differential Revision: D29413019
fbshipit-source-id: 323bfbad9d0e4aba3b10ddd7a243ca6e48169630
Summary:
During development it is common practice to put `type: ignore` comments on lines that are correct, but `mypy` doesn't recognize this. This often stems from the fact, that the used `mypy` version wasn't able to handle the used pattern.
With every new release `mypy` gets better at handling complex code. In addition to fix all the previously accepted but now failing patterns, we should also revisit all `type: ignore` comments to see if they are still needed or not. Fortunately, we don't need to do it manually: by adding `warn_unused_ignores = True` to the configuration, `mypy` will error out in case it encounters an `type: ignore` that is no longer needed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/60006
Reviewed By: jbschlosser, malfet
Differential Revision: D29133237
Pulled By: albanD
fbshipit-source-id: 41e82edc5cd5affa7ccedad044b59b94dad4425a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/55687
The diff makes sure that users can transfer the following parameters:
* master_addr
* master_port
* node_rank
* use_env
The diff implement StaticTCPRendezvous that creates a store with listener on agent rank #0
The diff modifies caffe2/rendezvous: If the worker process launched with torchelastic agent, the worker processes will create a PrefixStore("worker/") from TCPStore without listener.
The diff adds macros functionality to torch/distributed/ealstic/utils that helps to resolve local_rank parameter.
Test Plan: buck test mode/dev-nosan //pytorch/elastic/torchelastic/distributed/test:launch_test
Reviewed By: cbalioglu, wilson100hong
Differential Revision: D27643206
fbshipit-source-id: 540fb26feac322cc3ec0a989fe53324755ccc4ea