Summary:
(Updated per review feedback)
`torch.floor_divide` is currently a function that can operate on two tensors or a tensor and a scalar (scalar x scalar floor division is handled natively by Python and the JIT has a builtin function for it). This PR updates it to:
- have an out variant: `floor_divide(x, y, out=z)`
- be a method on a tensor: `x.floor_divide(y)`
- have an in-place variant: `x.floor_divide_(y)`
- work with sparse tensors
Tests are added to test_sparse.py and test_torch.py for these new behaviors.
In addition, this PR:
- cleans up the existing sparse division and true_division code and improves their error message
- adds testing of sparse true_division to test_sparse.py
- extends existing floor_divide testing in test_torch to run on CUDA, too, not just the CPU
Unfortunately, making floor_divide a method requires breaking backwards compatibility, and floor_divide has been added to the BC whitelist since this is international. The BC issue is that the first parameter name to torch.floor_divide is changing from input to self. If you previously called torch.floor_divide with keyword arguments, e.g. torch.floor_divide(input=x, other=y), you will need to update to torch.floor_divide(self=x, other=y), or the more common torch.floor_divide(x, y).
The intent of this PR is to allow floor_divide to be substituted for division (torch.div, /) wherever division was previously used. In 1.6 we expect torch.div to perform true_division, and floor_divide is how users can continue to perform integer division with tensors.
There are two potential follow-up issues suggested by this PR:
- the test framework might benefit from additional tensor construction classes, like one to create dividends and divisors for multiple dtypes
- the test framework might benefit from a universal function test class. while methods have reasonable coverage as part of test_torch.py's TestTensorOp tests, function coverage is spotty. Universal functions are similar enough it should be possible to generate tests for them.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34552
Differential Revision: D20497453
Pulled By: mruberry
fbshipit-source-id: ac326f2007d8894f730d1278fef84d63bcb07b5d
Summary:
- Update API calls `backward` and `optim.step` now that we require `context_id`
- Add notes to clarify purpose of distributed autograd context (this was a source of confusion in some feedback)
- Add note that details why optimizer requires context_id
- Clearly specify that we don't have SMART mode yet
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34657
Differential Revision: D20427667
Pulled By: rohan-varma
fbshipit-source-id: 5f8a3539ccf648a78e9e9a0dfdfe389c678b1606
Summary:
This is a redo of https://github.com/pytorch/pytorch/pull/33791, which was reverted because it introduced a flaky test. The test was flaky and only flaky on Python3.5 because of dict order randomization.
I've fixed the issue with tests clobbering each other in b539fec and removed the override tests for `torch.nn.functional.tanh` and `torch.nn.functional.sigmoid`, which are deprecated and shouldn't be overridable in e0d7402. I also verified that no more test clobbering is happening.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34240
Differential Revision: D20252442
Pulled By: cpuhrsch
fbshipit-source-id: 069568e342a41c90e1dc76cbf85ba4aed47f24be
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34515
Once upon a time we thought this was necessary. In reality it is not, so
removing it.
For backcompat, our public interface (defined in `api/`) still has
typedefs to the old `script::` names.
There was only one collision: `Pass` as a `Stmt` and `Pass` as a graph
transform. I renamed one of them.
Test Plan: Imported from OSS
Differential Revision: D20353503
Pulled By: suo
fbshipit-source-id: 48bb911ce75120a8c9e0c6fb65262ef775dfba93
Summary:
This PR implements the following linear algebra algorithms for low-rank matrices:
- [x] Approximate `A` as `Q Q^H A` - using Algorithm 4.4 from [Halko et al, 2009](http://arxiv.org/abs/0909.4061).
+ exposed as `torch.lowrank.get_approximate_basis(A, q, niter=2, M=None) -> Q`
+ [x] dense matrices
+ [x] batches of dense matrices
+ [x] sparse matrices
+ [x] documentation
- [x] SVD - using Algorithm 5.1 from [Halko et al, 2009](http://arxiv.org/abs/0909.4061).
+ uses `torch.lowrank.get_approximate_basis`
+ exposed as `torch.svd_lowrank(A, q=6, niter=2, M=None) -> (U, S, V)`
+ [x] dense matrices
+ [x] batches of dense matrices
+ [x] sparse matrices
+ [x] documentation
- [x] PCA - using `torch.svd_lowrank`
+ uses `torch.svd_lowrank`
+ exposed as `torch.pca_lowrank(A, center=True, q=None, niter=2) -> (U, S, V)`
+ [x] dense matrices
+ [x] batches of dense matrices
+ [x] sparse matrices, uses non-centered sparse matrix algorithm
+ [x] documentation
- [x] generalized eigenvalue solver using the original LOBPCG algorithm [Knyazev, 2001](https://epubs.siam.org/doi/abs/10.1137/S1064827500366124)
+ exposed as `torch.lobpcg(A, B=None, k=1, method="basic", ...)`
+ [x] dense matrices
+ [x] batches of dense matrices
+ [x] sparse matrices
+ [x] documentation
- [x] generalized eigenvalue solver using robust LOBPCG with orthogonal basis selection [Stathopoulos, 2002](https://epubs.siam.org/doi/10.1137/S1064827500370883)
+ exposed as `torch.lobpcg(A, B=None, k=1, method="ortho", ...)`
+ [x] dense matrices
+ [x] batches of dense matrices
+ [x] sparse matrices
+ [x] documentation
- [x] generalized eigenvalue solver using the robust and efficient LOBPCG Algorithm 8 from [Duersch et al, 2018](https://epubs.siam.org/doi/abs/10.1137/17M1129830) that switches to orthogonal basis selection automatically
+ the "ortho" method improves iterations so rapidly that in the current test cases it does not make sense to use the basic iterations at all. If users will have matrices for which basic iterations could improve convergence then the `tracker` argument allows breaking the iteration process at user choice so that the user can switch to the orthogonal basis selection if needed. In conclusion, there is no need to implement Algorithm 8 at this point.
- [x] benchmarks
+ [x] `torch.svd` vs `torch.svd_lowrank`, see notebook [Low-rank SVD](https://github.com/Quansight/pearu-sandbox/blob/master/pytorch/Low-rank%20SVD.ipynb). In conclusion, the low-rank SVD is going to be useful only for large sparse matrices where the full-rank SVD will fail due to memory limitations.
+ [x] `torch.lobpcg` vs `scipy.sparse.linalg.lobpcg`, see notebook [LOBPCG - pytorch vs scipy](https://github.com/Quansight/pearu-sandbox/blob/master/pytorch/LOBPCG%20-%20pytorch%20vs%20scipy.ipynb). In conculsion, both implementations give the same results (up to numerical errors from different methods), scipy lobpcg implementation is generally faster.
+ [x] On very small tolerance cases, `torch.lobpcg` is more robust than `scipy.sparse.linalg.lobpcg` (see `test_lobpcg_scipy` results)
Resolves https://github.com/pytorch/pytorch/issues/8049.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29488
Differential Revision: D20193196
Pulled By: vincentqb
fbshipit-source-id: 78a4879912424595e6ea95a95e483a37487a907e
Summary:
See NumPy's division documentation here: https://numpy.org/doc/1.18/reference/generated/numpy.divide.html#numpy.divide.
True division is the same as PyTorch's default division except when both inputs are integer or bool tensors. In the latter case the inputs are (conceptually) cast to the default floating type before the division is performed.
The function is implemented for dense and sparse tensors and supports exporting to ONNX from PyTorch's eager mode or JIT traces. The function is inherently incompatible with exporting to ONNX via JIT script, and is another datapoint suggesting we should deprecate exporting scripted graphs to ONNX.
Tests are added for the type promotion, named tensor, and ONNX export behavior.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34236
Reviewed By: houseroad
Differential Revision: D20334087
Pulled By: mruberry
fbshipit-source-id: 83d00d886f46f713215d7d9e02ffd043164c57f1
Summary:
Improves explanation of non-determinism when running on GPUs. Adds info about `torch.nn.BCELoss` operating non-deterministically on GPUs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33795
Differential Revision: D20284880
Pulled By: ngimel
fbshipit-source-id: d543959636d261a80c234150304344b19a37ba5d
Summary:
When docs are built, conf.py points to a _templates-stable/layout.html that does not exist.
Adding this file here so future stable docs will build with Google Analytics tags and without the unstable able that is in _templates/layout.html
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33770
Differential Revision: D20164895
Pulled By: jlin27
fbshipit-source-id: 5fca9f9b825b1484dab52e2b2d91f92ae6372371
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34081
Before this commit, applications have to do the following to configure
number of threads in ProcessGroup RPC backend:
```
op = ProcessGroupRpcBackendOptions()
op.rpc_timeout = rpc_timeout
op.init_method = init_method
op.num_send_recv_threads = 32
init_rpc(...., rpc_backend_options=op)
```
After this commit, it can be simplified to:
```
init_rpc(...., rpc_backend_options=ProcessGroupRpcBackendOptions(num_send_recv_threads=32))
```
Fixes#34075
Test Plan: Imported from OSS
Differential Revision: D20227344
Pulled By: mrshenli
fbshipit-source-id: def4318e987179b8c8ecca44d7ff935702c8a6e7
Summary:
Fixes https://github.com/pytorch/pytorch/issues/33182
This adds private API functions that developers of types that implement `__torch_function__` can use to ensure full coverage of the subset of the PyTorch API that can be overrided.
I've refactored some of the code in the tests into a new `torch._overrides.get_overridable_functions` function. I've also changed `TENSOR_LIKE_TORCH_OVERRIDES` into `torch._overrides.get_testing_overrides` and `IGNORED_TORCH_FUNCTIONS` into `torch._overrides.get_ignored_functions`. Making these two static global variables in the tests into functions should allow rewriting their implementation to construct their return values instead of just statically defining the return value as is done here. Currently that is blocked on not being able to inspect function signatures of compiled kernels in PyTorch (see https://github.com/pytorch/pytorch/issues/28233). See the docs I've added for usage examples of these new functions. I also refactored the existing override tests to make use of these new functions, which should be a good forcing function to make sure they're kept up-to-date.
Finally, while working on this I discovered that `TestTorchFunctionOverrides.test_mean` and `TestTorchFunctionOverrides.test_mm` weren't ever being run because they were getting clobbered by the other dynamically generated override tests. I fixed that by renaming the tests and then fixing the actual test code. I've verified that all the subclassing semantics is correct and that the updated test answers are correct. I'm happy to put the fixes to the existing tests in as a separate pull request if that would be easier to review.
ping cpuhrsch since the feature request originally came from them.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33791
Differential Revision: D20195053
Pulled By: cpuhrsch
fbshipit-source-id: 1585f4e405f5223932b410eae03a288dc8eb627e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33705
The fact that there were two overloads appears to be a historical
artifact that dates back to when goldsborough originally added these
bindings in the first place. If TensorOptions is made optional,
then you only need one overload, not two, as they are exactly redundant
with each other. When MemoryFormat was added, it was made a little
harder to do this, as the C++ syntax at::empty_like(t, memory_format) would
not work if you collapsed the overload; but now it works because TensorOptions
supports MemoryFormat.
The upshot is, I can get rid of all the overloads and just have one overload.
Amazingly, this change is backwards compatible, as the test attests. While
I was at it, I also deleted the overload name from the functions entirely.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D20073355
Pulled By: bhosmer
fbshipit-source-id: c6a8908213b32ccf6737ea864d135e2cce34f56b
Summary:
This PR comes from discussion with albanD in https://fb.quip.com/npBHAXaPfnbu. Main goal is to clarify view ops with general outplace/inplace ops and remind users about the difference.
For reference this information is only available in code which is internal and hard to find. Also changes to this list actually affect users so we think it's better to expose it as public information. It's also helpful for new backend like XLA when implementing PyTorch ops. 19bbb4fccb/tools/autograd/gen_autograd.py (L32-L68)
Please feel free to comment!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32560
Differential Revision: D20161069
Pulled By: ailzhang
fbshipit-source-id: b5f1fd4353fe7594a427784db288aeb5a37dc521
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33711Fixed#33480
This makes `dist_autograd.backward` and `dist_optimizer.step` functional by making the user explicitly pass in the `context_id` as opposed to relying on the confusing thread_local context_id.
This diff incorporates these API changes and all places where these functions are called.
More concretely, this code:
```
with dist_autograd.context():
# Forward pass.
dist_autograd.backward([loss.sum()])
dist_optim.step()
```
should now be written as follows:
```
with dist_autograd.context() as context_id:
# Forward pass.
dist_autograd.backward(context_id, [loss.sum()])
dist_optim.step(context_id)
```
Test Plan: Ensuring all existing dist_autograd and dist_optimizer tests pass with the new API. Also added a new test case for input checking.
Differential Revision: D20011710
fbshipit-source-id: 216e12207934a2a79c7223332b97c558d89d4d65
Summary:
Also, windows memory failures responsible for the earlier reversion have been fixed.
This PR (initially) contains 2 commits:
* a revert of the revert
* all changes to implement the original Apex scale update heuristic, squashed into a single commit for easier diff review
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33366
Differential Revision: D20099026
Pulled By: ngimel
fbshipit-source-id: 339b9b6bd5134bf055057492cd1eedb7e4461529
Summary:
Addressing issue https://github.com/pytorch/pytorch/issues/18125
This implements a mixture distributions, where all components are from the same distribution family. Right now the implementation supports the ```mean, variance, sample, log_prob``` methods.
cc: fritzo and neerajprad
- [x] add import and `__all__` string in `torch/distributions/__init__.py`
- [x] register docs in docs/source/distributions.rst
### Tests
(all tests live in tests/distributions.py)
- [x] add an `Example(MixtureSameFamily, [...])` to the `EXAMPLES` list,
populating `[...]` with three examples:
one with `Normal`, one with `Categorical`, and one with `MultivariateNormal`
(to exercise, `FloatTensor`, `LongTensor`, and nontrivial `event_dim`)
- [x] add a `test_mixture_same_family_shape()` to `TestDistributions`. It would be good to test this with both `Normal` and `MultivariateNormal`
- [x] add a `test_mixture_same_family_log_prob()` to `TestDistributions`.
- [x] add a `test_mixture_same_family_sample()` to `TestDistributions`.
- [x] add a `test_mixture_same_family_shape()` to `TestDistributionShapes`
### Triaged for follup-up PR?
- support batch shape
- implement `.expand()`
- implement `kl_divergence()` in torch/distributions/kl.py
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22742
Differential Revision: D19899726
Pulled By: ezyang
fbshipit-source-id: 9c816e83a2ef104fe3ea3117c95680b51c7a2fa4
Summary:
This PR implements the gradient scaling API that mruberry, jjsjann123, ngimel, zdevito, gchanan and I have been discussing. Relevant issue/RFC: https://github.com/pytorch/pytorch/issues/25081.
Volume-wise, this PR is mostly documentation and tests. The Python API (found entirely in `torch/cuda/amp/amp_scaler.py`) is lightweight . The exposed functions are intended to make the implementation and control flow of gradient scaling convenient, intuitive, and performant.
The API is probably easiest to digest by looking at the documentation and examples. `docs/source/amp.rst` is the homepage for the Automatic Mixed Precision package. `docs/source/notes/amp_examples.rst` includes several examples demonstrating common but not-immediately-obvious use cases. Examples are backed by tests in `test_cuda.py` (and thankfully the tests pass :P).
Two small utility kernels have been added in `native/cuda/AmpKernels.cu` to improve performance and avoid host-device synchronizations wherever possible.
Existing optimizers, both in the wild and in Pytorch core, do not need to change to use the scaling API.
However, the API was also designed to establish a contract between user scripts and optimizers such that writers of _new_ custom optimizers have the control points they need to implement fast, optionally sync-free updates. User scripts that obey the scaling API can drop such custom optimizers in and reap performance benefits without having to change anything aside from the optimizer constructor itself. [I know what the contract with custom optimizers should be](35829f24ef/torch/cuda/amp/amp_scaler.py (L179-L184)), but I'm waiting for review on the rest of the API before I go about documenting it (it will be given a dedicated section in `docs/source/notes/amp_examples.rst`.
Currently, the gradient scaling examples do not include the auto-casting API as discussed in https://github.com/pytorch/pytorch/issues/25081. The gradient scaling API is intended to be orthogonal/modular relative to autocasting. Without auto-casting the gradient scaling API is fully use-_able_, but not terribly use-_ful_, so it's up to you guys whether you want to wait until auto-casting is ready before merging the scaling API as well.
### Todo
- [ ] How do I get c10 registered status for my two custom kernels? They're very simple.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26512
Differential Revision: D19859905
Pulled By: mruberry
fbshipit-source-id: bb8ae6966214718dfee11345db824389e4286923
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33083
Added more recommendations, some notes and warning
Test Plan: cd docs ; make html
Differential Revision: D19829133
Pulled By: ilia-cher
fbshipit-source-id: b9fbd89f5875b3ce35cc42ba75a3b44bb132c506
Summary:
* New ops supported for exporting.
* Updates on support for tensor indexing and dynamic list of tensors.
* lara-hdr, spandantiwari Should we also include updates on torchvision support in this page?
cc houseroad, neginraoof Please review if I have missed anything.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32805
Reviewed By: hl475
Differential Revision: D19635699
Pulled By: houseroad
fbshipit-source-id: b6be4fce641f852dcbceed20b4433f4037d8024a
Summary:
"in_features" and "out_features" are not defined. Possibly a typo. They should be "input_features" and "output_features" instead
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31682
Differential Revision: D19251685
Pulled By: zou3519
fbshipit-source-id: ac9e524e792a1853a16e8876d76b908495d8f35e