This creates a `histogramdd` operator with overloads matching the `Union`
behaviour used in the functional variant. Moving into C++ is preferred because
it can handle torch function automatically instead of needing to differentiate
between the overloads manually.
This also adds a new return type: `std::tuple<Tensor, std::vector<Tensor>>`. For
which I've updated `wrap` to be completely generic for tuples and removed the
old manual definitions.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74200
Approved by: https://github.com/ezyang
Currently, `NamedTuple` return types are created in `torch/_VF.pyi` instead of
typing being added for the symbols in in `torch/return_types.py`. This also
fixes the type names to match the actual names in the python code.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74199
Approved by: https://github.com/ezyang
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73999
Seems to be the typical way to detect a flavor of TensorImpl.
ghstack-source-id: 151440167
Test Plan: Existing tests?
Reviewed By: ezyang
Differential Revision: D34665269
fbshipit-source-id: 5081a00928933e0c5252eeddca43bae0b026013d
(cherry picked from commit 7cf62a3f69f158a33c5108f7e96ea4c5520f0f15)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61608
See #61544 for an example of issues created by functional wrappers. In this
case, these are directly wrapping the native function with no added
functionality. One exception was `bilinear` which was just missing the default
argument in C++, but was otherwise the same.
I've kept the symbol `torch.functional.istft` because it looks like public API,
but it could just as easily be moved to `_torch_docs.py`.
Test Plan: Imported from OSS
Reviewed By: ngimel
Differential Revision: D31401361
Pulled By: albanD
fbshipit-source-id: 162b74d0b2d4f2e5c4834687a94541960cefdd52
(cherry picked from commit 700cd73ca1)
Summary:
Removes the internal typeshed for PyTorch and replaces it with PyTorch's own type annotations.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/69926
Generated files are in P471601595, P471601643, P471601662
Based on an example in D26410012
Test Plan: Sandcastle
Reviewed By: malfet, pradeep90
Differential Revision: D32292834
fbshipit-source-id: 5223f514cbdccd02c08ef0a027a48d92cdebed2c
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63094
This PR:
- Moves `FileManager` and its dependencies (`assert_never` and other imports) to `utils.py`, and updates all of the call-sites with the fresh imports
- Passes the list of NativeFunction objects into `gen_trace_type` directly, instead of requiring the function to regenerate it (we already have it)
The purpose of the reshuffling is to avoid circular dependencies in the next PR, where I add codegen for the functionalization pass, which gets called from `gen.py` (but depends on some stuff from the autograd codegen - in partulcar, the list of view ops).
Test Plan: Imported from OSS
Reviewed By: albanD
Differential Revision: D31942096
Pulled By: bdhirsh
fbshipit-source-id: 36118facae61f25f8922bb43ad2818c80b53504e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65545
Introduce 2bit qtensor. The new dtype added for this is c10::quint2x4
The underlying storage for this is still uint8_t, so we pack 4 2-bit values in a byte while quantizing it.
Kernels that use this dtype should be aware of the packing format. (4 2-bit values in one byte)
Test Plan: `buck test mode/dev-asan caffe2/test/:quantization -- test_qtensor`
Reviewed By: supriyar
Differential Revision: D31148141
fbshipit-source-id: 1dc1de719e097adaf93fee47c6d1b8010a3eae6c
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62030
Remove dtype tracking from Python Storage interface, remove all the different `<type>Storage` classes except for `ByteStorage`, and update serialization accordingly, while maintaining as much FC/BC as possible
Fixes https://github.com/pytorch/pytorch/issues/47442
* **THE SERIALIZATION FORMAT IS FULLY FC/BC.** We worked very hard to make sure this is the case. We will probably want to break FC at some point to make the serialization structure of tensors make more sense, but not today.
* There is now only a single torch.ByteStorage class. Methods like `Tensor.set_` no longer check that the dtype of storage is appropriate.
* As we no longer know what dtype of a storage is, we've **removed** the size method from Storage, replacing it with nbytes. This is to help catch otherwise silent errors where you confuse number of elements with number of bytes.
* `Storage._new_shared` takes a `nbytes` kwarg and will reject previous positional only calls. `Storage._new_with_file` and `_set_from_file` require explicit element size arguments.
* It's no longer possible to convert storages to different types using the float/double/etc methods. Instead, do the conversion using a tensor.
* It's no longer possible to allocate a typed storage directly using FloatStorage/DoubleStorage/etc constructors. Instead, construct a tensor and extract its storage. The classes still exist but they are used purely for unpickling.
* The preexisting serialization format stores dtype with storage, and in fact this dtype is used to determine the dtype of the tensor overall.
To accommodate this case, we introduce a new TypedStorage concept that exists only during unpickling time which is used to temporarily store the dtype so we can construct a tensor. **If you overrode the handling of pickling/unpickling, you MUST add handling for TypedStorage** or your serialization code will degrade to standard file-based serialization.
Original pull request: https://github.com/pytorch/pytorch/pull/59671
Reviewed By: soulitzer, ngimel
Differential Revision: D29466819
Pulled By: ezyang
fbshipit-source-id: 4a14e5d3c2b08e06e558683d97f7378a3180b00e
Summary:
This PR implements the necessary hooks/stubs/enums/etc for complete ONNX Runtime (ORT) Eager Mode integration. The actual extension will live out of tree at https://github.com/pytorch/ort.
We have been [working on this at Microsoft](https://github.com/microsoft/onnxruntime-pytorch/tree/eager-ort/torch_onnxruntime) for the last few months, and are finally ready to contribute the PyTorch core changes upstream (nothing major or exciting, just the usual boilerplate for adding new backends).
The ORT backend will allow us to ferry [almost] all torch ops into granular ONNX kernels that ORT will eagerly execute against any devices it supports (therefore, we only need a single ORT backend from a PyTorch perspective).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/58248
Reviewed By: astaff
Differential Revision: D30344992
Pulled By: albanD
fbshipit-source-id: 69082b32121246340d686e16653626114b7714b2
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59077Fixes#58549
`from_buffer` constructs a tensor object from an already allocated buffer through
CPython's buffer protocol. Besides the standard `dtype`, `count`, and `offset` parameters,
this function also accepts:
- `device`: where the buffer lives
- `requires_grad`: should autograd record operations on the new tensor
A new test file _test_buffer_protocol.py_ was created. Currently, only CPU tests were
implemented. That's because neither PyTorch nor Numba implements CPython's buffer
protocol. Therefore, there's no way to create a CUDA buffer with the existing
dependencies (could use PyCUDA for that, though).
At the moment, if `device` differs from the device the buffer actually lives, two things
may happen:
- `RuntimeError`, if `device='cuda'`
- Segmentation fault (not tested -- see above), if `device='cpu'`
Test Plan: Imported from OSS
Reviewed By: jbschlosser
Differential Revision: D29870914
Pulled By: mruberry
fbshipit-source-id: 9fa8611aeffedfe39c9af74558178157a11326bb
Summary:
During development it is common practice to put `type: ignore` comments on lines that are correct, but `mypy` doesn't recognize this. This often stems from the fact, that the used `mypy` version wasn't able to handle the used pattern.
With every new release `mypy` gets better at handling complex code. In addition to fix all the previously accepted but now failing patterns, we should also revisit all `type: ignore` comments to see if they are still needed or not. Fortunately, we don't need to do it manually: by adding `warn_unused_ignores = True` to the configuration, `mypy` will error out in case it encounters an `type: ignore` that is no longer needed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/60006
Reviewed By: jbschlosser, malfet
Differential Revision: D29133237
Pulled By: albanD
fbshipit-source-id: 41e82edc5cd5affa7ccedad044b59b94dad4425a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59847
This whole stack does not change anything to the codegened code
Test Plan: Imported from OSS
Reviewed By: ailzhang
Differential Revision: D29063817
Pulled By: albanD
fbshipit-source-id: 284c3e057029b7a67f43a1b034bb30863bd68c71
Summary:
Fixes https://github.com/pytorch/pytorch/issues/56608
- Adds binding to the `c10::InferenceMode` RAII class in `torch._C._autograd.InferenceMode` through pybind. Also binds the `torch.is_inference_mode` function.
- Adds context manager `torch.inference_mode` to manage an instance of `c10::InferenceMode` (global). Implemented in `torch.autograd.grad_mode.py` to reuse the `_DecoratorContextManager` class.
- Adds some tests based on those linked in the issue + several more for just the context manager
Issues/todos (not necessarily for this PR):
- Improve short inference mode description
- Small example
- Improved testing since there is no direct way of checking TLS/dispatch keys
-
Pull Request resolved: https://github.com/pytorch/pytorch/pull/58045
Reviewed By: agolynski
Differential Revision: D28390595
Pulled By: soulitzer
fbshipit-source-id: ae98fa036c6a2cf7f56e0fd4c352ff804904752c
Summary:
Generally wildcard imports are bad for the reasons described here: https://www.flake8rules.com/rules/F403.html
This PR replaces wildcard imports with an explicit list of imported items where possible, and adds a `# noqa: F403` comment in the other cases (mostly re-exports in `__init__.py` files).
This is a prerequisite for https://github.com/pytorch/pytorch/issues/55816, because currently [`tools/codegen/dest/register_dispatch_key.py` simply fails if you sort its imports](https://github.com/pytorch/pytorch/actions/runs/742505908).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/55838
Test Plan: CI. You can also run `flake8` locally.
Reviewed By: jbschlosser
Differential Revision: D27724232
Pulled By: samestep
fbshipit-source-id: 269fb09cb4168f8a51fd65bfaacc6cda7fb87c34
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54208
It seems like it was added to suppress some errors in LazyModules, but I think we should solve those more directly with some type ignores in more surgical places.
Fixes#54087.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: albanD
Differential Revision: D27137363
Pulled By: ezyang
fbshipit-source-id: 017cafcc3350e73cd62436078835b97cd9b3b929
Summary:
In design review the use of the word "true" for a "rounding mode" which actually performed no rounding was, understandably, considered confusing. This PR updates the documentation to remove references to "true." The signatures for torch.div and torch.divide are updated to reflect the future behavior where rounding_mode=None will be the default.
This is slightly inaccurate. Today when rounding mode is not specified it is effectively None, but users cannot actually specify rounding_mode=None today. That change was considered too disruptive to the 1.8 branch cut process.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/52202
Reviewed By: gchanan
Differential Revision: D26424979
Pulled By: mruberry
fbshipit-source-id: db3cc769c0d9c6d7e42bfad294073c99fa9168d9
Summary:
The overloads are a little tricky here. It's important that the overloads are such that it's unambiguous what
`torch.nonzero(x)` will resolve to - so just specify defaults for one of the overloads. Also, `out` is left out of the second overload
because a non-None value for `out` is not valid in combination with `as_tuple=True`.
Closes gh-51434
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51635
Reviewed By: zhangguanheng66
Differential Revision: D26279203
Pulled By: walterddr
fbshipit-source-id: 8459c04fc9fbf7fc5f31b3f631aaac2f98b17ea6
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51706
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50280
As mentioned in gh-43874, this adds a `rounding_mode={'true', 'trunc', 'floor'}`
argument so `torch.div` can be used as a replacement for `floor_divide` during
the transitional period.
I've included dedicated kernels for truncated and floor division which
aren't strictly necessary for float, but do perform significantly better (~2x) than
doing true division followed by a separate rounding kernel.
Note: I introduce new overloads for `aten::div` instead of just adding a default
`rounding_mode` because various JIT passes rely on the exact operator schema.
Test Plan: Imported from OSS
Reviewed By: ngimel
Differential Revision: D26123271
Pulled By: mruberry
fbshipit-source-id: 51a83717602114597ec9c4d946e35a392eb01d46
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50611
Removed the unused old-style code to prevent it from being used.
Added all autograd/gen_pyi sources to mypy-strict.ini config.
Confirmed byte-for-byte compatible with the old codegen:
```
Run it before and after this PR:
.jenkins/pytorch/codegen-test.sh <baseline_output_dir>
.jenkins/pytorch/codegen-test.sh <test_output_dir>
Then run diff to compare the generated files:
diff -Naur <baseline_output_dir> <test_output_dir>
```
Confirmed clean mypy-strict run:
```
mypy --config mypy-strict.ini
```
Test Plan: Imported from OSS
Reviewed By: ezyang
Differential Revision: D25929730
Pulled By: ljk53
fbshipit-source-id: 1fc94436fd4a6b9b368ee0736e99bfb3c01d38ef
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49057
Now that all of the byte-for-byte hacks are removed in the pyi codegen, there's no reason for the codegen to group pyi signature overloads together. I updated the logic in `gen_pyi` that computes signatures (`generate_type_hints()` and _generate_named_tuples()`) to operate per individual `PythonSignatureGroup`
Test Plan: Imported from OSS
Reviewed By: ezyang
Differential Revision: D25410849
Pulled By: bdhirsh
fbshipit-source-id: 8c190035d7bfc06ed192468efbe7d902922ad1fa