Tracking issue: #138399
This PR fixes a number of reference implementations (which are also used as meta
functions), making them more consistent with CPU device. More specifically, it fixes those
operations that use `_make_elementwise_unary_reference` decorator, and don't error on
mismatching out argument dtype while they error when using concrete devices (e.g. CPU).
The fixed operations are:
- `abs`
- `ceil`
- `floor`
- `frac`
- `isneginf`
- `isposinf`
- `sgn`
- `sign`
- `signbit`
- `trunc`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140288
Approved by: https://github.com/ezyang
ghstack dependencies: #140186, #140286
This PR replaces the parameter names specified in the `triangular_solve_meta`
function (specifically in its `@out_wrapper(...)` decorator) by those written in the
_native_functions.yaml_ file.
This name mismatch caused the operation to fail when using the meta device (see error
below):
```python
Traceback (most recent call last):
File "examples/test.py", line 23, in <module>
torch.triangular_solve(b.to("meta"), A.to("meta"), out=meta_out)
File "torch/_decomp/__init__.py", line 100, in _fn
return f(*args, **kwargs, out=None if is_none else out_kwargs)
File "torch/_prims_common/wrappers.py", line 289, in _fn
result = fn(*args, **kwargs)
TypeError: triangular_solve_meta() got an unexpected keyword argument 'X'
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140186
Approved by: https://github.com/ezyang
Reference: https://github.com/pytorch/pytorch/issues/138399
This PR introduces an `OpInfo` test that checks whether running each `out=` operation
using meta inputs is consistent with using concrete (e.g. CPU) inputs. More specifically,
it tests the case where the output tensors are not of the expected data type. According to
the `out=` specification, some operations should error.
I have added XFAIL to the set of operations that are currently failing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138515
Approved by: https://github.com/ezyang
Reference: https://github.com/pytorch/pytorch/issues/138399
This PR introduces an `OpInfo` test that checks whether running each `out=` operation
using meta inputs is consistent with using concrete (e.g. CPU) inputs. More specifically,
it tests the case where the output tensors are not of the expected data type. According to
the `out=` specification, some operations should error.
I have added XFAIL to the set of operations that are currently failing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138515
Approved by: https://github.com/ezyang
See #121528 for additional context.
In #120682, we moved the attention kernels from meta_registrations to fake_impls with the intent of fixing the device handling for seed/offset: these are typically on CPU. We needed to put the registrations in fake_impls to do this because meta_registrations doesn't have a way to specify device, whereas fake_impls does. But when we tried to actually fix the device types (#120839), we had to revert the PR because it broke cudagraph handling (during which seed/offset _are_ on CUDA).
Now, we want to put the registrations back in meta_registrations so that we can call these kernels with meta tensors. The use case is later in this stack - we want to be able to use the flop counter with these kernels.
Also - I specifically skip the `compare_tensor_meta()` check in test_fake / test_fake_autocast tests for the `_efficient_attention_forward` and `_flash_attention_forward` kernels, which fails because of the device mismatch from the seed/offset tensors. Then we can un-skip these opinfos. I verified that the efficient_attention_forward bug (#120842) is now caught by these opinfos if I revert the fix from this PR.
Differential Revision: [D61687369](https://our.internmc.facebook.com/intern/diff/D61687369)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134288
Approved by: https://github.com/drisspg
torch.cuda.amp.autocast / torch.cpu.amp.autocast are deprecated and spew a ton of warnings when these tests run. This PR: Update to just use torch.amp.autocast(device).
Note: this uncovers a bug in the test: when `device` is CUDA, it actually shows up as "cuda:0" - so previously, this test was _always_ using `torch.cpu.amp.autocast` even for `cuda` device. This PR fixes this, and uncovers additional bugs in `pinverse` and `linalg.pinv`; `linalg.pinv` was already failing before on CPU, but now the test also catches failures on CUDA, (and this PR adds to the skipped-test list).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134291
Approved by: https://github.com/YuqingJ
Follow-up to #113118 and #124306.
Developed in coordination with the solution to https://github.com/microsoft/onnxscript/pull/1547
This PR adds the missing fake tensor implementation for `aten.unique_dim`, thus enabling tracing and compilation of `torch.unique` when `dim` is not None.
Local testing has proceeded with the following simple script (provided that one has checked out the changes in https://github.com/microsoft/onnxscript/pull/1547):
```python
import onnx
import onnxruntime as ort
import logging
import numpy as np
onnx_program = torch.onnx.dynamo_export(
lambda x: torch.unique(x,
dim=0,
return_inverse=True),
torch.arange(10),
export_options=torch.onnx.ExportOptions(
dynamic_shapes=True,
diagnostic_options=torch.onnx.DiagnosticOptions(
verbosity_level=logging.DEBUG)))
onnx_program.save("torch_unique.onnx")
onnx_inputs = onnx_program.adapt_torch_inputs_to_onnx(torch.arange(10))
onnx_outputs = onnx_program(*onnx_inputs)
loaded_onnx_program = onnx.load("torch_unique.onnx")
onnx.checker.check_model(loaded_onnx_program)
ort_session = ort.InferenceSession("torch_unique.onnx")
inputs = np.random.randint(0, 10, 10)
print(f"Inputs: {inputs}")
outputs = ort_session.run(None,
{
"l_x_": inputs
})
print(f"Outputs: {outputs}")
print("Success")
```
Co-authored-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126561
Approved by: https://github.com/ezyang
Update ruff to 0.4.1 .
This version fixes a lot false negatives/false positives, is 20-40% faster, and has various other bug fixes.
Below is a before and after table showing the execution time of ruff lint and ruff format in milliseconds courtesy of https://astral.sh/blog/ruff-v0.4.0
| Repository | Linter (v0.3) | Linter (v0.4) | Formatter (v0.3) | Formatter (v0.4) |
|----------------------------------------------------|---------------|---------------|------------------|------------------|
| [pytorch/pytorch](https://github.com/pytorch/pytorch) | 328.7 | 251.8 | 351.1 | 274.9 |
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124549
Approved by: https://github.com/ezyang
Closes #120988
Currently operators that hit the autograd fallback call `check_inplace`
on all mutated inputs, including out arguments. This leads to a slightly
confusing error message:
```
RuntimeError: a leaf Variable that requires grad is being used in an in-place operation.
```
Compared to functions that don't fallback, which raise
```
RuntimeError: add(): functions with out=... arguments don't support automatic differentiation, but one of the arguments requires grad.
```
This changes the error message to make clear the issue is with the out argument,
but does not tighten the check to outright ban out arguments that require grad.
Instead, I use the same checks from `check_inplace` which allows non-leaf tensors
that require grad to pass without error.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121089
Approved by: https://github.com/lezcano, https://github.com/soulitzer
ghstack dependencies: #121142
Replaces `view_func()` closures with a reified `ViewFunc` data structure. Codegen generates a `ViewFunc` subclass for each view op (e.g. `NarrowViewFunc`) containing state needed to reconstruct the view. The `ViewFunc` API allows for querying and hot-swapping any `SymInt`s or `Tensors` in the state through `get_symints()` / `get_tensors()` / `clone_and_set()`, which will be essential for fake-ification later on.
```cpp
/// Base class for view functions, providing reapplication of a view on a new base.
/// Each view op should get a codegenerated subclass of this class containing
/// any state needed to reconstruct the view. The class also provides convenience
/// accessors for saved SymInts / tensor state. This is useful for e.g. fake-ification,
/// where we want to use symbolic values or fake tensors instead.
struct TORCH_API ViewFunc {
virtual ~ViewFunc() {}
/// Returns any SymInts in the saved state.
virtual std::vector<c10::SymInt> get_symints() const { return {}; }
/// Returns the number of SymInts in the saved state.
virtual size_t num_symints() const { return 0; }
/// Returns any tensors in the saved state.
virtual std::vector<at::Tensor> get_tensors() const { return {}; }
/// Returns the number of tensors in the saved state.
virtual size_t num_tensors() const { return 0; }
/// Reapplies the view on the given base using the saved state.
virtual at::Tensor operator()(const at::Tensor&) const = 0;
/// Returns a clone of this ViewFunc, optionally with the specified saved state.
virtual std::unique_ptr<ViewFunc> clone_and_set(
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
std::optional<std::vector<at::Tensor>> = c10::nullopt) const = 0;
protected:
/// Sets the values of any SymInts in the saved state. The input vector size must
/// match the number of SymInts in the saved state (i.e. the size of the list
/// returned by get_symints()).
virtual void set_symints(std::vector<c10::SymInt>) {}
/// Sets the values of any Tensors in the saved state. The input vector size must
/// match the number of Tensors in the saved state (i.e. the size of the list
/// returned by get_tensors()).
virtual void set_tensors(std::vector<at::Tensor>) {}
};
```
New codegen files:
* `torch/csrc/autograd/generated/ViewFunc.h`
* `torch/csrc/autograd/generated/ViewFuncs.cpp`
The templates for these also contains impls for `ChainedViewFunc` and `ErroringViewFunc` which are used in a few places within autograd.
Example codegen for `slice.Tensor`:
```cpp
// torch/csrc/autograd/generated/ViewFuncs.h
#define SLICE_TENSOR_VIEW_FUNC_AVAILABLE
struct SliceTensorViewFunc : public torch::autograd::ViewFunc {
SliceTensorViewFunc(int64_t dim, c10::optional<c10::SymInt> start, c10::optional<c10::SymInt> end, c10::SymInt step) : dim(dim), start(start), end(end), step(step)
{};
virtual ~SliceTensorViewFunc() override {};
virtual std::vector<c10::SymInt> get_symints() const override;
virtual size_t num_symints() const override;
virtual std::vector<at::Tensor> get_tensors() const override;
virtual size_t num_tensors() const override;
virtual at::Tensor operator()(const at::Tensor&) const override;
virtual std::unique_ptr<ViewFunc> clone_and_set(
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
protected:
virtual void set_symints(std::vector<c10::SymInt>) override;
virtual void set_tensors(std::vector<at::Tensor>) override;
private:
int64_t dim;
c10::optional<c10::SymInt> start;
c10::optional<c10::SymInt> end;
c10::SymInt step;
};
...
// torch/csrc/autograd/generated/ViewFuncs.cpp
std::vector<c10::SymInt> SliceTensorViewFunc::get_symints() const {
::std::vector<c10::SymInt> symints;
symints.reserve((start.has_value() ? 1 : 0) + (end.has_value() ? 1 : 0) + 1);
if(start.has_value()) symints.insert(symints.end(), *(start));
if(end.has_value()) symints.insert(symints.end(), *(end));
symints.push_back(step);
return symints;
}
size_t SliceTensorViewFunc::num_symints() const {
return static_cast<size_t>((start.has_value() ? 1 : 0) + (end.has_value() ? 1 : 0) + 1);
}
void SliceTensorViewFunc::set_symints(std::vector<c10::SymInt> symints) {
TORCH_INTERNAL_ASSERT(symints.size() == num_symints());
auto i = 0;
if(start.has_value()) start = symints[i];
i += (start.has_value() ? 1 : 0);
if(end.has_value()) end = symints[i];
i += (end.has_value() ? 1 : 0);
step = symints[i];
}
std::vector<at::Tensor> SliceTensorViewFunc::get_tensors() const {
::std::vector<at::Tensor> tensors;
return tensors;
}
size_t SliceTensorViewFunc::num_tensors() const {
return static_cast<size_t>(0);
}
void SliceTensorViewFunc::set_tensors(std::vector<at::Tensor> tensors) {
TORCH_INTERNAL_ASSERT(tensors.size() == num_tensors());
}
at::Tensor SliceTensorViewFunc::operator()(const at::Tensor& input_base) const {
return at::_ops::slice_Tensor::call(input_base, dim, start, end, step);
}
std::unique_ptr<ViewFunc> SliceTensorViewFunc::clone_and_set(
std::optional<std::vector<c10::SymInt>> symints,
std::optional<std::vector<at::Tensor>> tensors) const {
auto output = std::make_unique<SliceTensorViewFunc>(dim, start, end, step);
if (symints.has_value()) {
output->set_symints(std::move(*(symints)));
}
if (tensors.has_value()) {
output->set_tensors(std::move(*(tensors)));
}
return output;
}
```
The `_view_func()` / `_view_func_unsafe()` methods now accept two additional (optional) args for `symint_visitor_fn` / `tensor_visitor_fn`. If these are defined, they are expected to be python callables that operate on a single SymInt / tensor and return a new one. This allows for the hot-swapping needed during fake-ification.
For testing, there are extensive pre-existing tests, and I added a test to ensure that hot-swapping functions correctly.
```sh
python test/test_autograd.py -k test_view_func_replay
python test/test_ops.py -k test_view_replay
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118404
Approved by: https://github.com/ezyang
Replaces `view_func()` closures with a reified `ViewFunc` data structure. Codegen generates a `ViewFunc` subclass for each view op (e.g. `NarrowViewFunc`) containing state needed to reconstruct the view. The `ViewFunc` API allows for querying and hot-swapping any `SymInt`s or `Tensors` in the state through `get_symints()` / `get_tensors()` / `clone_and_set()`, which will be essential for fake-ification later on.
```cpp
/// Base class for view functions, providing reapplication of a view on a new base.
/// Each view op should get a codegenerated subclass of this class containing
/// any state needed to reconstruct the view. The class also provides convenience
/// accessors for saved SymInts / tensor state. This is useful for e.g. fake-ification,
/// where we want to use symbolic values or fake tensors instead.
struct TORCH_API ViewFunc {
virtual ~ViewFunc() {}
/// Returns any SymInts in the saved state.
virtual std::vector<c10::SymInt> get_symints() const { return {}; }
/// Returns the number of SymInts in the saved state.
virtual size_t num_symints() const { return 0; }
/// Returns any tensors in the saved state.
virtual std::vector<at::Tensor> get_tensors() const { return {}; }
/// Returns the number of tensors in the saved state.
virtual size_t num_tensors() const { return 0; }
/// Reapplies the view on the given base using the saved state.
virtual at::Tensor operator()(const at::Tensor&) const = 0;
/// Returns a clone of this ViewFunc, optionally with the specified saved state.
virtual std::unique_ptr<ViewFunc> clone_and_set(
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
std::optional<std::vector<at::Tensor>> = c10::nullopt) const = 0;
protected:
/// Sets the values of any SymInts in the saved state. The input vector size must
/// match the number of SymInts in the saved state (i.e. the size of the list
/// returned by get_symints()).
virtual void set_symints(std::vector<c10::SymInt>) {}
/// Sets the values of any Tensors in the saved state. The input vector size must
/// match the number of Tensors in the saved state (i.e. the size of the list
/// returned by get_tensors()).
virtual void set_tensors(std::vector<at::Tensor>) {}
};
```
New codegen files:
* `torch/csrc/autograd/generated/ViewFunc.h`
* `torch/csrc/autograd/generated/ViewFuncs.cpp`
The templates for these also contains impls for `ChainedViewFunc` and `ErroringViewFunc` which are used in a few places within autograd.
Example codegen for `slice.Tensor`:
```cpp
// torch/csrc/autograd/generated/ViewFuncs.h
#define SLICE_TENSOR_VIEW_FUNC_AVAILABLE
struct SliceTensorViewFunc : public torch::autograd::ViewFunc {
SliceTensorViewFunc(int64_t dim, c10::optional<c10::SymInt> start, c10::optional<c10::SymInt> end, c10::SymInt step) : dim(dim), start(start), end(end), step(step)
{};
virtual ~SliceTensorViewFunc() override {};
virtual std::vector<c10::SymInt> get_symints() const override;
virtual size_t num_symints() const override;
virtual std::vector<at::Tensor> get_tensors() const override;
virtual size_t num_tensors() const override;
virtual at::Tensor operator()(const at::Tensor&) const override;
virtual std::unique_ptr<ViewFunc> clone_and_set(
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
protected:
virtual void set_symints(std::vector<c10::SymInt>) override;
virtual void set_tensors(std::vector<at::Tensor>) override;
private:
int64_t dim;
c10::optional<c10::SymInt> start;
c10::optional<c10::SymInt> end;
c10::SymInt step;
};
...
// torch/csrc/autograd/generated/ViewFuncs.cpp
std::vector<c10::SymInt> SliceTensorViewFunc::get_symints() const {
::std::vector<c10::SymInt> symints;
symints.reserve((start.has_value() ? 1 : 0) + (end.has_value() ? 1 : 0) + 1);
if(start.has_value()) symints.insert(symints.end(), *(start));
if(end.has_value()) symints.insert(symints.end(), *(end));
symints.push_back(step);
return symints;
}
size_t SliceTensorViewFunc::num_symints() const {
return static_cast<size_t>((start.has_value() ? 1 : 0) + (end.has_value() ? 1 : 0) + 1);
}
void SliceTensorViewFunc::set_symints(std::vector<c10::SymInt> symints) {
TORCH_INTERNAL_ASSERT(symints.size() == num_symints());
auto i = 0;
if(start.has_value()) start = symints[i];
i += (start.has_value() ? 1 : 0);
if(end.has_value()) end = symints[i];
i += (end.has_value() ? 1 : 0);
step = symints[i];
}
std::vector<at::Tensor> SliceTensorViewFunc::get_tensors() const {
::std::vector<at::Tensor> tensors;
return tensors;
}
size_t SliceTensorViewFunc::num_tensors() const {
return static_cast<size_t>(0);
}
void SliceTensorViewFunc::set_tensors(std::vector<at::Tensor> tensors) {
TORCH_INTERNAL_ASSERT(tensors.size() == num_tensors());
}
at::Tensor SliceTensorViewFunc::operator()(const at::Tensor& input_base) const {
return at::_ops::slice_Tensor::call(input_base, dim, start, end, step);
}
std::unique_ptr<ViewFunc> SliceTensorViewFunc::clone_and_set(
std::optional<std::vector<c10::SymInt>> symints,
std::optional<std::vector<at::Tensor>> tensors) const {
auto output = std::make_unique<SliceTensorViewFunc>(dim, start, end, step);
if (symints.has_value()) {
output->set_symints(std::move(*(symints)));
}
if (tensors.has_value()) {
output->set_tensors(std::move(*(tensors)));
}
return output;
}
```
The `_view_func()` / `_view_func_unsafe()` methods now accept two additional (optional) args for `symint_visitor_fn` / `tensor_visitor_fn`. If these are defined, they are expected to be python callables that operate on a single SymInt / tensor and return a new one. This allows for the hot-swapping needed during fake-ification.
For testing, there are extensive pre-existing tests, and I added a test to ensure that hot-swapping functions correctly.
```sh
python test/test_autograd.py -k test_view_func_replay
python test/test_ops.py -k test_view_replay
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118404
Approved by: https://github.com/ezyang
The flag is not correctly set when PyTorch is compiled with GPU support resulting in failures in
`test_ops.py::test_python_ref_meta__refs_linalg_svd_cpu_complex`.
Use a similar approach to test_meta and skip the check for this function.
Workaround for #105068
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117972
Approved by: https://github.com/lezcano
Part 2 of implementation for general [subclass view fake-ification](https://docs.google.com/document/d/1C5taWiplmX7nKiURXDOAZG2W5VNJ2iV0fQFq92H0Cxw).
Details:
* Codegen `rev_view_func()` alongside `view_func()`
* Reverse view_func gives you a "base" from a "view": `rev_view_func(new_view) -> new_base` AKA it plays the original view backwards
* Utilizes the functional inverses defined in `FunctionalInverses.cpp`, passing `InverseReturnMode::AlwaysView`
* Manually implements functional inverses for `narrow()` and `chunk()`
* **NB: Multi-output views now set view_func() / rev_view_func() for each of the output views!**
* Due to this, the `as_view()` overload that operates on a list of views is scrapped in favor of iteration via codegen
Example codegen in `ADInplaceOrViewTypeN.cpp`:
```cpp
at::Tensor narrow(c10::DispatchKeySet ks, const at::Tensor & self, int64_t dim, c10::SymInt start, c10::SymInt length) {
auto _tmp = ([&]() {
at::AutoDispatchBelowADInplaceOrView guard;
return at::_ops::narrow::redispatch(ks & c10::after_ADInplaceOrView_keyset, self, dim, start, length);
})();
std::function<at::Tensor(const at::Tensor&)> func=nullptr;
std::function<at::Tensor(const at::Tensor&)> rev_func=nullptr;
if (false || !self.unsafeGetTensorImpl()->support_as_strided() ||
c10::AutogradState::get_tls_state().get_view_replay_enabled()) {
func = [=](const at::Tensor& input_base) {
return at::_ops::narrow::call(input_base, dim, start, length);
};
rev_func = [=](const at::Tensor& input_view) {
// NB: args from narrow() signature are passed along to the inverse
return at::functionalization::FunctionalInverses::narrow_copy_inverse(self, input_view, at::functionalization::InverseReturnMode::AlwaysView, dim, start, length);
};
}
auto result = as_view(/* base */ self, /* output */ _tmp, /* is_bw_differentiable */ true, /* is_fw_differentiable */ true, /* view_func */ func, /* rev_view_func */ rev_func, /* creation_meta */ InferenceMode::is_enabled() ? CreationMeta::INFERENCE_MODE : (at::GradMode::is_enabled() ? CreationMeta::DEFAULT : CreationMeta::NO_GRAD_MODE));
return result;
}
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115894
Approved by: https://github.com/soulitzer
Updates flake8 to v6.1.0 and fixes a few lints using sed and some ruff tooling.
- Replace `assert(0)` with `raise AssertionError()`
- Remove extraneous parenthesis i.e.
- `assert(a == b)` -> `assert a == b`
- `if(x > y or y < z):`->`if x > y or y < z:`
- And `return('...')` -> `return '...'`
Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116591
Approved by: https://github.com/albanD, https://github.com/malfet
Summary:
This is important for writing aten IR based graph transformation.
```
In [4]: [x.name for x in torch.ops.aten.reshape.default._schema.arguments]
Out[4]: ['self', 'shape']
In [8]: torch.ops.aten.reshape.default(torch.rand(1,2), shape=[2])
Out[8]: tensor([0.7584, 0.4834])
# === CANNOT CALL `self` BY KWARGS ===
In [7]: torch.ops.aten.reshape.default(self=torch.rand(1,2), shape=[2])
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
Cell In[7], line 1
----> 1 torch.ops.aten.reshape.default(self=torch.rand(1,2), shape=[2])
TypeError: OpOverload.__call__() got multiple values for argument 'self'
```
# Where's the problem?
1. the aten ops first arg is usually named `self` (aten/src/ATen/native/native_functions.yaml)
2. Unfortunately, in `torch._ops.{OpOverload, OpOverloadPacket}.__call__()`, the first arg is (by python convention) named `self` too.
So when call `self` by kwargs, `OpOverloadPacket.__call__` received:
```
OpOverloadPacket.__call__(self, {"self": ...})
```
It is Python that does not allow some argument named "arg" to appear twice. and hence
> TypeError: OpOverload.__call__() got multiple values for argument 'self'
# How to fix?
**Note that**, in above, `self` is an instance of `OpOverloadPacket`, and the "self" kwarg is the input tensor to the aten op. To fix, we only need to differentiate the two `self`s.
In Python, first arg of a method does not need to be named `self`. So we change the `__call__` definition to:
```
def __call__(_self, ...):
```
Now the call becomes:
```
OpOverloadPacket.__call__(_self, {"self": ...})
```
where:
* `_self` is the instance to the `OpOverloadPacket`
* `"self"` is the input tensor to the aten op.
Test Plan:
```
In [4]: [x.name for x in torch.ops.aten.reshape.default._schema.arguments]
Out[4]: ['self', 'shape']
In [3]: torch.ops.aten.reshape.default(self=torch.rand(1,2), shape=[2])
Out[3]: tensor([0.5127, 0.3051])
```
Differential Revision: D51731996
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114920
Approved by: https://github.com/houseroad
Constant time access of first value in collection. This is a constant time operation instead of converting the item to a list to get the first item which is linear. The rule is turned on which automatically autofixes and enforces this.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115507
Approved by: https://github.com/malfet