This commit introduces a meta function for the `channel_shuffle` operation, enabling PyTorch to perform shape inference and optimizations related to this operation without actual computation. The meta function assumes input shape (*, C, H, W) and validates that the number of channels (C) is divisible by the specified number of groups.
Fixes#122771
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123033
Approved by: https://github.com/ezyang, https://github.com/mikaylagawarecki
Given the following code/dynamo graph:
```
class GraphModule(torch.nn.Module):
def forward(self, L_x_ : torch.Tensor):
l_x_ = L_x_
_print = torch.ops.aten._print('moo')
res = l_x_ + l_x_; l_x_ = None
_print_1 = torch.ops.aten._print('moo')
return (res,)
```
AOTAutograd will trace the following program, threading tokens from the inputs, through the effectful operator calls (torch.ops.aten._print), and as an output:
```
class <lambda>(torch.nn.Module):
def forward(self, arg0_1: "f32[0]", arg1_1: "f32[2, 3]"):
with_effects = torch._higher_order_ops.effects.with_effects(arg0_1, torch.ops.aten._print.default, 'moo'); arg0_1 = None
getitem: "f32[0]" = with_effects[0]; with_effects = None
add: "f32[2, 3]" = torch.ops.aten.add.Tensor(arg1_1, arg1_1); arg1_1 = None
with_effects_1 = torch._higher_order_ops.effects.with_effects(getitem, torch.ops.aten._print.default, 'moo'); getitem = None
getitem_2: "f32[0]" = with_effects_1[0]; with_effects_1 = None
return (getitem_2, add)
```
However when we get to inductor, since we want the inductor generated code to not have any token inputs/outputs for better readability, we want to modify the aten graph by removing the tokens from inputs, and creating them through `torch.ops.aten._make_dep_token`, and sinking them through the `torch.ops.aten._sink_tokens` operators.
This has to be done *after* the partitioner, otherwise the partitioner will add the make_token/sink_token operators to the backwards graph.
```
class <lambda>(torch.nn.Module):
def forward(self, arg1_1: "f32[2, 3]"):
_make_dep_token_default: "f32[0]" = torch.ops.aten._make_dep_token.default()
with_effects = torch._higher_order_ops.effects.with_effects(_make_dep_token_default, torch.ops.aten._print.default, 'moo'); _make_dep_token_default = None
getitem: "f32[0]" = with_effects[0]; with_effects = None
add: "f32[2, 3]" = torch.ops.aten.add.Tensor(arg1_1, arg1_1); arg1_1 = None
with_effects_1 = torch._higher_order_ops.effects.with_effects(getitem, torch.ops.aten._print.default, 'moo'); getitem = None
getitem_2: "f32[0]" = with_effects_1[0]; with_effects_1 = None
_sink_tokens_default = torch.ops.aten._sink_tokens.default((getitem_2,)); getitem_2 = None
return (add,)
```
When doing inductor lowering, we convert `with_effects` calls to an `EffectfulKernel`, which just a `FallbackKernel` but with a pointer to previous effectful operator's call. During scheduling, we will create a `StarDep` between the EffectfulKernel and its previous EffectfulKernel so that they don't get reordered. The inductor generated python code looks like:
```
def call(args):
arg1_1, = args
args.clear()
assert_size_stride(arg1_1, (2, 3), (3, 1))
# Source Nodes: [_print], Original ATen: []
buf2 = aten._print.default('moo')
# Source Nodes: [_print_1], Original ATen: []
buf3 = aten._print.default('moo')
buf4 = empty_strided_cpu((2, 3), (3, 1), torch.float32)
cpp_fused_add_0(arg1_1, buf4)
del arg1_1
return (buf4, )
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122347
Approved by: https://github.com/bdhirsh
`linalg_eigvals_out` calls into a dispatch stub, so only supports CPU and CUDA
strided tensors but incorrectly claimed to be a composite op. `linalg_eigvals`
also shouldn't defer to the out variant inside a `CompositeImplicitAutograd` op
as not all types support out variants. Instead, I add a new helper
`_linalg_eigvals` which does the same thing in a non-composite operator.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121142
Approved by: https://github.com/lezcano
**description**
Enable lowering of dynamic qlinear for X86Inductor. The pattern is `choose_qparams -> getitem -> q -> dq -> linear`. We only fuse `dq -> linear` and get `choose_qparams -> getitem -> q -> onednn.qlinear_pointwise`. So, we treat it as dynamic quantization of activation + static quantized linear.
The previous implementation of `onednn.qlinear_pointwise` is for the case where `x_scale` and `x_zp` are scalars. Since `choose_qparams` returns tensors, we added a variation `onednn.qlinear_pointwise.tensor` to support the case.
This feature is targeting PyTorch 2.3 release.
**Test plan**
```
python inductor/test_mkldnn_pattern_matcher.py -k test_dynamic_qlinear_cpu
python inductor/test_mkldnn_pattern_matcher.py -k test_dynamic_qlinear_qat_cpu
python inductor/test_cpu_cpp_wrapper.py -k test_dynamic_qlinear
```
**Performance before and after lowering `choose_qparam` to Inductor**
Before
- latency for shape (32, 32) = 0.151 ms
latency for shape (128, 128) = 0.153 ms
latency for shape (1024, 1024) = 0.247 ms
After
- latency for shape (32, 32) = 0.049 ms
- latency for shape (128, 128) = 0.052 ms
- latency for shape (1024, 1024) = 0.133 ms
Test method: A module with a single Linear layer, dynamic-quantize, lower to X86Inductor
Test env & config: Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60GHz, single instance, single core, using Intel OpenMP and Tcmalloc
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120605
Approved by: https://github.com/leslie-fang-intel, https://github.com/jgong5, https://github.com/jerryzh168
This PR is mostly just code movement to make the code review easier - AFAIK it should not change any functionality. The final goal is to remove the xfails for some of the test_fake opinfos for these ops. The opinfos are failing because the outputs can have mixed devices - we need to move them to fake_impls first before we can support mixed device returns.
This PR:
* Move the `_meta_registrations.py` implementations to `fake_impls.py`
* Change the function signature from taking explicit named variables to taking `{args, kwargs}` and normalizing them
* Wrap all the returned tensors in FakeTensors
Tests: relying on opinfos. I also checked `test_fake_*` for these tests (by removing x-fails and patching things until they passed) to verify general correctness.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120682
Approved by: https://github.com/drisspg
The first try reused TensorListMetadata, which caused illegal memory access issues when there were too many tensors in the list. We just launch multiple kernels with a simpler version of the struct (to minimize kernels launched).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119927
Approved by: https://github.com/albanD
Meta registration wrongly assumes 4D inputs, while the underlying op allows 3D inputs for the `mha_varlen_fwd()` case.
Testing: I added `detach()`es so the NJT test `test_sdpa_compile()` won't fail for a view-related reason. It should pass now with this fix.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119812
Approved by: https://github.com/drisspg
Fixes https://github.com/pytorch/pytorch/issues/118129
Suppressions automatically added with
```
import re
with open("error_file.txt", "r") as f:
errors = f.readlines()
error_lines = {}
for error in errors:
match = re.match(r"(.*):(\d+):\d+: error:.*\[(.*)\]", error)
if match:
file_path, line_number, error_type = match.groups()
if file_path not in error_lines:
error_lines[file_path] = {}
error_lines[file_path][int(line_number)] = error_type
for file_path, lines in error_lines.items():
with open(file_path, "r") as f:
code = f.readlines()
for line_number, error_type in sorted(lines.items(), key=lambda x: x[0], reverse=True):
code[line_number - 1] = code[line_number - 1].rstrip() + f" # type: ignore[{error_type}]\n"
with open(file_path, "w") as f:
f.writelines(code)
```
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Co-authored-by: Catherine Lee <csl@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118533
Approved by: https://github.com/Skylion007, https://github.com/zou3519
Fixes https://github.com/pytorch/pytorch/issues/118129
Suppressions automatically added with
```
import re
with open("error_file.txt", "r") as f:
errors = f.readlines()
error_lines = {}
for error in errors:
match = re.match(r"(.*):(\d+):\d+: error:.*\[(.*)\]", error)
if match:
file_path, line_number, error_type = match.groups()
if file_path not in error_lines:
error_lines[file_path] = {}
error_lines[file_path][int(line_number)] = error_type
for file_path, lines in error_lines.items():
with open(file_path, "r") as f:
code = f.readlines()
for line_number, error_type in sorted(lines.items(), key=lambda x: x[0], reverse=True):
code[line_number - 1] = code[line_number - 1].rstrip() + f" # type: ignore[{error_type}]\n"
with open(file_path, "w") as f:
f.writelines(code)
```
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118533
Approved by: https://github.com/Skylion007, https://github.com/zou3519
This should fix remaining errors with Resize op in torchvision: https://github.com/pytorch/vision/actions/runs/7298953575?pr=8127
```
/opt/conda/envs/ci/lib/python3.8/site-packages/torch/nn/functional.py:4072: in interpolate
return torch._C._nn._upsample_bicubic2d_aa(input, output_size, align_corners, scale_factors)
E torch._dynamo.exc.TorchRuntimeError: Failed running call_function <function interpolate at 0x7f4443fe00d0>(*(FakeTensor(..., size=(1, s0, s1, s2)),), **{'size': [s4, floor(s3*s4/floor(s1*s3/s2))], 'mode': 'bicubic', 'align_corners': False, 'antialias': True}):
E aten/src/ATen/RegisterCompositeImplicitAutograd.cpp:5567: SymIntArrayRef expected to contain only concrete integers
E
E from user code:
E File "/pytorch/vision/torchvision/transforms/v2/functional/_geometry.py", line 260, in resize_image
E image = interpolate(
E
E Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information
E
E
E You can suppress this exception and fall back to eager by setting:
E import torch._dynamo
E torch._dynamo.config.suppress_errors = True
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117347
Approved by: https://github.com/peterbell10
Summary:
This PR adds in support for passing in a alpha Tensor, which represents
a tensor of alpha values to fuse into the matmul.
```
cusparselt_sparse_mm = alpha A @ B + bias
```
This operation is necessary for quantization, where we would like to
fuse one of the dequant matmuls into the sparse op.
Test Plan:
```
python test/test_sparse_semi_structured -k alpha
```
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112056
Approved by: https://github.com/cpuhrsch
_cslt_sparse_mm + additional stride checking in test.
Summary:
This PR adds in meta registrations for _cslt_sparse_mm.
Based on the work @drisspg did
in #114370.
Additionally, it updates the tests by checking that the strides of the
spare result and the result returned by sparse+compile are the same, to
avoid errors like those found in
https://github.com/pytorch/pytorch/pull/114477.
Test Plan:
```
python test/test_sparse_semi_structred -k compile_cusparselt
python test/test_sparse_semi_structred -k compile_cutlass
```
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114685
Approved by: https://github.com/alexsamardzic, https://github.com/drisspg
# Summary
Improved Fix for Attention Mask Alignment Issue (#112577)
This PR addresses Issue #112577 by refining the previously implemented fix, which was found to be incorrect and causes un-needed memory regressions. The update simplifies the approach to handling the alignment of the attention mask for mem eff attention.
## Changes
Alignment Check and Padding: Initially, the alignment of the attention mask is checked. If misalignment is detected, padding is applied, followed by slicing. During this process, a warning is raised to alert users.
Should this be warn_once?
We only call expand, once on the aligned mask.
Reference
https://github.com/facebookresearch/xformers/blob/main/xformers/ops/fmha/cutlass.py#L115
@albanD, @mruberry, @jbschlosser, @walterddr, and @mikaylagawarecki.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114173
Approved by: https://github.com/danthe3rd
# Summary
Improved Fix for Attention Mask Alignment Issue (#112577)
This PR addresses Issue #112577 by refining the previously implemented fix, which was found to be incorrect and causes un-needed memory regressions. The update simplifies the approach to handling the alignment of the attention mask for mem eff attention.
## Changes
Alignment Check and Padding: Initially, the alignment of the attention mask is checked. If misalignment is detected, padding is applied, followed by slicing. During this process, a warning is raised to alert users.
Should this be warn_once?
We only call expand, once on the aligned mask.
Reference
https://github.com/facebookresearch/xformers/blob/main/xformers/ops/fmha/cutlass.py#L115
@albanD, @mruberry, @jbschlosser, @walterddr, and @mikaylagawarecki.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114173
Approved by: https://github.com/danthe3rd
masked_scatter_backward was previously implemented as a
CompositeExplicitAutograd, which involved a decomp that calls
masked_select, and masked_select in general produces data-dependent
shapes that inductor doesn't support. But masked_scatter_backward
reshapes the return value of masked_select such that the end result has
a static shape again.
I have converted masked_scatter_backward into an aten op to avoid this
issue.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109642
Approved by: https://github.com/ezyang
ghstack dependencies: #108170
Testing out some new rules that are in beta, I think I will apply this one codebase wide once it's out of preview. Replaces the hack of using `[:]` to do copies of list with the proper copy method. More efficient and more readable.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112990
Approved by: https://github.com/ezyang
- Extend `test_torch_dispatch_meta_outplace` to test torch ops that do not have an out parameter but have aten op overloads that have out parameters. Additionally, Python decompositions may register `OpOverloadPacket`'s so decompositions need to be tested to ensure all `OpOverloads` still function for the `Meta` key (e.g. if a python decomposition is registered for an aten op `aten.foo` with overloads `[default, out]`, the python function needs to support receiving out arguments)
- Add out parameter wrappers to python decomps for aten ops that have out overloads
CC. @ezyang @albanD @lezcano
Fixes#107713
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107707
Approved by: https://github.com/lezcano
aten.softmax will generate a different decomposition for fp16/bf16 and fp32 because when invoked in lower precision it will upcast the inputs to fp32 and then downcast after. This has been causing us to miss bf16 patterns. For example, Camembert improves 20% with this PR (as do I'm sure many other models).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109142
Approved by: https://github.com/yanboliang
ghstack dependencies: #109663, #108894, #108917
aten.softmax will generate a different decomposition for fp16/bf16 and fp32 because when invoked in lower precision it will upcast the inputs to fp32 and then downcast after. This has been causing us to miss bf16 patterns. For example, Camembert improves 20% with this PR (as do I'm sure many other models).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109142
Approved by: https://github.com/yanboliang
ghstack dependencies: #108894, #108917
This fixes numerous tests which were xfailing. For instance, the
`_segment_reduce.lengths` OpInfo test, which was previously relying on
the fallback kernel to determine the shape of the meta tensor. The
fallback kernel would fail with
segment_reduce(): Expected all rows of lengths along axis to sum to data.size(lengths.dim()-1) when !unsafe.
as it was trying to read the values of a meta tensor.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109359
Approved by: https://github.com/ezyang
The sample inputs is a bit involved because there are a lot of
shenanigans in the derivative formula. Check comments.
This is exercised in vdd, internal test `buck2 run '@fbcode//mode/opt' fbcode//pytorch/benchmark/fb/test_gpu:run_test_gpu -- 'pytorch.benchmark.fb.test_gpu.test_gpu.TestBenchmarkFbGpu.test_train_blue_reels_vdd_v3_inductor_speedup'`
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109211
Approved by: https://github.com/albanD, https://github.com/zou3519
# Summary
## PR Dependencies
I don't use ghstack :( this is a PR where it would have been helpful. That beings said I am going to peel off some PRs to make reviewing this easier:
- [x] Separate build flags for Flash and MemEff: #107985
### Description
This pull request updates the version of _scaled_dot_product_flash_attention from version 1 to version 2. The changes are based on the flash attention code originally authored by @tridao
### Changes Made
The majority of the changes in this pull request involve:
- Copying over the flash_attention sources.
- Updating header files.
- Removing padding and slicing code from within the flash_attention kernel and relocating it to the composite implicit region of the SDPA. This was need to make the kernel functional and appease autograd.
- Introducing a simple kernel generator to generate different instantiations of the forward and backward flash templates.
- Adding conditional compilation (ifdef) to prevent building when nvcc is invoked with gencode < sm80.
- Introducing a separate dependent option for mem_eff_attention, as flash_attention v2 lacks support for Windows and cannot be built for sm50 generation codes.
- Modifying build.sh to reduce parallelization on sm86 runners and to lower the maximum parallelization on the manywheel builds. This adjustment was made to address out-of-memory issues during the compilation of FlashAttentionV2 sources.
- Adding/Updating tests.
### Notes for Reviewers
This is not a fun review, and I apologize in advance.
Most of the files-changed are in the flash_attn/ folder. The only files of interest here IMO:
- aten/src/ATen/native/transformers/cuda/flash_attn/flash_api.cpp
- aten/src/ATen/native/transformers/cuda/flash_attn/kernels/generate_kernels.py ( this has been incorporated upstream to flash-attention github)
There are a number of files all related to avoiding OOMs in CI/CD. These are typically shell scripts.
### Follow up items
- Include the updates from e07aa036db and 9e5e8bc91e | https://github.com/pytorch/pytorch/issues/108108
### Work Items
- [x] I don't think Windows will be supported for 3.1.0 - Need to update cmakee
- [x] Let multi_query/attention pass through and test | UPDATE: I have the fast path implemented here: https://github.com/pytorch/pytorch/pull/106730 but since this will require changes to semantics of math to call repeat_interleave, I think this should be done as a followup.
- [x] Had to drop cutlass back to 3.0.0 to get it to compile. Need to figure out how to upgrade to 3.1.0 and later. Spoke with Tri and he is going to be taking a look. Note: compiling with clang currently errors for the cute headers.
- [x] Update test exercise above codepath
- [x] Still need to disable on seq_len % 128 != 0 for backward( Tri beat me to it a4f148b6ab)
- [x] Add determinism warning to BWD, Tri got to this one as well: 1c41d2b
- [x] Update dispatcher to universally prefer FlashV2
- [x] Update tests to exercise new head_dims
- [x] Move the head_dim padding from kernel to top level composite implicit function in order to make it purely functional
- [x] Create template generator script
- [x] Initial cmake support for building kernels/ folder
- [x] Replay CudaGraph changes
### Results
#### Forward only
The TFlops are reported here are on a100 that is underclocked.

#### Forward+Backward
Ran a sweep and for large compute bound sizes we do see a ~2x performance increase for forw+back.
<img width="1684" alt="Screenshot 2023-07-20 at 3 47 47 PM" src="https://github.com/pytorch/pytorch/assets/32754868/fdd26e07-0077-4878-a417-f3a418b6fb3b">
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105602
Approved by: https://github.com/huydhn, https://github.com/cpuhrsch