Syncing nvfuser devel branch to upstream master. https://github.com/csarofeen/pytorch/
A few bigger updates:
1. Initial support of cp.async and cp.async.wait: https://github.com/csarofeen/pytorch/pull/1619
2. Emulate ampere's mma 16816 with Turing's mma 1688, for a unified interface: https://github.com/csarofeen/pytorch/pull/1643
3. Extending the infrastructure to support mma operators on turing and ampere arch: https://github.com/csarofeen/pytorch/pull/1440
Commits that's actually in this PR from the csarofeen branch
```
* dd2325294e236c5082c642819a1103bcfe4561a3 (csarofeen/devel) Fusion Segmenter: Unify single kernel and multi-kernel runtime path (#1710)
* b3d1c3f446355a2d276bac8272e7aa8b5bb6b1f0 Fix missing cooperative launch (#1726)
* dc670a226cbe52be46cecef47001f38bf9a09433 Async gmem copy support on sm80+ (#1619)
* 5e6a8dab5a71aefe0548bbfa15d1a93c556d23fe Add turing mma support and test (#1643)
* d6d6b7d3f10dd91dafa4cdbd5e460bbb38173af4 Fix rFactor when there are indirect root domain(s), and refactor (#1723)
* 7093e39150c6d80e0f9f767d56654714a2e8a927 Mma op integration on ampere (#1440)
* fade8da55e60a118c5595378896d34b862b2fcc3 patch python test for bfloat16 (#1724)
* 8fbd0b18743a72ac10478857c3d2351204375685 Fine-grained kernel profiling (#1720)
* 77c1b4fa633f9e631d267923f4537336fa328939 Adding dry run mode to skip arch dependent checks (#1702)
* 151d95b97bebefc94199bb4a53423ede32b55451 More precise concretization analysis (#1719)
* f4d3630ed54d7069dd377a64be1f91013b285b66 Enable complex python tests (#1667)
* 4ceeee509774cc2ce6c834a4dc1e313f71d94503 Minor bugfix in transform_rfactor.cpp (#1715)
* 3675c70faf218e86d2c78dbd3874b175a3b0a203 Separate root domain and rfactor domain in TransformPrinter (#1716)
* f68b830d5def65dadfe29d4edf52fc703369c84a Fix scheduling with polymorphic broadcast (#1714)
* 4ab5ef7ae2cfd8fffad1e1d882ae7c50631211dc updating_ci_machine (#1718)
* 56585c58b1ff338704cafb0cd6be2b3d536bed5a Merge pull request #1711 from csarofeen/upstream_master_bump_0517
* 174d453d3be0c11a5acb0fff3b3f36e19cfdaf81 Allow using nvFuser on CUDA extension (#1701)
* 18bee67495454b9a79625799776e746bd5e81c4c Validate LOOP concrete IDs have complete IterDomains (#1676)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78244
Approved by: https://github.com/csarofeen, https://github.com/malfet
Summary:
Things changed in this PR that requires review:
test/forward_backward_compatibility/check_forward_backward_compatibility.py
Our previous function overload extension names were wrong and has been updated in this PR, hence the compatibility list updated.
nvfuser code updates with bug fixes towards failures we encountered in OpInfoTests as well as failures reported by AOTAutograd team.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73627
Reviewed By: Chillee
Differential Revision: D34765458
Pulled By: davidberard98
fbshipit-source-id: c81f3d6a1b723fb3a8ba419b7f82227f70440ca7
(cherry picked from commit b6a2c362c37051e44fac31687b2fe272f776551e)
Summary:
Things changed in this PR that requires review:
1. aten/src/ATen/core/interned_strings.h
2. torch/csrc/jit/ir/alias_analysis.h : exposing createValue to allow efficient mutation
3. torch/csrc/jit/runtime/symbolic_shape_registry.cpp : added gelu/tanh/erf in registry
4. torch/jit/_script.py : throws scripting model sees autocast as decorator since it's not supported
nvfuser code update:
1. codegen improvements and performance tuning
2. integration bug fixes for shape expression logic
3. kernel segmentation update to address perf regression from horizontal fusion
4. scalar cpu tensor promotion to support inter-device operation between cpu scalar tensor and cuda tensor
Things reverted from local changes:
aten::gelu with approximation (tracked in PR: https://github.com/pytorch/pytorch/pull/61439)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72127
Reviewed By: HamidShojanazeri
Differential Revision: D34113233
Pulled By: jbschlosser
fbshipit-source-id: b82cde32b71e324eca0ea57cb8c9f9647278ca74
(cherry picked from commit e009bc5c4e)
Summary:
nvfuser code update:
1. Tuning heuristics on schedulers for reduction/normalization kernels;
2. bfloat16 on IO tensor support;
3. Refactored memory format support, now we can support dimension collapsing with non-coherent input tensors with different memory format. e.g. channels last tensor input to batch normalization. Note that we are currently limiting memory format to only Contiguous and Channels last;
4. Refactored nvfuser graph partitioning in `graph_fuser.cpp`, separated node merge and profile node API. Updated `profiling_record.cpp`.
Things that are reverted from our local branch:
1. changes on some entries in autodiff
2. aten::gelu with approximation
3. native_dropout(_backward)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/67943
Reviewed By: ngimel
Differential Revision: D32288709
Pulled By: dzhulgakov
fbshipit-source-id: fc9491182ea7e0158bc112c66f096823c588eaf1
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65459
Just run linter on the change and apply all suggestions
Test Plan: N/A
Reviewed By: seemethere
Differential Revision: D31102960
fbshipit-source-id: 04e1d07935690f2ddbc64533661b3e55379d13b5
Summary:
Syncing nvfuser code base from devel branch, Listing a few of our development since last sync:
- Extends support to normalization and reduction kernels.
- Multiple kernel launch for single `CudaFusionGroup`. Hierarchical caching system has been updated to cache graph segmentation.
- profile_ivalue is enabled to convert dynamic scalar into compile time constants, which are required by the codegen. (e.g. reduction axes).
To keep this PR simple and relatively review-free. We stripped most external changes and submitted them as separate PRs, so this gigantic PR is easier to handle.
internal updates are files located in:
1. updates in nvfuser codegen `torch/csrc/jit/coddgen/cuda`
2. added nvfuser specific benchmarks `benchmarks/cpp/nvfuser`
3. nvfuser jit cpp tests `test/cpp/jit/test_gpu.cpp` `test/cpp/jit/test_gpu_shift.cpp` `test/cpp/jit/test_gpu_validator.h`
updates affecting integration:
1. profile_ivalue enabled for nvfuser. related changes are in `torch/csrc/jit/runtime/*`,
2. exposed a few more symbols `aten/src/ATen/core/*` used by codegen
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63745
Reviewed By: saketh-are
Differential Revision: D30752939
Pulled By: malfet
fbshipit-source-id: ce122e80f01bcd3865f5bd3c4dfde660665fd84c
Summary:
Had a bunch of merged commits that shouldn't have been there, reverted them to prevent conflicts. Lots of new features, highlights listed below.
**Overall:**
- Enables pointwise fusion, single (but N-D) broadcast -- pointwise fusion, single (but N-D) broadcast -- pointwise -- single (but N-D) reduction fusion.
**Integration:**
- Separate "magic scheduler" logic that takes a fusion and generates code generator schedule
- Reduction fusion scheduling with heuristics closely matching eagermode (unrolling supported, but no vectorize support)
- 2-Stage caching mechanism, one on contiguity, device, type, and operations, the other one is input size->reduction heuristic
**Code Generation:**
- More generic support in code generation for computeAt
- Full rework of loop nest generation and Indexing to more generically handle broadcast operations
- Code generator has automatic kernel launch configuration (including automatic allocation of grid reduction buffers)
- Symbolic (runtime) tilling on grid/block dimensions is supported
- Simplified index generation based on user-defined input contiguity
- Automatic broadcast support (similar to numpy/pytorch semantics)
- Support for compile time constant shared memory buffers
- Parallelized broadcast support (i.e. block reduction -> block broadcast support)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43129
Reviewed By: mrshenli
Differential Revision: D23162207
Pulled By: soumith
fbshipit-source-id: 16deee4074c64de877eed7c271d6a359927111b2
Summary:
Have basic reduction fusion working, and have improved code generator to approach performance of eager mode reductions. Coming soon will be pointwise-reduction fusions in a way that should prevent the possibility of hitting regressions. Also working on performant softmax kernels in the code generator which may be our next fusion target.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40864
Reviewed By: ngimel
Differential Revision: D22392877
Pulled By: soumith
fbshipit-source-id: 457448a807d628b1035f6d90bc0abe8a87bf8447
Summary:
**Summary:** This PR contains the infrastructure of a new CUDA fuser. This CUDA fuser is based on many of the same principles of TensorExpressions and Halide, however the implementation is ground up. The fusion pass itself is similar to the default CUDA fuser, however, it has undergone some refactoring and is using the new code generation infrastructure. For those who are interested in how the code generation in this PR works, I would recommend reviewing _test/cpp/jit/test_gpu_fusion.cpp_ as well as the long comment section at the beginning of _torch/csrc/jit/codegen/cuda/transform_replay.h_ One of the largest differences between our approach and that of TVM/Halide, is the concept of "TensorView". TensorView from a high level should be thought of similarly to how we think of working with Tensors in PyTorch. It's an N-D object which can undergo transformations that change its dimensionality. Dimensionality changes are done through the operations split/merge/reorder/computeAt. These transformations are similar to split/fuse/reorder/compute_at of TVM, they modify how a tensor is iterated over to generate GPU code. Interestingly, in our scheme these transformations are applied to tensors and only impact how that tensor is generated.
**Warning:** This PR is purposefully not feature complete with the current fuser. We wanted to separate out the infrastructure from the fusion capabilities. Once in, smaller incremental PRs will be submitted to expand capabilities of the fuser.
**Short term goals:**
Parity with current CUDA fuser (including performance):
- Dynamic shapes (no recompilation)
- Implicit handling of braodcast (broadcasted tensors are treated as tensors of the braodcasted size in the generated code)
- Dropout
**Mid-term goals:**
- Transposes fused with pointwise operations where transpose involves only 2 axes (across the fused operation).
- 1-D reductions fused with pointwise operations
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34785
Reviewed By: ZolotukhinM
Differential Revision: D20650977
Pulled By: soumith
fbshipit-source-id: ee39c95a880e1b9822e874ed4cc180971572bf63