Commit Graph

2922 Commits

Author SHA1 Message Date
Avik Chaudhuri
b70d105c77 infer dynamic shapes through additional inputs (#150144)
Summary:
Instead of explicitly specifying dynamic shapes, it is possible to infer them from additional example inputs. Together with the example inputs provided to export, we can basically make any varying dim dynamic and keep any fixed dim static. This should be useful for prod scenarios that have access to tests and/or profiling data, yet are somewhat removed from the model authoring process.

However this alone is not satisfactory: the exported program by design has only one graph, representing one path through the model, and we cannot necessarily guarantee that this graph works for the additional example inputs because different guards might have been created if we had exported with them instead (corresponding to different traced paths). However, checking that the additional example inputs satisfy the guards created by the original export should be sufficient for generalization.

Now, while we don't preserve all guards in the exported program, we do check a subset of them as part of input matching. So we add a verification step at the end of export when such additional example inputs are provided. This should be enough for now.

Test Plan: added test (positive and negative cases)

Differential Revision: D72001771

Pull Request resolved: https://github.com/pytorch/pytorch/pull/150144
Approved by: https://github.com/bobrenjc93
2025-04-01 21:13:39 +00:00
Tianyu Liu
d2ad9aa2f2 [dtensor][tp] add a ParallelStyle PrepareModuleInputOutput (#150372)
Needed this class for because `parallelize_module` takes a dict, which doesn't allow `PrepareModuleInput` and `PrepareModuleOutput` to be applied at the same time.

The `PrepareModuleInputOutput` in this PR initializes two variables `prepare_module_input` and `prepare_module_output` and uses them to process module / inputs / outputs.

I had another implementation which put all code in `PrepareModuleInputOutput` and let `PrepareModuleInput` and `PrepareModuleOutput` inherit the monolithic `PrepareModuleInputOutput`. But it is
1. less cleaner
2. conceptually abusing inheritance because `PrepareModuleInput` shouldn't be able to access class methods of `PrepareModuleOutput` and vice versa

Pull Request resolved: https://github.com/pytorch/pytorch/pull/150372
Approved by: https://github.com/wanchaol
2025-04-01 19:15:43 +00:00
Xia, Weiwen
3b0cd9b542 [Quant][PT2E] add a lowering pass for x86 backend (#149708)
**Summary**
This PR adds a lowering pass for x86 backend
- Patterns of `dequantize -> conv/linear (-> quantize)` are fused to corresponding quantized onednn ops.
- Weights are prepacked ahead of time.
- Post ops of conv/linear are fused if supported.
- The pass returns a `GraphModule` with the modifications mentioned above.

**Test plan**
```
pytest test/quantization/pt2e/test_x86inductor_quantizer.py -k test_lowering_to_x86
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149708
Approved by: https://github.com/jerryzh168, https://github.com/leslie-fang-intel
2025-04-01 17:32:41 +00:00
Pian Pawakapan
103bf64a3c [export] refactor _Dim into Dim (#149891)
Summary: forward fix T218515233

Test Plan: test_export

Differential Revision: D71769231

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149891
Approved by: https://github.com/jingsh, https://github.com/angelayi
2025-03-28 06:19:03 +00:00
Laith Sakka
6cbcdee944 Introduce guard_or_true, guard_or_false (#148430)
some context in this document:
https://docs.google.com/document/d/18nJsj-F2C_QXO7ClwzPcAUENQ-B440B43W7DdDnlDt4/edit?tab=t.0#heading=h.pgebnyi7pocj

But TLDR;
`guard_or_true`, `guard_or_false` are better than `guard_size_oblivious` due to :
- Easier to reason about what assumptions we are making while reading the code.
- Avoid size_oblivious complexity that is not needed.
- Avoid unsoundness that could make `guard_size_oblivious(a==1)` be true when its not true for some vaue `a` during runtime.
- Less data dependent errors for some cases: ex, when doing `guard_size_oblivious(a==1)` and we know `a` is a tensor size, if it's traced with `a=u1-u2` `guard_size_oblivious(a==1)` will throw a data dependent error but `guard_else_false` will just return `False`.

### How is it different from statically_known_true??
**`if(cond)`:** (normal guarding) will try to evaluate statically and guard on the condition, willing to restrict input space to evaluate cond. if it fails to evaluate due to data dependent error will throw an exception (that could be converted to graph break in some situations).

**`statically_known_true(cond)`:** would be used when you never want to add a guard (restrict your input space), but just want to do a best effort check to see if you can infer that something is true/false ONLY based on existing constraints.

**`guard_or_true(cond)`/`guard_or_false(cond)`:** Those would be used in situations you prefer to guard and know the result of the expression over not guarding, but in case you hit a data dependent error you are ok with just returning true or false.
Some reasons you might be ok with returning true/false instead could be:
1. It's an optimization I do not want to fail for not performing optimization.
2. I am willing to deviate from the normal semantics when I have unbacked for the benefit of not failing (See the doc above for more details).

**`definitely_true(cond)`**: same as `guard_or_false(cond)` except does not try to do static eval for unbacked (planning to deprecate it and replace uses with `guard_or_false` or make it alias to `guard_or_false`)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148430
Approved by: https://github.com/bobrenjc93
2025-03-27 09:34:05 +00:00
Louie Tsai
7aacbab0b3 Update Doc for Intel XPU Profiling (#134515)
Updated below two pages for Intel XPU
https://pytorch.org/docs/stable/torch.compiler_profiling_torch_compile.html
https://pytorch.org/docs/stable/profiler.html

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134515
Approved by: https://github.com/dvrogozh, https://github.com/malfet
2025-03-27 09:15:35 +00:00
PyTorch MergeBot
e080bac533 Revert "Introduce guard_or_true, guard_or_false (#148430)"
This reverts commit d5593ea31c.

Reverted https://github.com/pytorch/pytorch/pull/148430 on behalf of https://github.com/laithsakka due to need to fix stuff ([comment](https://github.com/pytorch/pytorch/pull/148430#issuecomment-2756701436))
2025-03-27 05:10:20 +00:00
Laith Sakka
d5593ea31c Introduce guard_or_true, guard_or_false (#148430)
some context in this document:
https://docs.google.com/document/d/18nJsj-F2C_QXO7ClwzPcAUENQ-B440B43W7DdDnlDt4/edit?tab=t.0#heading=h.pgebnyi7pocj

But TLDR;
`guard_or_true`, `guard_or_false` are better than `guard_size_oblivious` due to :
- Easier to reason about what assumptions we are making while reading the code.
- Avoid size_oblivious complexity that is not needed.
- Avoid unsoundness that could make `guard_size_oblivious(a==1)` be true when its not true for some vaue `a` during runtime.
- Less data dependent errors for some cases: ex, when doing `guard_size_oblivious(a==1)` and we know `a` is a tensor size, if it's traced with `a=u1-u2` `guard_size_oblivious(a==1)` will throw a data dependent error but `guard_else_false` will just return `False`.

### How is it different from statically_known_true??
**`if(cond)`:** (normal guarding) will try to evaluate statically and guard on the condition, willing to restrict input space to evaluate cond. if it fails to evaluate due to data dependent error will throw an exception (that could be converted to graph break in some situations).

**`statically_known_true(cond)`:** would be used when you never want to add a guard (restrict your input space), but just want to do a best effort check to see if you can infer that something is true/false ONLY based on existing constraints.

**`guard_or_true(cond)`/`guard_or_false(cond)`:** Those would be used in situations you prefer to guard and know the result of the expression over not guarding, but in case you hit a data dependent error you are ok with just returning true or false.
Some reasons you might be ok with returning true/false instead could be:
1. It's an optimization I do not want to fail for not performing optimization.
2. I am willing to deviate from the normal semantics when I have unbacked for the benefit of not failing (See the doc above for more details).

**`definitely_true(cond)`**: same as `guard_or_false(cond)` except does not try to do static eval for unbacked (planning to deprecate it and replace uses with `guard_or_false` or make it alias to `guard_or_false`)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148430
Approved by: https://github.com/bobrenjc93
2025-03-27 02:22:20 +00:00
Tristan Rice
159e97cbcf ProcessGroupGloo: support reduce_scatter + update support chart (#149869)
This adds a `reduce_scatter` implementation for ProcessGroupGloo. This is a pretty naive implementation as it does 1 allreduce per  rank but may be useful for testing in FSDP etc. There was an existing implementation of reduce_scatter_tensor/reduce_scatter_tensor_coalesed that has a very similar implementation but requires a fixed tensor size per rank.

If users find these functions to be too slow we can address them as issues arise.

Gloo now supports all major distributed operations. Quite a few of these were added by @rohan-varma and @yifuwang but they didn't update the support chart. We also have `CUDAWork` variants of most operations so those were also added to the chart.

Test plan:

```
pytest -v test/distributed/test_c10d_gloo.py -k reduce_scatter
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149869
Approved by: https://github.com/fduwjj
2025-03-25 01:16:12 +00:00
Justin Chu
2dccd70ef0 [ONNX] Clean up legacy dynamo export code (#149745)
Clean up code that is unused and obsolete. The public `torch.onnx.dynamo_export` is kept for now but the legacy implementation is removed.

Remove public option classes and OnnxRegistry that have been deprecated.

Users: use torch.onnx.export(…, dynamo=True).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149745
Approved by: https://github.com/titaiwangms, https://github.com/cyyever
2025-03-23 19:35:16 +00:00
Pradeep Fernando
1b08aaeafe Supporting non-tensor-data write_size in planner write items. (#149699)
Summary:
1\ The current write item structure does not contain the amount of data that needs to be written.
2\ the planner.item already has a size primitive 'tensor_storage_size'. https://fburl.com/code/7a0gsmw7 But only for tensors.
3\ Right now, the only way the writer layer get hold of this property (fro non tensor data)
first do a lookup in to the actual tensor/bytes
then calculate the nbytes.
This change introduce a way to capture non-tensor data size within a write-plan item.

Test Plan: Existing UT.

Differential Revision: D71599725

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149699
Approved by: https://github.com/MeetVadakkanchery
2025-03-21 18:09:14 +00:00
Jing Xu
4ea580568a update aotinductor doc for XPU support (#149299)
as title. Since the AOTInductor feature starting from 2.7 works on Intel GPU, add the related contents into its doc.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149299
Approved by: https://github.com/guangyey, https://github.com/desertfire
2025-03-21 04:40:31 +00:00
FFFrog
1dce65a82c Fix the invalid link for FX (#149289)
As the title stated.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149289
Approved by: https://github.com/zou3519
2025-03-19 14:03:18 +00:00
FFFrog
e8a35eb7da Add Missing Communication collectives (#147379)
----

- reduce_add_coalesced
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147379
Approved by: https://github.com/mikaylagawarecki
2025-03-19 06:59:04 +00:00
Justin Chu
010963032c [ONNX] Create onnx_symbolic (#148905)
In the old exporter we allow users to define a symbolic() method to bypass JIT tracing for a block of logic. We can allow users to do similar things by creating symbolic ops at export.

This PR implements `torch.onnx.ops.symbolic` and `torch.onnx.ops.symbolic_multi_out` to allow users to create onnx nodes symbolically with pt2 & fx. The custom pytorch ops were designed such that the attributes are encoded to be part of a valid fx op. Users provide shape and dtype for the meta function to produce the currect fake tensor during export.

An example is

![image](https://github.com/user-attachments/assets/c62f5f21-e038-456e-a71d-b9a5d0a7cd9d)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148905
Approved by: https://github.com/titaiwangms
2025-03-18 21:32:06 +00:00
Jane Xu
988827cdfb Use schema as source of truth + support ones_like/empty_like (#149052)
This change does 2 important things:
(a) Instead of relying on IValue type as source of truth, we use the schema as the source of truth, which is important as IValue types are overloaded and can ambiguously convert incorrectly. For example, a MemoryFormat will look like an int + get converted to an int64_t vs a MemoryFormat!

(b) This PR expands support for many more types to encompass way more schemas, e.g., Optional, Device, dtype, etc. The main win from this PR is the ability for aoti_torch_call_dispatcher to call TensorFactory ops like ones_like/empty_like!

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149052
Approved by: https://github.com/albanD
2025-03-18 02:40:54 +00:00
Justin Chu
ebabd0efdd [ONNX] Expose verification utilities (#148603)
Expose verification utilities to public documentation.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148603
Approved by: https://github.com/titaiwangms
2025-03-18 02:10:34 +00:00
Leo Wang
f4bffb7461 [docs] fix autograd description on convex function case (#148658)
The sub-gradient of minimum norm is the least steep descent direction.

```python
import torch

x = torch.tensor([-2, -1, 0, 1, 2.], requires_grad=True)
torch.relu(x).sum().backward()
print(x.grad) # tensor([0., 0., 0., 1., 1.])

y = torch.tensor([-2, -1, 0, 1, 2.], requires_grad=True)
torch.abs(y).sum().backward()
print(y.grad) # tensor([-1., -1.,  0.,  1.,  1.])
```

(How can I request a reviewer? I don't have the button on the right)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148658
Approved by: https://github.com/lezcano
2025-03-13 09:06:15 +00:00
Howard Huang
b98af95401 Fix DCP link (#148974)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148974
Approved by: https://github.com/svekars
2025-03-11 21:26:37 +00:00
Nikita Shulga
c18858d633 [MPS] Make torch.mps.compile_shader public (#148972)
It was a private method in 2.6, but nothin changes in its API for 2.7
and it will likely remain the same in 2.8, so time to remove underscore
from its name

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148972
Approved by: https://github.com/Skylion007, https://github.com/atalman, https://github.com/seemethere, https://github.com/albanD, https://github.com/dcci
2025-03-11 20:20:58 +00:00
Chien-Chin Huang
52acc1f955 [DSD] Update the document to mention the limitation of set_optimizer_state_dict (#148918)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/140898

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148918
Approved by: https://github.com/fduwjj, https://github.com/mori360
ghstack dependencies: #148825
2025-03-11 18:24:12 +00:00
albanD
68c12ecfe2 Move get accelerator to use build time flags when possible (#146098)
This PR does two main things (they are in a single PR to show how the newly added APIs are used).

- Add isBuilt and isAvailable APIs to the AcceleratorHook interface. See inline doc for their exact semantic
- Use the newly added isBuilt for accelerator check to ensure it does not poison fork

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146098
Approved by: https://github.com/ngimel, https://github.com/malfet, https://github.com/EikanWang, https://github.com/jeromean

Co-authored-by: Jane (Yuan) Xu <31798555+janeyx99@users.noreply.github.com>
2025-03-10 13:17:58 +00:00
Nichols A. Romero
08baaa7d63 [Docs][TunableOp] TunableOp documentation update (#148384)
This PR aligns documentation to what is in the README file:
https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/cuda/tunable/README.md

and removes the prototype NOTE.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148384
Approved by: https://github.com/jeffdaily, https://github.com/svekars

Co-authored-by: Svetlana Karslioglu <svekars@meta.com>
2025-03-07 21:02:49 +00:00
PyTorch MergeBot
b246cd7b82 Revert "Move get accelerator to use build time flags when possible (#146098)"
This reverts commit 17302b4bc8.

Reverted https://github.com/pytorch/pytorch/pull/146098 on behalf of https://github.com/albanD due to Still fails with cuda build on a non-gpu machine ([comment](https://github.com/pytorch/pytorch/pull/146098#issuecomment-2707191770))
2025-03-07 18:59:58 +00:00
albanD
17302b4bc8 Move get accelerator to use build time flags when possible (#146098)
This PR does two main things (they are in a single PR to show how the newly added APIs are used).

- Add isBuilt and isAvailable APIs to the AcceleratorHook interface. See inline doc for their exact semantic
- Use the newly added isBuilt for accelerator check to ensure it does not poison fork

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146098
Approved by: https://github.com/ngimel, https://github.com/malfet, https://github.com/EikanWang, https://github.com/jeromean

Co-authored-by: Jane (Yuan) Xu <31798555+janeyx99@users.noreply.github.com>
2025-03-07 15:19:34 +00:00
Syed Tousif Ahmed
3960f97832 Documents torch.cuda.MemPool API (#148374)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148374
Approved by: https://github.com/eqy, https://github.com/ngimel
2025-03-06 23:18:43 +00:00
Mikayla Gawarecki
be0ceee1c3 Make record/storage alignment in torch.save configurable (#147788)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147788
Approved by: https://github.com/albanD
ghstack dependencies: #147786, #147787
2025-03-06 12:04:46 +00:00
ZhaoqiongZ
38479e495e Add note to get start xpu (#148168)
Installing PyTorch from binaries will automatically install the runtime packages of Intel® Deep Learning Essentials. In this case, if we activate oneAPI in a standalone installation of Intel® Deep Learning Essentials, there will be an environment issue. Therefore, add a note to remind users to avoid this situation.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148168
Approved by: https://github.com/janeyx99

Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
Co-authored-by: Jane (Yuan) Xu <31798555+janeyx99@users.noreply.github.com>
2025-03-05 18:11:14 +00:00
Marko Radmilac
c65ee728f0 Initial implementation of host memory stats (#147660)
This is an initial attempt to provide some statistics for the pinned host memory allocations flowing through CachingHostAllocator. Many times in the past we have had inexplicable slowdowns that would be much easier to diagnose if we had some host memory characteristics.

This change tries very hard not to disrupt the initial design of the allocator, and it uses existing locking mechanism, whenever possible, to gather statistics "for free". Only deviation from that is on the "slow path" where we incur CUDA calls anyway, so taking a short lock is not going to hurt the performance much, especially in the steady state where most allocations will come from cache.

As mentioned before, this is the first PR, to introduce the concept and to see if it fits the right paradigm. We can always add more later.

Metrics that would require more involved changes to the code base and locks, like requested memory, have been punted for now. I also tried to reuse the Stat structure used in CUDA caching allocator, in order to maintain symmetry.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147660
Approved by: https://github.com/ngimel
2025-03-05 16:13:19 +00:00
Meet Vadakkanchery
fdee60769a [DCP] Introduce process based async checkpointing (#147039)
Summary:
### Context
Background checkpoint upload thread interfering with trainer thread:

In [async save API](https://github.com/pytorch/pytorch/blob/main/torch/distributed/checkpoint/state_dict_saver.py#L239-L248), the background thread spends a considerable amount of time on CPU-bound tasks (pickling/unpickling several metada objects a.k.a SavePlans) on rank0 during the collective operation; this kind of asymmetric computation heavily contends for GIL with the trainer thread causing GPU util to suffer significantly for the E2E checkpoint duration.

### Solution:
Introduce async save via a checkpoint daemon process. This daemon process will be created once (during the first save attempt) and can serve async checkpoint requests for the remainder of training lifetime.

Test Plan: Added E2E UTs for process based async save.

Differential Revision: D69272583

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147039
Approved by: https://github.com/saumishr
2025-03-04 13:33:28 +00:00
Shangdi Yu
b17f5223a4 Generate AOTI input check by default (#148005)
Summary:
Generate AOTI size and stride input check by default. But the checks are only run if `AOT_INDUCTOR_DEBUG_COMPILE` env variable is set (to avoid slowing down the performance).

Example output:

```cpp
            bool _check_aoti_runtime_check_inputs_env() {
                const static char* env_var_value = getenv("AOTI_RUNTIME_CHECK_INPUTS");
                const static bool result = env_var_value != nullptr && env_var_value[0] != '\0';
                return result;
            }

            AOTI_NOINLINE static void __check_inputs_outputs(
                AtenTensorHandle* input_handles,
                AtenTensorHandle* output_handles) {
                if (!_check_aoti_runtime_check_inputs_env()){
                    return;
                }
//rest of the check
}

```

Test Plan: CI

Differential Revision: D70260490

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148005
Approved by: https://github.com/hl475, https://github.com/desertfire, https://github.com/jingsh
2025-03-04 00:55:14 +00:00
PyTorch MergeBot
a983b2b11a Revert "Initial implementation of host memory stats (#147660)"
This reverts commit 945e359fc1.

Reverted https://github.com/pytorch/pytorch/pull/147660 on behalf of https://github.com/mradmila due to There is an issue with ambiguous definition of Stat structure when different C++ tools are used. Backing out for now. ([comment](https://github.com/pytorch/pytorch/pull/147660#issuecomment-2692346379))
2025-03-01 18:05:45 +00:00
Marko Radmilac
945e359fc1 Initial implementation of host memory stats (#147660)
This is an initial attempt to provide some statistics for the pinned host memory allocations flowing through CachingHostAllocator. Many times in the past we have had inexplicable slowdowns that would be much easier to diagnose if we had some host memory characteristics.

This change tries very hard not to disrupt the initial design of the allocator, and it uses existing locking mechanism, whenever possible, to gather statistics "for free". Only deviation from that is on the "slow path" where we incur CUDA calls anyway, so taking a short lock is not going to hurt the performance much, especially in the steady state where most allocations will come from cache.

As mentioned before, this is the first PR, to introduce the concept and to see if it fits the right paradigm. We can always add more later.

Metrics that would require more involved changes to the code base and locks, like requested memory, have been punted for now. I also tried to reuse the Stat structure used in CUDA caching allocator, in order to maintain symmetry.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147660
Approved by: https://github.com/ngimel
2025-02-28 18:36:44 +00:00
ZhaoqiongZ
20ce67cd06 Udpate hw requirement for FP64 on "Getting Started on Intel GPU" (#147802)
Fixes #147731

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147802
Approved by: https://github.com/malfet

Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
2025-02-27 01:54:19 +00:00
PyTorch MergeBot
7e7d05bf85 Revert "[do not merge yet] update grammar (#147996)"
This reverts commit 6e129a697f.

Reverted https://github.com/pytorch/pytorch/pull/147996 on behalf of https://github.com/seemethere due to Need to revert ([comment](https://github.com/pytorch/pytorch/pull/147996#issuecomment-2686291282))
2025-02-26 22:01:12 +00:00
sokkaofthewatertribe
6e129a697f [do not merge yet] update grammar (#147996)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147996
Approved by: https://github.com/seemethere
2025-02-26 21:52:58 +00:00
PyTorch MergeBot
dc7556f1bd Revert "[do not merge yet] update grammar (#147996)"
This reverts commit a1ee2c3a08.

Reverted https://github.com/pytorch/pytorch/pull/147996 on behalf of https://github.com/seemethere due to Need to revert ([comment](https://github.com/pytorch/pytorch/pull/147996#issuecomment-2686266052))
2025-02-26 21:43:06 +00:00
sokkaofthewatertribe
a1ee2c3a08 [do not merge yet] update grammar (#147996)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147996
Approved by: https://github.com/seemethere
2025-02-26 21:39:08 +00:00
martin-kokos
8de6fe8c0b [docs] fix numpy docs reference (#147697)
Fix a link to numpy documentation that has moved and now 404's

I"ve checked other numpy doc links that point to docs.scipy.org (which then redirects to numpy.org) and they do work, so I am fixing just this 404.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147697
Approved by: https://github.com/soulitzer
2025-02-26 01:30:03 +00:00
Svetlana Karslioglu
14b9f7f7bc Remove link to search survey (#147751)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147751
Approved by: https://github.com/malfet
2025-02-25 19:26:59 +00:00
Xuehai Pan
754fb834db [BE][CI] bump ruff to 0.9.0: string quote styles (#144569)
Reference: https://docs.astral.sh/ruff/formatter/#f-string-formatting

- Change the outer quotes to double quotes for nested f-strings

```diff
- f'{", ".join(args)}'
+ f"{', '.join(args)}"
```

- Change the inner quotes to double quotes for triple f-strings

```diff
  string = """
-     {', '.join(args)}
+     {", ".join(args)}
  """
```

- Join implicitly concatenated strings

```diff
- string = "short string " "short string " f"{var}"
+ string = f"short string short string {var}"
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144569
Approved by: https://github.com/Skylion007
ghstack dependencies: #146509
2025-02-24 19:56:09 +00:00
Dmitry Rogozhkin
d27ecf85db xpu: support sycl with torch.utils.cpp_extension APIs (#132945)
This patch adds support for sycl kernels build via `torch.utils.cpp_extension.load`, `torch.utils.cpp_extension.load_inline` and (new) `class SyclExtension` APIs. Files having `.sycl` extension are considered to have sycl kernels and are compiled with `icpx` (dpc++ sycl compiler from Intel). Files with other extensions, `.cpp`, `.cu`, are handled as before. API supports building sycl along with other file types into single extension.

Note that `.sycl` file extension is a PyTorch convention for files containing sycl code which I propose to adopt. We did follow up with compiler team to introduce such file extension in the compiler, but they are opposed to this. At the same time discussion around sycl file extension and adding sycl language support into such tools as cmake is ongoing. Eventually cmake also considers to introduce some file extension convention for sycl. I hope we can further influence cmake and compiler communities to broader adopt `.sycl` file extension.

By default SYCL kernels are compiled for all Intel GPU devices for which pytorch native aten SYCL kernels are compiled. At the moment `pvc,xe-lpg`. This behavior can be overridden by setting `TORCH_XPU_ARCH_LIST` environment variables to the comma separated list of desired devices to compile for.

Fixes: #132944

CC: @gujinghui @EikanWang @fengyuan14 @guangyey @jgong5

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132945
Approved by: https://github.com/albanD, https://github.com/guangyey, https://github.com/malfet

Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
2025-02-16 16:50:59 +00:00
PyTorch MergeBot
dd5d0ea6bb Revert "xpu: support sycl with torch.utils.cpp_extension APIs (#132945)"
This reverts commit 607379960b.

Reverted https://github.com/pytorch/pytorch/pull/132945 on behalf of https://github.com/malfet due to It just broke all the tests, see b16ae97ad0/1 ([comment](https://github.com/pytorch/pytorch/pull/132945#issuecomment-2661498747))
2025-02-16 16:03:42 +00:00
Dmitry Rogozhkin
607379960b xpu: support sycl with torch.utils.cpp_extension APIs (#132945)
This patch adds support for sycl kernels build via `torch.utils.cpp_extension.load`, `torch.utils.cpp_extension.load_inline` and (new) `class SyclExtension` APIs. Files having `.sycl` extension are considered to have sycl kernels and are compiled with `icpx` (dpc++ sycl compiler from Intel). Files with other extensions, `.cpp`, `.cu`, are handled as before. API supports building sycl along with other file types into single extension.

Note that `.sycl` file extension is a PyTorch convention for files containing sycl code which I propose to adopt. We did follow up with compiler team to introduce such file extension in the compiler, but they are opposed to this. At the same time discussion around sycl file extension and adding sycl language support into such tools as cmake is ongoing. Eventually cmake also considers to introduce some file extension convention for sycl. I hope we can further influence cmake and compiler communities to broader adopt `.sycl` file extension.

By default SYCL kernels are compiled for all Intel GPU devices for which pytorch native aten SYCL kernels are compiled. At the moment `pvc,xe-lpg`. This behavior can be overridden by setting `TORCH_XPU_ARCH_LIST` environment variables to the comma separated list of desired devices to compile for.

Fixes: #132944

CC: @gujinghui @EikanWang @fengyuan14 @guangyey @jgong5

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132945
Approved by: https://github.com/albanD, https://github.com/guangyey
2025-02-16 10:16:09 +00:00
Mikayla Gawarecki
e8fbc86de0 Make torch.cuda.gds APIs public (#147120)
Follow up to https://github.com/pytorch/pytorch/pull/145748 that turned USE_CUFILE on for CUDA 12.6 and 12.8 binaries

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147120
Approved by: https://github.com/albanD
2025-02-14 17:06:50 +00:00
Aaron Gokaslan
6344ca1dd4 [BE][Ez]: Apply FURB188: use str remove(pre|suf)fix (#146997)
Since we are on 3.9, we can use this nice str builtin which is more readable and more efficient.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146997
Approved by: https://github.com/XuehaiPan, https://github.com/cyyever, https://github.com/jansel
2025-02-14 03:38:07 +00:00
PyTorch MergeBot
9a883007a2 Revert "Implement cuda graphs implementation of torch.cond and torch.while_loop (#140979)"
This reverts commit c7515da7b0.

Reverted https://github.com/pytorch/pytorch/pull/140979 on behalf of https://github.com/huydhn due to This change has been reported to break internal code ([comment](https://github.com/pytorch/pytorch/pull/140979#issuecomment-2657361940))
2025-02-13 18:04:26 +00:00
angelayi
67c4c39b4f [docs] Minor fixes to export and aoti docs (#144513)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144513
Approved by: https://github.com/yushangdi, https://github.com/desertfire
2025-02-13 15:19:35 +00:00
Tugsbayasgalan Manlaibaatar
ebd992724f Implement serializable getattr support for tensor subclasses (#145772)
builtins.getattr is not serializable, so we replace it with a custom op that has more refined schema.

Differential Revision: [D68899421](https://our.internmc.facebook.com/intern/diff/D68899421)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145772
Approved by: https://github.com/bdhirsh
2025-02-11 19:05:14 +00:00
Daniel Galvez
c7515da7b0 Implement cuda graphs implementation of torch.cond and torch.while_loop (#140979)
This is a new PR for #130386 , which got stale and was closed. Since I force-pushed to that branch in order to rebase it on top of main, the PR can no longer be reopened, according to https://github.com/isaacs/github/issues/361

I fixed the possibly-not-warmed-up problem described here: https://github.com/pytorch/pytorch/pull/130386/files#r1690856534

Since starting this, torch.cond and torch.while_loop now apparently have support for backward passes. I will look into what it might take to support that.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140979
Approved by: https://github.com/eqy, https://github.com/eellison
2025-02-11 18:16:15 +00:00