Commit Graph

194 Commits

Author SHA1 Message Date
Peter Bell
897907d42c Fix split torch_function handling (#83866)
`Tensor.split` calls `TensorBase.split` whose `handle_torch_function` statement passes `func` as `Tensor.split` which is usually correct, but not here because of the use of `super()`. Instead this calls `torch._VF.split` which correctly differentiates from `torch.split`. This is currently okay since we never hit `TensorBase.split` for types with `__torch_function__` however, once we  allow skipping only one hop of `__torch_function__` this will expose the error.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/83866
Approved by: https://github.com/albanD
2022-08-30 18:03:32 +00:00
joncrall
4618371da5 Integrate xdoctest - Rebased (#82797)
This is a new version of #15648 based on the latest master branch.

Unlike the previous PR where I fixed a lot of the doctests in addition to integrating xdoctest, I'm going to reduce the scope here. I'm simply going to integrate xdoctest, and then I'm going to mark all of the failing tests as "SKIP". This will let xdoctest run on the dashboards, provide some value, and still let the dashboards pass. I'll leave fixing the doctests themselves to another PR.

In my initial commit, I do the bare minimum to get something running with failing dashboards. The few tests that I marked as skip are causing segfaults. Running xdoctest results in 293 failed, 201 passed tests. The next commits will be to disable those tests. (unfortunately I don't have a tool that will insert the `#xdoctest: +SKIP` directive over every failing test, so I'm going to do this mostly manually.)

Fixes https://github.com/pytorch/pytorch/issues/71105

@ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82797
Approved by: https://github.com/ezyang
2022-08-12 02:08:01 +00:00
PyTorch MergeBot
f534b2c627 Revert "Remove split functional wrapper (#74727)"
This reverts commit a58876ace7.

Reverted https://github.com/pytorch/pytorch/pull/74727 on behalf of https://github.com/seemethere due to Fails internal use cases, might extend out to external use cases as well. Need to assess overall impact of this change more widely
2022-08-10 19:45:23 +00:00
albanD
e4ea751810 Fix hash for Tensor subclasses (#83174)
Fixes https://github.com/pytorch/pytorch/issues/82832
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83174
Approved by: https://github.com/ezyang
2022-08-10 19:23:56 +00:00
Peter Bell
a58876ace7 Remove split functional wrapper (#74727)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74727
Approved by: https://github.com/albanD, https://github.com/khabinov
2022-08-10 17:57:48 +00:00
PyTorch MergeBot
0c7ca2d97b Revert "Add DLPack support for XPU backend by mapping to kDLOneAPI in DLPack (#82867)"
This reverts commit de0e03001d.

Reverted https://github.com/pytorch/pytorch/pull/82867 on behalf of https://github.com/kit1980 due to DLPack 0.7 is in conflict with the current usage of DLPack 0.6 internally
2022-08-07 20:38:29 +00:00
johnlu
de0e03001d Add DLPack support for XPU backend by mapping to kDLOneAPI in DLPack (#82867)
## Motivation
The DLPack device type kDLOneAPI stands for the Unified Shared Memory allocated on a oneAPI device. The corresponding Pytorch backend type is XPU.
Support to export/import the Pytorch XPU tensor as a DLPack tensor of kDLOneAPI device.

## Solution
1. Update the DLPack protocol to v0.7.
2. Add the XPU hooks to map the Aten device and DLPack device with the address value and device information.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/82867
Approved by: https://github.com/kit1980
2022-08-05 06:41:42 +00:00
PyTorch MergeBot
0e16340f92 Revert "Add DLPack support for XPU backend by mapping to kDLOneAPI in DLPack. (#81021)"
This reverts commit 8be853025c.

Reverted https://github.com/pytorch/pytorch/pull/81021 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally
2022-08-05 01:51:39 +00:00
johnlu
8be853025c Add DLPack support for XPU backend by mapping to kDLOneAPI in DLPack. (#81021)
## Motivation
The DLPack device type kDLOneAPI stands for the Unified Shared Memory allocated on a oneAPI device. The corresponding Pytorch backend type is XPU.
Support to export/import the Pytorch XPU tensor as a DLPack tensor of kDLOneAPI device.

## Solution
1. Update the DLPack protocol to v0.7.
2. Add the XPU hooks to map the Aten device and DLPack device with the address value and device information.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/81021
Approved by: https://github.com/ezyang
2022-08-04 12:50:49 +00:00
Kurt Mohler
14d0296e5c Rename _Typed/_UntypedStorage to Typed/UntypedStorage and update docs (#82438)
### Description

Since the major changes for `_TypedStorage` and `_UntypedStorage` are now complete, they can be renamed to be public.

`TypedStorage._untyped()` is renamed to `TypedStorage.untyped()`.

Documentation for storages is improved as well.

### Issue
Fixes #82436

### Testing
N/A

Pull Request resolved: https://github.com/pytorch/pytorch/pull/82438
Approved by: https://github.com/ezyang
2022-07-30 19:37:08 +00:00
Fabio Rocha
fd84c458f4 Add torch.unflatten and improve its docs (#81399)
unflatten now has a free function version in torch.flatten in addition to
    the method in torch.Tensor.flatten.

    Updated docs to reflect this and polished them a little.
    For consistency, changed the signature of the int version of unflatten in
    native_functions.yaml.

    Some override tests were failing because unflatten has unusual
    characteristics in terms of the .int and .Dimname versions having
    different number of arguments so this required some changes
    to test/test_override.py

    Removed support for using mix of integer and string arguments
    when specifying dimensions in unflatten.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81399
Approved by: https://github.com/Lezcano, https://github.com/ngimel
2022-07-29 15:02:42 +00:00
Edward Z. Yang
3c2c2cc947 cudagraphs dynamo backend (#80566)
This backend handles cases where the preexisting cuda graphs
implementation from dynamo is unsound/has errors.

Requires this functorch bug fix: https://github.com/pytorch/functorch/pull/935

Signed-off-by: Edward Z. Yang <ezyangfb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80566
Approved by: https://github.com/ngimel, https://github.com/wconstab
2022-07-22 14:06:07 +00:00
Huy Do
12cb26509a Apply ufmt to torch internal (#81643)
This is a big bang PR, merge conflicts are probably expected and will be addressed at merge.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81643
Approved by: https://github.com/ezyang
2022-07-22 02:19:50 +00:00
PyTorch MergeBot
da87fa684c Revert "[fix] allow saving python attr on Tensor and Parameter via torch.save (#81616)"
This reverts commit f3f8d96ea6.

Reverted https://github.com/pytorch/pytorch/pull/81616 on behalf of https://github.com/jeanschmidt due to breaking internal builds
2022-07-21 10:46:24 +00:00
kshitij12345
f3f8d96ea6 [fix] allow saving python attr on Tensor and Parameter via torch.save (#81616)
Fixes: https://github.com/pytorch/pytorch/issues/72129

TODO:
* [x] Fix for Parameter

Benchmark
(Measurable diff for small tensors)
```
[-------------- Save and Load --------------]
                    |  After PR  |  Before PR
1 threads: ----------------------------------
      ()            |    111.7   |     106.9
      (4, 4)        |    114.4   |     109.2
      (128, 128)    |    135.2   |     128.3
      (1024, 1024)  |   1431.9   |    1431.3

Times are in microseconds (us).
```

<details>

<summary> Benchmark Script </summary>

```python
import torch
from torch.testing._internal.common_utils import BytesIOContext
from torch.utils import benchmark
import pickle

shapes = ((), (4, 4), (128, 128), (1024, 1024))

sizes = [1, 64, 1024, 10000]
results = []

def save_load_fn(t):
    with BytesIOContext() as f:
        torch.save(t, f)
        f.seek(0)
        torch.load(f)

for shape in shapes:
    t = torch.randn(shape)
    label = 'Save and Load'
    sub_label = f'{shape}'
    results.append(benchmark.Timer(
        stmt='save_load_fn(t)',
        globals={'t': t, 'save_load_fn':save_load_fn},
        label=label,
        sub_label=sub_label,
        description='Before PR',
    ).blocked_autorange(min_run_time=2))

compare = benchmark.Compare(results)
compare.print()

with open('before_pr.pkl', 'wb') as f:
    pickle.dump(results, f)

# with open('after_pr.pkl', 'rb') as f:
#     after_pr = pickle.load(f)

# with open('before_pr.pkl', 'rb') as f:
#     before_pr = pickle.load(f)

# compare = benchmark.Compare(after_pr + before_pr)
# compare.print()
```

</details>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81616
Approved by: https://github.com/albanD
2022-07-20 18:45:33 +00:00
PyTorch MergeBot
7f3677d723 Revert "Remove split functional wrapper (#74727)"
This reverts commit cc3126083e.

Reverted https://github.com/pytorch/pytorch/pull/74727 on behalf of https://github.com/mehtanirav due to Breaking multiple internals builds and tests
2022-07-11 18:29:45 +00:00
albanD
1afb804f26 Improve wrapper subclass detection for serialization (#81105)
Fixes https://github.com/pytorch/pytorch/issues/80983

Also fix a small bug uncovered by the new test where creating memory_view for 0-sized inputs is not valid and is now skipped

Pull Request resolved: https://github.com/pytorch/pytorch/pull/81105
Approved by: https://github.com/ezyang
2022-07-11 14:02:37 +00:00
Peter Bell
cc3126083e Remove split functional wrapper (#74727)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74727
Approved by: https://github.com/albanD
2022-07-08 19:21:22 +00:00
PyTorch MergeBot
877180e1af Revert "Add DLPack support for XPU backend by mapping to kDLOneAPI in DLPack. (#78154)"
This reverts commit 3a6c1dc7c7.

Reverted https://github.com/pytorch/pytorch/pull/78154 on behalf of https://github.com/albanD due to breaks mobile build
2022-07-05 08:52:46 +00:00
johnlu
3a6c1dc7c7 Add DLPack support for XPU backend by mapping to kDLOneAPI in DLPack. (#78154)
## Motivation
The DLPack device type kDLOneAPI stands for the Unified Shared Memory allocated on a oneAPI device. The corresponding Pytorch backend type is XPU.
Support to export/import the Pytorch XPU tensor as a DLPack tensor of kDLOneAPI device.

## Solution
1. Update the DLPack protocol to v0.7.
2. Add the XPU hooks to map the Aten device and DLPack device with the address value and device information.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/78154
Approved by: https://github.com/ezyang
2022-07-04 19:59:05 +00:00
Elias Ellison
268bbecf1c Add option for allowing non-fake inputs, add deepcopy impl
Pull Request resolved: https://github.com/pytorch/pytorch/pull/79580

Approved by: https://github.com/samdow
2022-06-17 19:36:26 +00:00
Alban Desmaison
0a651a231d Add full support for serialization of MPS Tensors (#79465)
Fix https://github.com/pytorch/pytorch/issues/79384
Pull Request resolved: https://github.com/pytorch/pytorch/pull/79465
Approved by: https://github.com/kulinseth, https://github.com/malfet
2022-06-14 17:54:30 +00:00
PyTorch MergeBot
ce6ce74703 Revert "Add full support for serialization of MPS Tensors (#79465)"
This reverts commit 64c2a275c4.

Reverted https://github.com/pytorch/pytorch/pull/79465 on behalf of https://github.com/zengk95 due to this broke X linux-xenial-py3.7-clang7-onnx / test (default, 1, 2, linux.2xlarge). Not sure why since it passed on pull.
2022-06-14 16:42:36 +00:00
Alban Desmaison
64c2a275c4 Add full support for serialization of MPS Tensors (#79465)
Fix https://github.com/pytorch/pytorch/issues/79384
Pull Request resolved: https://github.com/pytorch/pytorch/pull/79465
Approved by: https://github.com/kulinseth, https://github.com/malfet
2022-06-14 14:20:09 +00:00
Peter Bell
7843a5e882 Move Tensor.grad back into C++
`Tensor.grad` was moved to python in #30531 to add a warning. However,
that warning has since been lowered into C++ so this wrapper is no
longer necessary.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/76675

Approved by: https://github.com/albanD
2022-06-10 13:44:45 +00:00
Sujoy Saraswati
43c09b5cef Support saving Bfloat16 tensors for XLA/HPU (#77534)
Fixes #77533

Pull Request resolved: https://github.com/pytorch/pytorch/pull/77534
Approved by: https://github.com/albanD
2022-06-01 14:19:09 +00:00
Mike Ruberry
089203f8bc Updates floor_divide to perform floor division (#78411)
Fixes https://github.com/pytorch/pytorch/issues/43874

This PR changes floor_divide to perform floor division instead of truncation division.

This is a BC-breaking change, but it's a "bug fix," and we've already warned users for several releases this behavior would change.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78411
Approved by: https://github.com/ngimel
2022-05-29 21:28:45 +00:00
Edward Z. Yang
4941e72e40 Revert "Revert "Implement sym_sizes to create proper IR for sym ints representing tensor sizes (#76836)""
This reverts commit c35bd8d423.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/77719

Approved by: https://github.com/Chillee, https://github.com/malfet
2022-05-18 18:40:57 +00:00
PyTorch MergeBot
48581d74ad Revert "Add dispatch mode testing for meta tensors and other stuff"
This reverts commit c1cdb1216b.

Reverted https://github.com/pytorch/pytorch/pull/77477 on behalf of https://github.com/malfet
2022-05-18 02:56:48 +00:00
Edward Z. Yang
c1cdb1216b Add dispatch mode testing for meta tensors and other stuff
We don't have any coverage for meta tensor correctness for backwards
because torch function mode can only allow us to interpose on
Python torch API calls, but backwards invocations happen from C++.
To make this possible, I add torch_dispatch_meta test which runs the
tests with __torch_dispatch__

While doing this, I needed to generate fresh expected failure / skip
lists for the new test suite, and I discovered that my original
scaffolding for this purpose was woefully insufficient.  So I rewrote
how the test framework worked, and at the same time rewrote the
__torch_function__ code to also use the new logic.  Here's whats
new:

- Expected failure / skip is now done on a per function call basis,
  rather than the entire test.  This means that separate OpInfo
  samples for a function don't affect each other.

- There are now only two lists: expect failure list (where the test
  consistently fails on all runs) and skip list (where the test
  sometimes passes and fails.

- We explicitly notate the dtype that failed.  I considered detecting
  when something failed on all dtypes, but this was complicated and
  listing everything out seemed to be nice and simple.  To keep the
  dtypes short, I introduce a shorthand notation for dtypes.

- Conversion to meta tensors is factored into its own class
  MetaConverter

- To regenerate the expected failure / skip lists, just run with
  PYTORCH_COLLECT_EXPECT and filter on a specific test type
  (test_meta or test_dispatch_meta) for whichever you want to update.

Other misc fixes:

- Fix max_pool1d to work with BFloat16 in all circumstances, by making
  it dispatch and then fixing a minor compile error (constexpr doesn't
  work with BFloat16)

- Add resolve_name for turning random torch API functions into string
  names

- Add push classmethod to the Mode classes, so that you can more easily
  push a mode onto the mode stack

- Add some more skips for missing LAPACK

- Added an API to let you query if there's already a registration for
  a function, added a test to check that we register_meta for all
  decompositions (except detach, that decomp is wrong lol), and then
  update all the necessary sites to make the test pass.

Signed-off-by: Edward Z. Yang <ezyangfb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/77477

Approved by: https://github.com/zou3519
2022-05-18 00:18:34 +00:00
Andrew M. James
39d3a7ffe5 Connect Tensor.__ipow__ to pow_ method
The `pow_` method should be connected to `Tensor.__ipow__` so that the
operator `**=` works correctly.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/76900

Approved by: https://github.com/mruberry
2022-05-15 15:06:30 +00:00
Ivan Yashchuk
890bdf13e1 Remove deprecated torch.solve (#70986)
The time has come to remove deprecated linear algebra related functions. This PR removes `torch.solve`.

cc @jianyuh @nikitaved @pearu @mruberry @walterddr @IvanYashchuk @xwang233 @Lezcano
Pull Request resolved: https://github.com/pytorch/pytorch/pull/70986
Approved by: https://github.com/Lezcano, https://github.com/albanD
2022-05-10 13:44:07 +00:00
PyTorch MergeBot
0c7c50972b Revert "Move Tensor.grad back into C++"
This reverts commit 3e4bff7285.

Reverted https://github.com/pytorch/pytorch/pull/76675 on behalf of https://github.com/albanD
2022-05-09 21:08:10 +00:00
PyTorch MergeBot
2c5bf12584 Revert "stft: remove non-center overload and python functional wrapper"
This reverts commit d23ecbfc9a.

Reverted https://github.com/pytorch/pytorch/pull/73434 on behalf of https://github.com/albanD
2022-05-09 19:59:46 +00:00
Peter Bell
3e4bff7285 Move Tensor.grad back into C++
`Tensor.grad` was moved to python in #30531 to add a warning. However,
that warning has since been lowered into C++ so this wrapper is no
longer necessary.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/76675

Approved by: https://github.com/albanD
2022-05-09 19:58:57 +00:00
Peter Bell
d23ecbfc9a stft: remove non-center overload and python functional wrapper
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73434

Approved by: https://github.com/anjali411
2022-05-03 14:30:35 +00:00
Joel Benjamin Schlosser
bc34cf5fe4 Support for tensor subclasses as parameters
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73459

Approved by: https://github.com/ezyang, https://github.com/albanD
2022-04-27 19:28:55 +00:00
Kulin Seth
54c75e1e8f Add "mps" device to PyTorch framework.
Remove the "mlc" device for Mac platforms.

This commit will be followed up with:

* adding MPS runtime components
* PyTorch ops for MPS device

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/76291
Approved by: https://github.com/albanD
2022-04-27 19:21:57 +00:00
Alban Desmaison
e4d5801e36 Make sure requires_grad is propagated for all backend
The if statement is not strictly necessary but that avoid having to call this function if we don't need it.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76256
Approved by: https://github.com/ezyang, https://github.com/soulitzer
2022-04-25 19:31:24 +00:00
PyTorch MergeBot
77f23d6460 Revert "stft: remove non-center overload and python functional wrapper"
This reverts commit 6b7d89c4f1.

Reverted https://github.com/pytorch/pytorch/pull/73434 on behalf of https://github.com/osalpekar
2022-04-23 23:21:27 +00:00
Peter Bell
6b7d89c4f1 stft: remove non-center overload and python functional wrapper
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73434

Approved by: https://github.com/anjali411
2022-04-23 00:17:01 +00:00
Edward Z. Yang
0a1bc5f501 Miscellaneous __torch_function__ fixes
I figured these out by unconditionally turning on a no-op torch function
mode on the test suite and then fixing errors as they showed up.  Here's
what I found:

- _parse_to failed internal assert when __torch_function__'ed because it
  claims its name is "to" to the argument parser; added a name override
  so we know how to find the correct name

- Infix operator magic methods on Tensor did not uniformly handle
  __torch_function__ and TypeError to NotImplemented.  Now, we always
  do the __torch_function__ handling in
  _wrap_type_error_to_not_implemented and your implementation of
  __torch_function__ gets its TypeErrors converted to NotImplemented
  (for better or for worse; see
  https://github.com/pytorch/pytorch/issues/75462 )

- A few cases where code was incorrectly testing if a Tensor was
  Tensor-like in the wrong way, now use is_tensor_like (in grad
  and in distributions).  Also update docs for has_torch_function to
  push people to use is_tensor_like.

- is_grads_batched was dropped from grad in handle_torch_function, now
  fixed

- Report that you have a torch function even if torch function is
  disabled if a mode is enabled.  This makes it possible for a mode
  to return NotImplemented, pass to a subclass which does some
  processing and then pass back to the mode even after the subclass
  disables __torch_function__ (so the tensors are treated "as if"
  they are regular Tensors).  This brings the C++ handling behavior
  in line with the Python behavior.

- Make the Python implementation of overloaded types computation match
  the C++ version: when torch function is disabled, there are no
  overloaded types (because they all report they are not overloaded).

Signed-off-by: Edward Z. Yang <ezyangfb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/75484

Approved by: https://github.com/zou3519
2022-04-11 16:52:16 +00:00
Peter Bell
bf16552617 Restore TestTorchFunctionOverride
Fixes #74122

This re-enables TestTorchFunctionOverride and fixes a bunch of test failures
that had crept in while it was disabled.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/74202

Approved by: https://github.com/ezyang
2022-04-04 01:26:20 +00:00
Ayman Yousef
88096253ef Add Hpu to the rebuild component list
Numpy array is chosen to be the rebuild component for
HPU. so add it to the backend list.

Signed-off-by: Ayman Yousef<ayousef@habana.ai>
Signed-off-by: Jeeja <jeejakp@habana.ai>

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/74738
Approved by: https://github.com/albanD
2022-03-31 15:05:26 +00:00
Edward Z. Yang
51e7a3406c Fix formatting of scalar tensors (don't call item)
Signed-off-by: Edward Z. Yang <ezyangfb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/74376

Approved by: https://github.com/bdhirsh
2022-03-25 02:22:25 +00:00
Christian Puhrsch
807b2e190b Move to_sparse_csr to C++
Allows use of to_sparse_csr from C++
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74294
Approved by: https://github.com/ngimel, https://github.com/malfet
2022-03-23 17:17:45 +00:00
Kurt Mohler
79ddc72b85 Virtualize <type>Storage classes (#66970)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/66228

cc ezyang bhosmer smessmer ljk53 bdhirsh

Pull Request resolved: https://github.com/pytorch/pytorch/pull/66970

Reviewed By: bdhirsh

Differential Revision: D33245612

Pulled By: ezyang

fbshipit-source-id: 4c61c2cb029e2b94b0e68927c377d3e1c358dd7c
(cherry picked from commit d29fcdfb4bc2cc17b1795d4349e4b56fa0d1cf12)
2022-03-22 23:44:48 +00:00
Christian Puhrsch
4de9cb9a86 Dispatch from torch.Tensor.to_sparse_coo to to_sparse
We don't need this replicated Python logic.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74260
Approved by: https://github.com/IvanYashchuk, https://github.com/albanD
2022-03-16 16:29:50 +00:00
Edward Z. Yang
35cfa74f97 Add a default implementation of __torch_dispatch__
I was working on an explanation of how to call into the "super"
implementation of some given ATen operation inside of __torch_dispatch__
(https://github.com/albanD/subclass_zoo/blob/main/trivial_tensors.py)
and I kept thinking to myself "Why doesn't just calling super() on
__torch_dispatch__ work"?  Well, after this patch, it does!  The idea
is if you don't actually unwrap the input tensors, you can call
super().__torch_dispatch__ to get at the original behavior.

Internally, this is implemented by disabling PythonKey and then
redispatching.  This implementation of disabled_torch_dispatch is
not /quite/ right, and some reasons why are commented in the code.
There is then some extra work I have to do to make sure we recognize
disabled_torch_dispatch as the "default" implementation (so we don't
start slapping PythonKey on all tensors, including base Tensors),
which is modeled the same way as how disabled_torch_function is done.

Signed-off-by: Edward Z. Yang <ezyangfb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/73684

Approved by: albanD
2022-03-03 20:19:33 +00:00
Joel Benjamin Schlosser
30653d164d Fix serialization and deepcopying for wrapper subclasses
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73078
2022-02-24 18:21:25 +00:00
Cody Yu
1ef244e003 Fix tensor.__deepcopy__ for lazy device (#73197)
Summary:
A small bug that misses `lazy` in tensor.__deepcopy__, which results in segmentation when deepcopy a lazy model.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/73197

Reviewed By: jbschlosser

Differential Revision: D34394482

Pulled By: wconstab

fbshipit-source-id: c84fdb9b3a827677971fd3477a92679d7dbce3c0
(cherry picked from commit c003d150ce)
2022-02-23 02:31:42 +00:00
Kurt Mohler
8e7fe87630 Rename Typed/UntypedStorage to _Typed/_UntypedStorage (#72540)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/72540

Reviewed By: jbschlosser

Differential Revision: D34216823

Pulled By: bdhirsh

fbshipit-source-id: 1bc9930ab582771ebf02308e035576cd1a0dbe47
(cherry picked from commit 329238f612)
2022-02-15 23:53:01 +00:00
Christian Puhrsch
4a7e07e53e Fix torch.save and detach for CSR Tensor (#71963)
Summary:
Currently saving a CSR Tensor simply fails. This also addresses the segfault encountered in https://github.com/pytorch/pytorch/issues/71652.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/71963

Reviewed By: jbschlosser

Differential Revision: D33895938

Pulled By: cpuhrsch

fbshipit-source-id: a333505d3a216705147c2aaaaeb2a0fd0c2a5e43
(cherry picked from commit a88265921c)
2022-02-02 23:59:24 +00:00
Leo Fang
67941c8a94 Document torch.cuda.ExternalStream, torch.cuda.caching_allocator_alloc and torch.cuda.caching_allocator_delete (#70126)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/67414. Fixes https://github.com/pytorch/pytorch/issues/70117.

cc brianjo mruberry ngimel

Pull Request resolved: https://github.com/pytorch/pytorch/pull/70126

Reviewed By: mruberry

Differential Revision: D33542910

Pulled By: ngimel

fbshipit-source-id: 4b870f4dceca6ee4cc8fba58819f1cb18ac9f857
2022-01-12 15:44:40 -08:00
Jerry Zhang
84aa1ddedd [quant] Remove warning for quantized Tensor in __dir__ (#69265)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/69265

This is used in tab completion, we should not put warning here

Test Plan:
ci

Imported from OSS

Reviewed By: albanD

Differential Revision: D32778736

fbshipit-source-id: f1bec5e09a8238ab41329ac2b64e6f3267799f6a
2021-12-02 10:30:36 -08:00
Rok
952ca25daa Sparse CSR: add convert_indices_from_csr_to_coo (#66774)
Summary:
This PR adds conversion from CSR to COO.

Fixes https://github.com/pytorch/pytorch/issues/56959

cc nikitaved pearu cpuhrsch IvanYashchuk gchanan mruberry

Pull Request resolved: https://github.com/pytorch/pytorch/pull/66774

Reviewed By: zou3519

Differential Revision: D32288415

Pulled By: cpuhrsch

fbshipit-source-id: 683ba658dc46835fdf3c0e24645c0c2bb243b968
2021-11-17 22:28:30 -08:00
Kurt Mohler
5883523c1d Remove dtype from torch.Storage and use only torch.ByteStorage (#62030)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62030

Remove dtype tracking from Python Storage interface, remove all the different `<type>Storage` classes except for `ByteStorage`, and update serialization accordingly, while maintaining as much FC/BC as possible

Fixes https://github.com/pytorch/pytorch/issues/47442

* **THE SERIALIZATION FORMAT IS FULLY FC/BC.** We worked very hard to make sure this is the case. We will probably want to break FC at some point to make the serialization structure of tensors make more sense, but not today.
* There is now only a single torch.ByteStorage class. Methods like `Tensor.set_` no longer check that the dtype of storage is appropriate.
* As we no longer know what dtype of a storage is, we've **removed** the size method from Storage, replacing it with nbytes. This is to help catch otherwise silent errors where you confuse number of elements with number of bytes.
* `Storage._new_shared` takes a `nbytes` kwarg and will reject previous positional only calls.  `Storage._new_with_file` and `_set_from_file` require explicit element size arguments.
* It's no longer possible to convert storages to different types using the float/double/etc methods. Instead, do the conversion using a tensor.
* It's no longer possible to allocate a typed storage directly using FloatStorage/DoubleStorage/etc constructors. Instead, construct a tensor and extract its storage. The classes still exist but they are used purely for unpickling.
* The preexisting serialization format stores dtype with storage, and in fact this dtype is used to determine the dtype of the tensor overall.
 To accommodate this case, we introduce a new TypedStorage concept that exists only during unpickling time which is used to temporarily store the dtype so we can construct a tensor. **If you overrode the handling of pickling/unpickling, you MUST add handling for TypedStorage** or your serialization code will degrade to standard file-based serialization.

Original pull request: https://github.com/pytorch/pytorch/pull/59671

Reviewed By: soulitzer, ngimel

Differential Revision: D29466819

Pulled By: ezyang

fbshipit-source-id: 4a14e5d3c2b08e06e558683d97f7378a3180b00e
2021-10-05 13:50:34 -07:00
Alban Desmaison
7c62b6e973 add deepcopy support to subclasses (#65584)
Summary:
Happy to get any feedback on how to make this code cleaner!

This:
- Fix Tensor attribute deepcopy BC-breaking?
- Add a test for Tensor attribute deepcopy
- Fix subclass deepcopy
- Moves the subclass serialization tests into their own class not to interfere with other serialization test logic
- Add a test for subclass deepcopy

cc ezyang gchanan

Pull Request resolved: https://github.com/pytorch/pytorch/pull/65584

Reviewed By: gchanan

Differential Revision: D31206590

Pulled By: albanD

fbshipit-source-id: 74a8f0767f4933b9c941fbea880a8fd1b893ea2f
2021-09-27 14:36:22 -07:00
Sujoy Saraswati
10d0dbc6d9 Avoid storage access for HPU tensors (#65409)
Summary:
Add is_hpu() methods for Aten tensor and device

Pull Request resolved: https://github.com/pytorch/pytorch/pull/65409

Reviewed By: wconstab, H-Huang

Differential Revision: D31134422

Pulled By: malfet

fbshipit-source-id: 181ebb67dce8e05a0723ef3c82f23e39228841ee
2021-09-27 11:54:30 -07:00
Emilio Castillo
1cb3507ed3 Adds DLPack support (#57110)
Summary:
Partially Fixes https://github.com/pytorch/pytorch/issues/55090
Depends on https://github.com/pytorch/pytorch/issues/55365

Inspired by https://github.com/dmlc/dlpack/issues/57#issuecomment-774482973

Questions, in PyTorch we can't create streams or easily synchronize them from just an integer. Should we add an [`ExternalStream`](https://docs.cupy.dev/en/stable/reference/generated/cupy.cuda.ExternalStream.html) object like the one we have in CuPy?

TODO: Add tests

Would like some feedback as this design needs quite a few iterations
rgommers leofang

Pull Request resolved: https://github.com/pytorch/pytorch/pull/57110

Reviewed By: saketh-are

Differential Revision: D30761481

Pulled By: mruberry

fbshipit-source-id: e85d78df3c1f8defc2a698878da89cd843cb1209
2021-09-12 19:47:15 -07:00
Saketh Are
83e28a7d28 Use stacklevel for floordiv deprecation warnings (#64034)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/60548

`Tensor.__floordiv__` was indirectly deprecated by deprecation of `torch.floor_divide` (see https://github.com/pytorch/pytorch/issues/43874). Deprecating it directly provides clearer feedback.

Repro:
```
import torch
x = torch.tensor(0)
x // 1
```

Before this change, a deprecation warning was triggered within the C++ implementation of floor_divide:
```
UserWarning: floor_divide is deprecated, and will be removed in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values.
To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). (Triggered internally at  ../aten/src/ATen/native/BinaryOps.cpp:571.)
  return torch.floor_divide(self, other)
```

After this change, the warning instead cites the user's offending line of Python code:
```
UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values.
To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').
  x // 1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/64034

Reviewed By: mruberry

Differential Revision: D30658010

Pulled By: saketh-are

fbshipit-source-id: b0e6c5008d741897509d102f4a89efb47de4aa2a
2021-08-31 11:27:56 -07:00
Aaron Bockover
c78ab28441 Add support for the ONNX Runtime Eager Mode backend (#58248)
Summary:
This PR implements the necessary hooks/stubs/enums/etc for complete ONNX Runtime (ORT) Eager Mode integration. The actual extension will live out of tree at https://github.com/pytorch/ort.

We have been [working on this at Microsoft](https://github.com/microsoft/onnxruntime-pytorch/tree/eager-ort/torch_onnxruntime) for the last few months, and are finally ready to contribute the PyTorch core changes upstream (nothing major or exciting, just the usual boilerplate for adding new backends).

The ORT backend will allow us to ferry [almost] all torch ops into granular ONNX kernels that ORT will eagerly execute against any devices it supports (therefore, we only need a single ORT backend from a PyTorch perspective).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/58248

Reviewed By: astaff

Differential Revision: D30344992

Pulled By: albanD

fbshipit-source-id: 69082b32121246340d686e16653626114b7714b2
2021-08-20 11:17:13 -07:00
Nikita Vedeneev
dbcfd7739f Make torch.lu differentiable for wide/tall inputs + jit (#61564)
Summary:
As per title.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/61564

Reviewed By: astaff

Differential Revision: D30338136

Pulled By: mruberry

fbshipit-source-id: f01436fc90980544cdfa270feee16bb3dda21b93
2021-08-16 11:40:57 -07:00
Shen Li
1022443168 Revert D30279364: [codemod][lint][fbcode/c*] Enable BLACK by default
Test Plan: revert-hammer

Differential Revision:
D30279364 (b004307252)

Original commit changeset: c1ed77dfe43a

fbshipit-source-id: eab50857675c51e0088391af06ec0ecb14e2347e
2021-08-12 11:45:01 -07:00
Zsolt Dollenstein
b004307252 [codemod][lint][fbcode/c*] Enable BLACK by default
Test Plan: manual inspection & sandcastle

Reviewed By: zertosh

Differential Revision: D30279364

fbshipit-source-id: c1ed77dfe43a3bde358f92737cd5535ae5d13c9a
2021-08-12 10:58:35 -07:00
rusty1s
82123758ba _convert_coo_to_csr CPP and CUDA functionality (#61838)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/57381 and improves https://github.com/pytorch/pytorch/pull/61340 via dedicated `coo_to_csr` functionalities.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/61838

Reviewed By: ezyang

Differential Revision: D30132736

Pulled By: cpuhrsch

fbshipit-source-id: a1fd074c0d70366a524d219a620b94f8bed71d7c
2021-08-11 11:37:20 -07:00
Alban Desmaison
e6a227465b Add serialization support for slots and subclass getstate/setstate (#62745)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/62745

Test Plan: Imported from OSS

Reviewed By: ezyang

Differential Revision: D30113112

Pulled By: albanD

fbshipit-source-id: 6c562d0c060fb0280e5e3d432bb42fb833e6d500
2021-08-05 06:49:44 -07:00
Alban Desmaison
056b147e10 clean torch_function handling in serialization (#62744)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62744

The `Tensor._reduce_ex_internal` function can only be called via the `Tensor.__reduce_ex__` function.
And that second function already properly handles the `__torch_function__` overwrites. So no need to handle them again in `Tensor._reduce_ex_internal`.

This PR also updates `Tensor.__reduce_ex__` to use the specialized unary API for `__torch_function__` that makes it nicer to read.

Test Plan: Imported from OSS

Reviewed By: H-Huang

Differential Revision: D30113113

Pulled By: albanD

fbshipit-source-id: c94f5d2597ee3afe799d9de991f75615c3c172d6
2021-08-05 06:48:26 -07:00
Edward Yang
cf1f59452b Hacky support for meta tensor serialization. (#62192)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62192

This support is hacky because it doesn't preserve meta tensor storage
sharing (e.g., if you serialize a model with shared storage, e.g., a
tensor and a view on a tensor, when I deserialize the viewing
relationship will be broken and these are just different tensors.) The
hack is also durable, in the sense that we will be on the hook for
supporting `_rebuild_meta_tensor_no_storage` in perpetuity in the
future, even if we change our mind about the serialization format.

This unblocks an FB production use case. I didn't add C++ support to minimize
blast area of this patch.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: zou3519

Differential Revision: D29910535

Pulled By: ezyang

fbshipit-source-id: d98dcdd0108dfc3ae730a071d3c583b6d0281d21
2021-07-26 14:33:45 -07:00
rusty1s
457a0b63bf use torch.bucketize into_sparse_csr implementation (+ additional tests) (#61340)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/57381

Pull Request resolved: https://github.com/pytorch/pytorch/pull/61340

Reviewed By: bhosmer

Differential Revision: D29601393

Pulled By: cpuhrsch

fbshipit-source-id: 4ca1f013d96e8716f0e658e0cd685d9aa0d98a5c
2021-07-20 15:44:25 -07:00
Anjali Chourdia
30e48bbeae Add neg bit (#56058)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56058

User facing changes:
1. Adds a negative bit and corresponding new API (`is_neg()`,`resolve_neg()`)
2. `tensor.conj().imag` now returns a floating point tensor with neg bit set to 1 instead of a tensor with no notion of negative bit. Note that imag is still a view and all the view properties still hold for imag.

Non user facing changes:
1. Added a new Negative dispatch key and a backend fallback to handle it
2. Updated copy kernel to handle negative bit
3. Merged conjugate and negative bit fallback kernel
4. fixed https://github.com/pytorch/pytorch/issues/60478 (caused due to https://github.com/pytorch/pytorch/pull/54987)

Testing:
1. Added a new OpInfo based test `test_neg_view` (verifies that out-of-place and in-place operations work correctly for all operations when the input is a neg view tensor by checking the result against an actually negated tensor, verifies that autograd returns the same output for both neg view and actually negated tensors as well as it works fine when grad_out is a neg view).
2. Added a new test class containing `test_conj_view`, `test_neg_view`.

Test Plan: Imported from OSS

Reviewed By: soulitzer

Differential Revision: D29636403

fbshipit-source-id: 12214c9dc4806c51850f4a72a109db9527c0ca63
2021-07-13 13:50:42 -07:00
Xiong Wei
7e3a694b23 supports non-leaf inputs for autograd.backward() function (#60521)
Summary:
Close https://github.com/pytorch/pytorch/issues/60268

Pull Request resolved: https://github.com/pytorch/pytorch/pull/60521

Reviewed By: ngimel

Differential Revision: D29393586

Pulled By: albanD

fbshipit-source-id: 2dd2de427ecfecca8d544237bacf690e0b7c918c
2021-06-25 18:57:26 -07:00
Edward Yang
aacc722aec Dispatch to Python via __torch_dispatch__ (#59760)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59760

See https://github.com/pytorch/pytorch/issues/59049

There are some moving parts to this PR, I'll structure this explanation so the straightforward parts go first, and then the less straightforward parts.

**The actual dispatch to Python.** The core logic of dispatch to Python lives in `concrete_dispatch_fn` in `torch/csrc/autograd/python_variable.cpp`. It takes the input IValue stack, scans all the arguments for Tensor arguments, and defers most of the heavy lifting to `handle_torch_function_no_python_arg_parser` which actually does all of the logic for calling out to torch dispatch (in particular, this function handles multiple dispatch situations for you). Because we have a different function name than regular `__torch_function__` handling, `handle_torch_function_no_python_arg_parser` is generalized to accept a magic method name to look for when testing if Tensors have custom handling or not. Unlike `__torch_function__`, by default there is no `__torch_dispatch__` on Tensor classes.

**Maintaining the Python dispatch key.** In order to get to the dispatch to Python logic, we must tag Tensors with the `__torch_dispatch__` magic method with the newly added Python dispatch key (separated from PythonFuncTorch to allow for a transitional period while they migrate to this mechanism). We expose a new private property `_is_python_dispatch` that assists in debugging if a Tensor is participating in Python dispatch or not. We apply the Python dispatch key the first time a PyObject for a Tensor is constructed (THPVariable_NewWithVar), testing if `__torch_dispatch__` exists with  then newly added `check_has_torch_dispatch`.

**Shallow copy and detach.** For the simple examples tested in this PR, most creations of Tensor route through the dispatcher. The exception to this is `shallow_copy_and_detach`, which bypasses the dispatcher and is used when saving tensors for backwards. When a Tensor is Python dispatch, we override the behavior of `shallow_copy_and_detach` to instead directly call into `__torch_dispatch__` to perform a `detach` operation (in the same way it would be invoked if you called `detach` directly). Because this Python call is triggered directly from c10::TensorImpl, it must be indirected through `PyInterpreter::detach`, which is the general mechanism for dynamic dispatching to the Python interpreter associated with a TensorImpl.

**torchdeploy compatibility.** The dispatch to Python logic cannot be directly registered to the dispatcher as it is compiled in the Python library, which will get loaded multiple times per torchdeploy interpreter. Thus, we must employ a two phase process. First, we register a fallback inside a non-Python library (aten/src/ATen/core/PythonFallbackKernel.cpp). Its job is to determine the appropriate PyInterpreter to handle the Python dispatch by going through all of the arguments and finding the first argument that has a PyObject/PyInterpreter. With this PyInterpreter, it makes another dynamic dispatch via "dispatch" which will go to the correct torchdeploy interpreter to handle dispatching to actual Python.

**Testing.** We provide a simple example of a LoggingTensor for testing, which can be used to generate TorchScript-like traces to observe what operations are being called when a Tensor is invoked. Although a LoggingTensor would be better implemented via an is-a relationship rather than a has-a relationship (as is done in the test), we've done it this way to show that arbitrarily complex compositions of tensors inside a tensor work properly.

**Known limitations.**

* We haven't adjusted any operator code, so some patterns may not work (as they lose the Python subclass in an unrecoverable way)
* `__torch_function__` must be explicitly disabled with `_disabled_torch_function_impl` otherwise things don't work quite correctly (in particular, what is being disabled is default subclass preservation behavior.)
* We don't ever populate kwargs, even when an argument is kwarg-only

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Differential Revision:
D29017912
D29017912

Test Plan: Imported from OSS

Reviewed By: bdhirsh

Pulled By: ezyang

fbshipit-source-id: a67714d9e541d09203a8cfc85345b8967db86238
2021-06-25 11:50:32 -07:00
Akifumi Imanishi
26cdec6ce4 Support torch.bitwise_{left/right}_shift and __rlshift__, __rrshift__ (#59544)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/58121

This PR implements `torch.bitwise_left_shift` and `torch.bitwise_right_shift` and `torch.Tensor.{__rlshift__/__rrshift__}`for compatibility with Python array API standard.
(cc: mruberry, rgommers, emcastillo, kmaehashi)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/59544

Reviewed By: ngimel

Differential Revision: D29348869

Pulled By: mruberry

fbshipit-source-id: 329aee296cf890735e8a9f858bccfe87c03d06ca
2021-06-23 23:57:16 -07:00
Edward Yang
82c52fd417 Do not wrap Tensor.{grad,_base} by default (#60464)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/60464

Fixes https://github.com/szagoruyko/pytorchviz/issues/65

An alternate implementation of this PR would be to remove the
__torch_function__ interposition points for these accessors entirely.
In the end, I decided to opt for extra expressivity.  See
torch.overrides for the criterion on how I decided which accessors
should get the nowrap treatment.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: albanD

Differential Revision: D29302835

Pulled By: ezyang

fbshipit-source-id: fbe0ac4530a6cc9d6759a3fdf5514d4d7b1f7690
2021-06-22 12:49:23 -07:00
Jeffrey Wan
f52e202840 Add warning when accessing Tensor::grad() in the C++ API (#59362)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/35379

 - Adds  `retains_grad` attribute backed by cpp as a native function. The python bindings for the function are skipped to be consistent with `is_leaf`.
   - Tried writing it without native function, but the jit test `test_tensor_properties` seems to require that it be a native function (or alternatively maybe it could also work if we manually add a prim implementation?).
 - Python API now uses `retain_grad` implementation from cpp

Pull Request resolved: https://github.com/pytorch/pytorch/pull/59362

Reviewed By: jbschlosser

Differential Revision: D28969298

Pulled By: soulitzer

fbshipit-source-id: 335f2be50b9fb870cd35dc72f7dadd6c8666cc02
2021-06-08 19:43:21 -07:00
Akifumi Imanishi
0a5bfa9919 Support __rmod__ (#58476)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/58035.

This PR implements `torch.Tensor.__rmod__` and `torch.remainder(scalar, tensor)` for the compatibility with NumPy’s interface.
(cc: mruberry, rgommers, emcastillo, kmaehashi)

TODO:
  - [x] Update `tensor_binary_op` in test/test_binary_ufuncs.py after https://github.com/pytorch/pytorch/issues/58216 is merged.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/58476

Reviewed By: ngimel

Differential Revision: D28776810

Pulled By: mruberry

fbshipit-source-id: 74f8aea80f439ef2cc370333524e39971eeb7bf4
2021-06-05 16:19:24 -07:00
anjali411
3607478ecd Conjugate View (#54987)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54987

Based off of ezyang (https://github.com/pytorch/pytorch/pull/44799) and bdhirsh (https://github.com/pytorch/pytorch/pull/43702) 's prototype:

Here's a summary of the changes in this PR:
This PR adds a new dispatch key called Conjugate. This enables us to make conjugate operation a view and leverage the specialized library functions that fast path with the hermitian operation (conj + transpose).

1. Conjugate operation will now return a view with conj bit (1) for complex tensors and returns self for non-complex tensors as before. This also means `torch.view_as_real` will no longer be a view on conjugated complex tensors and is hence disabled. To fill the gap, we have added `torch.view_as_real_physical` which would return the real tensor agnostic of the conjugate bit on the input complex tensor. The information about conjugation on the old tensor can be obtained by calling `.is_conj()` on the new tensor.
2. NEW API:
    a) `.conj()` -- now returning a view.
    b) `.conj_physical()` -- does the physical conjugate operation. If the conj bit for input was set, you'd get `self.clone()`, else you'll get a new tensor with conjugated value in its memory.
    c) `.conj_physical_()`, and `out=` variant
    d) `.resolve_conj()`  -- materializes the conjugation. returns self if the conj bit is unset, else returns a new tensor with conjugated values and conj bit set to 0.
    e) `.resolve_conj_()` in-place version of (d)
    f) `view_as_real_physical` -- as described in (1), it's functionally same as `view_as_real`, just that it doesn't error out on conjugated tensors.
    g) `view_as_real` -- existing function, but now errors out on conjugated tensors.
3. Conjugate Fallback
    a) Vast majority of PyTorch functions would currently use this fallback when they are called on a conjugated tensor.
    b) This fallback is well equipped to handle the following cases:
        - functional operation e.g., `torch.sin(input)`
        - Mutable inputs and in-place operations e.g., `tensor.add_(2)`
        - out-of-place operation e.g., `torch.sin(input, out=out)`
        - Tensorlist input args
        - NOTE: Meta tensors don't work with conjugate fallback.
4. Autograd
    a) `resolve_conj()` is an identity function w.r.t. autograd
    b) Everything else works as expected.
5. Testing:
    a) All method_tests run with conjugate view tensors.
    b) OpInfo tests that run with conjugate views
        - test_variant_consistency_eager/jit
        - gradcheck, gradgradcheck
        - test_conj_views (that only run for `torch.cfloat` dtype)

NOTE: functions like `empty_like`, `zero_like`, `randn_like`, `clone` don't propagate the conjugate bit.

Follow up work:
1. conjugate view RFC
2. Add neg bit to re-enable view operation on conjugated tensors
3. Update linalg functions to call into specialized functions that fast path with the hermitian operation.

Test Plan: Imported from OSS

Reviewed By: VitalyFedyunin

Differential Revision: D28227315

Pulled By: anjali411

fbshipit-source-id: acab9402b9d6a970c6d512809b627a290c8def5f
2021-06-04 14:12:41 -07:00
Alexander
b435a27fb7 CUDA support in the CSR layout: constructors (#59010)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/59010

Test Plan: Imported from OSS

Reviewed By: zou3519

Differential Revision: D28719287

Pulled By: bhosmer

fbshipit-source-id: fbb5784ccb5ce19dcca1f2f95c4ee16f9b7680c4
2021-05-26 16:39:43 -07:00
Alban Desmaison
032d6b0643 Revert D28112689: CUDA support in the CSR layout: constructors
Test Plan: revert-hammer

Differential Revision:
D28112689 (1416e57465)

Original commit changeset: f825cd4bce40

fbshipit-source-id: 421fc590797ac5fab6a55ac6f213361fbba7cd5b
2021-05-26 06:15:05 -07:00
Alexander
1416e57465 CUDA support in the CSR layout: constructors (#57274)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/57274

Test Plan: Imported from OSS

Reviewed By: astaff

Differential Revision: D28112689

Pulled By: bhosmer

fbshipit-source-id: f825cd4bce402dd4c3f71db88854f77830b687b8
2021-05-26 01:36:20 -07:00
Akifumi Imanishi
3113a1de4a Fix some tensor operators to return NotImplemented for invalid inputs (#58216)
Summary:
Same as https://github.com/pytorch/pytorch/issues/57934. (cc/ albanD)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/58216

Reviewed By: ailzhang

Differential Revision: D28494886

Pulled By: albanD

fbshipit-source-id: 380205867ee1cde90e1c6fcfe2a31749e1243530
2021-05-19 13:09:57 -07:00
BowenBao
6d7fe76317 [ONNX] Warning when using __len__ to calculate tensor shape (#55151) (#57595)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57595

Difference in traced graph and outputs, when using len(tensor) as compared to tensor.shape[0]

An example model is (with tensor.shape):
```
# Test len fix with variable inputs
import torch
import onnxruntime

class Model(torch.nn.Module):
    def forward(self, x):
        return x.size(1) + x.shape[0]

# Call export
dummy_x = torch.randn(3, 5)
model = Model()

import io
onnx_io = io.BytesIO()
torch.onnx.export(model, (dummy_x,), onnx_io,
                  input_names=['input'],
                  dynamic_axes={'input': {0:'h'}},
                  verbose=True)

# Call onnxruntime runtime and compare outputs on dynamic inputs
ort_session = onnxruntime.InferenceSession(onnx_io.getvalue())

x = torch.randn(2, 5)
print(model(x))
print(ort_session.run(None, {ort_session.get_inputs()[0].name: x.numpy()}))
```
The output graph is as follows:
```
graph(%input : Float(*, 5, strides=[5, 1], requires_grad=0, device=cpu)):
  %1 : Long(2, strides=[1], device=cpu) = onnx::Shape(%input)
  %2 : Long(device=cpu) = onnx::Constant[value={1}]()
  %3 : Long(device=cpu) = onnx::Gather[axis=0](%1, %2) # test/onnx/test_m.py:9:0
  %4 : Long(2, strides=[1], device=cpu) = onnx::Shape(%input)
  %5 : Long(device=cpu) = onnx::Constant[value={0}]()
  %6 : Long(device=cpu) = onnx::Gather[axis=0](%4, %5) # test/onnx/test_m.py:9:0
  %7 : Long(requires_grad=0, device=cpu) = onnx::Add(%3, %6) # test/onnx/test_m.py:9:0
  return (%7)
```
Torch output: 7
ORT output: 7

Now replacing tensor.shape[0] with len(tensor), the graph looks like:
```
graph(%input : Float(*, 5, strides=[5, 1], requires_grad=0, device=cpu)):
  %1 : Long(2, strides=[1], device=cpu) = onnx::Shape(%input)
  %2 : Long(device=cpu) = onnx::Constant[value={1}]()
  %3 : Long(device=cpu) = onnx::Gather[axis=0](%1, %2) # test/onnx/test_m.py:9:0
  %4 : Long(requires_grad=0, device=cpu) = onnx::Constant[value={3}]()
  %5 : Long(requires_grad=0, device=cpu) = onnx::Add(%3, %4)
  return (%5)
```
Torch output: 7
ORT output: 8

In the case with __len__, %4 is traced as a constant

**Workaround to avoid the mismatch when using len to get tensor.shape**

Add the following pattern around _export call
```
    import builtins
    len_backup = builtins.len
    builtins.len = lambda x : x.__len__()

    # Call export
    _export(model, args, .....

    builtins.len = len_backup

```

Test Plan: Imported from OSS

Reviewed By: malfet

Differential Revision: D28393526

Pulled By: SplitInfinity

fbshipit-source-id: a7d50740442c7e913119f9f92deab48aa8c02843

Co-authored-by: shubhambhokare1 <shubhambhokare1@gmail.com>
2021-05-13 13:42:41 -07:00
Alban Desmaison
5e83c62a9e Revert D28351931: [pytorch][PR] Fix some tensor operators to return NotImplemented for invalid inputs
Test Plan: revert-hammer

Differential Revision:
D28351931 (35521a2629)

Original commit changeset: 985457a44dba

fbshipit-source-id: 10724c219e53648f10a70719e25bcf774c6c7852
2021-05-12 13:58:03 -07:00
Akifumi Imanishi
35521a2629 Fix some tensor operators to return NotImplemented for invalid inputs (#57934)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/57719.

This PR fixes `torch.Tensor{__rsub__, __rdiv__, __rtruediv__, __pow__, __rmatmul__}` to return `NotImplemented` instead of raising a `TypeError`.

cc/ mruberry: The first commit of this PR is the same as 1d209db1cc excepts the commit message.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/57934

Reviewed By: mruberry

Differential Revision: D28351931

Pulled By: albanD

fbshipit-source-id: 985457a44dba24d2496794dfb8c1661cbcd4ff8f
2021-05-12 11:03:23 -07:00
albanD
4fad8d1a2c Update the default detach semantic for forward mode AD (#57820)
Summary:
This makes detach both forward and backward non-differentiable by default.
You can pass the `only_backward_mode=True` argument to make it forward differentiable but backward non-differentiable.

The important side effect of this change is that, by default, detach is not tracking any view information.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/57820

Reviewed By: ezyang

Differential Revision: D28287633

Pulled By: albanD

fbshipit-source-id: bdc4726fcd05889f6ac84e5a3a3ef71b2ec41015
2021-05-07 15:51:18 -07:00
Akifumi Imanishi
9da0f2e95e Support __pos__ and positive (#55891)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/55604.

This PR implements `torch.Tensor.__pos__` and `torch.positive` for the compatibility with NumPy’s interface. (cc: mruberry, rgommers, emcastillo and kmaehashi)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/55891

Reviewed By: H-Huang

Differential Revision: D28025928

Pulled By: mruberry

fbshipit-source-id: e43e329a802f31bf8805f6efab5c2c7ef34c88b9
2021-04-27 13:23:59 -07:00
Sameer Deshmukh
5fb1142702 Add CSR (compressed sparse row) layout for sparse tensors (#50937)
Summary:
Implement compressed sparse row format. Derived from the GCS implementation at https://github.com/pytorch/pytorch/pull/44190

Pull Request resolved: https://github.com/pytorch/pytorch/pull/50937

Reviewed By: mrshenli

Differential Revision: D27439865

Pulled By: ezyang

fbshipit-source-id: 3ba3dcb9679505b980ff6a5f513e913bbae2fb1d
2021-04-12 10:09:12 -07:00
Tugsbayasgalan Manlaibaatar
10abbb812a Support tensor subclasses in Torchscript (#54817)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/54817

Test Plan:
python test case

Imported from OSS

Reviewed By: gmagogsfm

Differential Revision: D27407723

fbshipit-source-id: 459b9067f07908026f94620c1cfa3e00e8b50a4e
2021-04-07 12:10:27 -07:00
Hameer Abbasi
c690ed0ae8 Fix override for __iter__ (#54702)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54702

This fixes subclassing for __iter__ so that it returns an iterator over
subclasses properly instead of Tensor.

Test Plan: Imported from OSS

Reviewed By: H-Huang

Differential Revision: D27352563

Pulled By: ezyang

fbshipit-source-id: 4c195a86c8f2931a6276dc07b1e74ee72002107c
2021-03-30 08:30:50 -07:00
Edward Yang
1f36ce6e4d Restore storage on meta tensors; increase meta coverage (#53973)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53973

Two parts to this PR; I had to put them together because adding support for X causes more test code to be exercised, which in turn may require a fix for Y.

The first part is restoring the concept of storage to meta tensors.  Previously, meta tensors had a nullptr storage (e.g., `meta_tensor.storage()` is an error.) As I was increasing the coverage of meta tensors, I started running into test cases (specifically memory overlap tests) that were failing because not having storage meant I couldn't check for memory overlap. After some discussion, we decided that it would make sense for meta tensors to model this as well (we already model strides, so getting accurate view information also seems useful). This PR does that by:

* Rewrite all of the factory functions in MetaTensor.cpp to use the generic versions (which are very carefully written to not actually poke at the data pointer, so everything works out). The key idea here is we give meta tensors a special allocator, MetaAllocator, which always returns a nullptr even if you ask for a nonzero number of bytes. resize_ is also made generic; the normal variant can be used directly rather than having to instruct it to avoid resizing storage
* Turn on memory overlap checking in TensorIterator even for meta tensors
* Although meta tensors now have storage, the concept of meta storage is NOT exposed to Python land (as it would imply I would have to codegen MetaFloatStorage, MetaDoubleStorage, etc. classes). So `x.storage()` still raises an error and I have a cludge in `__deepcopy__` to break storage sharing upon deep copy (this is wrong, but no tests exercise this at the moment).

The second part is adding more support for the most used functions in the test suite.

* Inplace operations have very simple meta functions. I added `fill_`, `zero_`, `random_`, `uniform_` and `normal_`. In the case of random, I take advantage of pbelevich's templates for defining random kernels, so that I can reuse the common scaffolding, and then just register a noop stub that actually does the RNG. (Look, another structured kernels tiny variant!)
* `copy_` is now implemented. Copying into a meta tensor is always OK, but copying out of a meta tensor raises an error (as we don't know what the "correct" data to copy out is in this case)
* `empty_strided` usage from structured kernels now is implemented (TBH, this could have been done as soon as `empty_strided` was added)
* Meta was missing in a few places in TensorOptions/DispatchKey utility functions, so I added them
* Autograd engine now correctly homes meta tensors with CPU tensors (they have -1 device index so CUDA queues wouldn't work anyway)
* `apply_`, `map_` and `map2_` are special cased to no-op on meta tensor self. These count as inplace operations too but they are implemented a little differently.

Getting more meta function support triggers a number of bugs in the test suite, which I then fix:

- Linear algebra functions sometimes don't report NotImplementedError because they get swallowed by catch all try blocks. This is tracked in https://github.com/pytorch/pytorch/issues/53739
- dlpack obviously doesn't work with meta tensors, I just disabled the test

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Differential Revision: D27036572

Test Plan: Imported from OSS

Reviewed By: agolynski, bdhirsh

Pulled By: ezyang

fbshipit-source-id: 7005ecf4feb92a643c37389fdfbd852dbf00ac78
2021-03-29 08:37:46 -07:00
Nikita Vedeneev
dfc7fa03e5 lu_backward: more numerically stable and with complex support. (#53994)
Summary:
As per title.

Numerical stability increased by replacing inverses with solutions to systems of linear triangular equations.

Unblocks computing `torch.det` for FULL-rank inputs of complex dtypes via the LU decomposition once https://github.com/pytorch/pytorch/pull/48125/files is merged:
```
LU, pivots = input.lu()
P, L, U = torch.lu_unpack(LU, pivots)
det_input = P.det() * torch.prod(U.diagonal(0, -1, -2), dim=-1)  # P is not differentiable, so we are fine even if it is complex.
```

Unfortunately, since `lu_backward` is implemented as `autograd.Function`, we cannot support both autograd and scripting at the moment.
The solution would be to move all the lu-related methods to ATen, see https://github.com/pytorch/pytorch/issues/53364.

Resolves https://github.com/pytorch/pytorch/issues/52891
TODOs:
* extend lu_backward for tall/wide matrices of full rank.
* move lu-related functionality to ATen and make it differentiable.
* handle rank-deficient inputs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/53994

Reviewed By: pbelevich

Differential Revision: D27188529

Pulled By: anjali411

fbshipit-source-id: 8e053b240413dbf074904dce01cd564583d1f064
2021-03-25 13:33:58 -07:00
Ilya Persky
d4c877b59b Fix typo "informations" -> "information" (#53746)
Summary:
Hey, fixing the [uncountable](https://www.oxfordlearnersdictionaries.com/definition/american_english/information) noun to the proper form.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/53746

Reviewed By: ngimel

Differential Revision: D27012035

Pulled By: albanD

fbshipit-source-id: dc653e739b5f6abed99b74bd2fd514b795d61b2e
2021-03-12 12:07:38 -08:00
Philip Meier
b0afe945a7 Fix pylint error torch.tensor is not callable (#53424)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53424

Fixes https://github.com/pytorch/pytorch/issues/24807 and supersedes the stale https://github.com/pytorch/pytorch/issues/25093 (Cc Microsheep). If you now run the reproduction

```python
import torch

if __name__ == "__main__":
    t = torch.tensor([1, 2, 3], dtype=torch.float64)
```

with `pylint==2.6.0`, you get the following output

```
test_pylint.py:1:0: C0114: Missing module docstring (missing-module-docstring)
test_pylint.py:4:8: E1101: Module 'torch' has no 'tensor' member; maybe 'Tensor'? (no-
member)
test_pylint.py:4:38: E1101: Module 'torch' has no 'float64' member (no-member)
```

Now `pylint` doesn't recognize `torch.tensor` at all, but it is promoted in the stub. Given that it also doesn't recognize `torch.float64`, I think fixing this is out of scope of this PR.

 ---

## TL;DR

This BC-breaking only for users that rely on unintended behavior. Since `torch/__init__.py` loaded `torch/tensor.py` it was populated in `sys.modules`. `torch/__init__.py` then overwrote `torch.tensor` with the actual function. With this `import torch.tensor as tensor` does not fail, but returns the function rather than the module. Users that rely on this import need to change it to `from torch import tensor`.

Reviewed By: zou3519

Differential Revision: D26223815

Pulled By: bdhirsh

fbshipit-source-id: 125b9ff3d276e84a645cd7521e8d6160b1ca1c21
2021-03-09 11:32:53 -08:00