Commit Graph

93 Commits

Author SHA1 Message Date
Edward Yang
9c43b16df9 Revert D18171156: Merge Tensor and Variable.
Test Plan: revert-hammer

Differential Revision:
D18171156

Original commit changeset: 5b6a045beba3

fbshipit-source-id: f5581d902c2305018ea49f8473592be2a465560b
2019-11-06 10:57:00 -08:00
Edward Yang
25261a4776 Merge Tensor and Variable. (#28620)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28620

All Tensors are Variables now, they just happen to have requires_grad=False. Tensors ALWAYS have `VariableTensorId` in their type set.

When constructing this patch, I had to make decisions about what I would fix in this patch, and what I would leave for follow up PRs. Here is the cleanup that happens in this patch:

- The `is_variable` property is removed from TensorOptions. I removed this immediately because unlike Tensor::is_variable, TensorOptions::is_variable doesn't respect our VariableTensorId thread-local state. This means that there were a bunch of places where TensorOptions::is_variable was false, which is obviously bogus in the world when tensor and variable are merged. Instead of keeping the method as a function that always returns true, I just opted to remove it entirely (it's not public API.) All places we set `is_variable` are deleted.
  - Knock on effect: there is no longer a separate DeprecatedTypeProperties for the variable and non-variable versions of type.
  - Knock on effect: instead of asserting on TensorOptions::is_variable, instead we just test `at::impl::variable_is_excluded()`
- There is now only one copy of the cuDNN RNN dropout cache, not two (I'm not sure why we had two to begin with)

Some cleanup that doesn't happen in this patch:
- Eliminating unnecessary uses of `make_variable`
- Eliminating `Tensor::is_variable`

The most subtle part of this patch is retaining tracing behavior: the fact that everything is a Variable means that more code gets routed to VariableType than before; this can change traces. I identified two places where we didn't appropriately turn off VariableType, mostly factory functions:

- `torch.tensor` must turn off VariableType before invoking `at::empty` to construct the tensor, as it subsequently does direct data access
- `tensor_slow` (invoked when you pass a Python scalar to a tensor argument) must turn off VariableType before calling `scalar_to_tensor` so the scalar gets traced as constant, rather than as a call to `scalar_to_tensor`.

Honestly, these are all giant hacks, and should be replaced with a more specialized guard that just toggles tracing.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: dreiss

Differential Revision: D18171156

Pulled By: ezyang

fbshipit-source-id: 5b6a045beba37492647e350190f495114e86504d
2019-11-04 14:59:57 -08:00
Sameer Deshmukh
c389156fc4 move new_zeros to core from THP (#26511)
Summary:
Fix for issue https://github.com/pytorch/pytorch/issues/25831

ezyang can you please have a look?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26511

Differential Revision: D17763037

Pulled By: ezyang

fbshipit-source-id: 3596c01c4ab421e7785d6055cc813806f840a5c7
2019-10-04 08:23:35 -07:00
Richard Zou
caed485873 Turn on BUILD_NAMEDTENSOR permanently (#26060)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26060

This PR enables BUILD_NAMEDTENSOR by default. This is done via including
a header, `c10/core/EnableNamedTensor`, that sets `BUILD_NAMEDTENSOR`.
In the future, the plan is to get rid of the flag entirely: we can
incrementally delete usages after this PR goes in.

This PR also maintains the namedtensor ci vs regular ci distinction.
`test/test_namedtensor.py` only runs if TEST_NAMEDTENSOR=1 is specified.
TEST_NAMEDTENSOR=1 is set on the namedtensor ci. I'll remove this
distinction later and send out an announcement about it; devs will be
responsible for named tensor failures after that.

The initial reason why we had the BUILD_NAMEDTENSOR flag was so that we
could quickly prototype named tensor features without worrying about
adding overhead to the framework. The overheads can be categorized as
memory overhead and performance overhead.

Memory overhead: named tensors adds 1 additional word per Tensor. This
is because TensorImpl stores a `unique_ptr<NamedTensorMetaInterface>`
field. This is not a lot of overhead.

Performance overhead: At all entry points to name inference, we check
if inputs to an op are named. If inputs are not named, we short-circuit
and don't do name inference. These calls should therefore be as
efficient as error-checking code and not take up a lot of time.

My plan is to benchmark a few functions and then post the results in a
comment to this PR.

Test Plan: - [namedtensor ci]

Differential Revision: D17331635

Pulled By: zou3519

fbshipit-source-id: deed901347448ae2c26066c1fa432e3dc0cadb92
2019-09-17 08:25:00 -07:00
Richard Zou
4231287504 Add names= argument to torch.tensor ctor (#25424)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25424

Test Plan
- new tests [namedtensor ci]

Test Plan: Imported from OSS

Differential Revision: D17120399

Pulled By: zou3519

fbshipit-source-id: 93d7944f2ec4c5a7256f505323b879af706131df
2019-09-10 16:58:01 -07:00
Edward Yang
aa49aa856c Tensor type set (#25308)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25308

Instead of storing a single TensorTypeId in a Tensor, we store a bitset of tensor type IDs in a Tensor, TensorTypeSet. This class comes with some unit tests.  This is in preparation for making Variable a TensorTypeId. In order to help flush out places where this makes a semantic difference, we rename `Tensor::type_id()` to `Tensor::type_set()` and smoke out all of the locations where this was semantically meaningful.

Because the new tensor type set is 64-bits, this increases the size of Tensor by a word.

Listing of semantic changes:
* Many TensorImpl related constructors just propagate TensorTypeId to a parent constructor. These are pretty simple to adjust.
  * Backend extensions are now in the business of explicitly constructing a TensorTypeSet and then passing it in. This is probably OK for now but when Variable drops, these dispatch IDs may get immediately overwritten to have Variable set.
* `sparseTensorSetToDeviceType` and similar functions previously did an equality test with TensorTypeId, to determine what an appropriate device type is. This equality is now replaced with a set inclusion test. This is valid, under the assumption that we don't ever have weird sets like "this tensor is simultaneously a sparse CPU tensor and a sparse CUDA tensor", which will be true in the short term plan of adding Variable to the dispatch ID.
* `impl::dispatchTypeId` was generally introduced for cases where we legitimately need to convert from `TensorTypeSet -> TensorTypeId` in a dispatch related manner. At the moment, the implementation is trivial, but they will soon be adjusted to handle TLS. I've tried to make these call sites as forwards compatible as possible:
  * `checked_tensor_unwrap` and co now use `dispatchTypeId`. When Variable is added to the type set, these will always be called in a context where the Variable type ID is disabled, so we will get the correct underlying tensor type ID.
  * Uses of `Backend` in dispatch are now replaced with `TensorTypeSet`. The general heuristic here for whether or not to accept a `TensorTypeId` or `TensorTypeSet` is that we want to make the generated code as simple as possible. It is easier to retrieve a `TensorTypeSet`, so that's a more appropriate API in these cases.
* In some cases, I could not conveniently switch an implementation to the new semantics, because it was blocked on some other refactor. In this case, I introduced `legacyExtractTypeId`, which gives what would be a BC-compatible `TensorTypeSet` to `TensorTypeId` implementation that will continue to report the same values it would have prior to this change. This is **different** from `dispatchTypeId`, because this function does NOT respect TLS; it always ignores Variable type IDs.
  * c10 dispatcher tests, which are oblivious to Variable dispatch, use this BC function (actually, they use `extractTypeId`, an overload for Tensor.
  * The implementation of `new_*` methods heavily relies on tensor type ID, I chose not to unwind this. PR to refactor this at https://github.com/pytorch/pytorch/pull/25475
  * Slicing also relies on tensor type ID, see `torch/csrc/autograd/python_variable_indexing.cpp` (though in some cases in this file, I was able to replace use of tensor type ID with TensorOptions)
* In some cases, there is an equality test on tensor type ID which would be better done by testing "tensor axes". In those cases, I replaced those equality tests with more equality tests.
  * Example: `torch/csrc/nn/type_checks.h`
  * There is a total punt in `torch/csrc/tensor/python_tensor.cpp` where "instance of" checking is done via dispatch ids. In general, the Variable-ness of a tensor doesn't participate in instanceof testing. It's not entirely clear what to do here.
  * Instead of storing `Backend` in `VariableInfo`, we now just store Layout.

c10 dispatcher test updates were done with:

```
:%s/\([^ ]\+\)\.type_id()/extractTypeId(\1)/g
:%s/\([^( ]\+\)->type_id()/extractTypeId(*\1)/g
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/25308

Differential Revision: D17092791

Test Plan: sandcastle and ossci

Reviewed By: bwasti

Pulled By: ezyang

fbshipit-source-id: 22207d14fe62dd31ee19cc5011af22e3d9aabb5b
2019-09-10 10:30:54 -07:00
Edward Yang
2e1a5cb80e Port new_full to ATen. (#25583)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25583

Following the game plan from https://github.com/pytorch/pytorch/pull/25475

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D17183438

Pulled By: ezyang

fbshipit-source-id: 67bd98206f349ddf5ffdd7be0c16e45418c1b1cd
2019-09-04 14:34:43 -07:00
Edward Yang
3d9c419648 Port new_empty to ATen. (#25475)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25475

I got sucked into this rabbit hole when I was trying to understand
what I should do with TensorTypeId occurrences in
torch/csrc/utils/tensor_new.cpp.  I eventually concluded that all of my problems
were because Tensor.new_empty was hand implemented and not actually a native
function.  So I made it a native function.

There are a bunch of other new_* functions which should get this
treatment, but I'm sending out this PR just to show how it can
be done.

The general recipe:
1. Implement a concept of TensorOptions merging (TensorOptions::merge_in).
   This represents the notion of taking a tensor, but "overriding" some
   of its values with specific overrides.  One subtlety here is how
   devices get merged; see the comments for what our existing behavior is,
   and how I preserve it.
2. Implement new_empty as a native function, using options merging.
3. Add another special case to Python binding generation to treat new_*
   similar to *_like (i.e., handle TensorOptions correctly).  The logic
   here is probably wrong, actually; we should codegen TensorOptions
   correctly no matter what happens, but new_empty follows the same
   pattern as empty_like so I opted not to touch this code too much.
4. Delete the now defunct manual binding code.
5. Delete manual type annotations that are no longer necessary since
   we're going through native.

I didn't handle memory format correctly here.  I don't know if this function
should accept memory format; prior memory format patches didn't add support
for memory format to new_like.  If we had put memory format in TensorOptions
this wouldn't have been a question.
ghstack-source-id: 89294185

Test Plan: sandcastle & ossci

Differential Revision: D17133000

fbshipit-source-id: 00f4e98bd5174f6fd54e8aba2910ea91824771d9
2019-09-04 14:34:39 -07:00
SsnL
6c9410ffd1 Fix infer np scalar dtype mem leak (#24267)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/24200 . I'm a bit worried that the test might be flaky...
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24267

Differential Revision: D17079762

Pulled By: gchanan

fbshipit-source-id: a120688b9583ca4b74bdfb295914298f22540ffd
2019-08-28 07:51:54 -07:00
Roy Li
9c8f9f0ecb Remove many usages of Type (#21941)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21941
ghimport-source-id: f20cca6229daba9eb8652adb3d959266ae081ef1

Test Plan: Imported from OSS

Differential Revision: D15893331

Pulled By: li-roy

fbshipit-source-id: c988b16008ff0e2725a88c6025afd4aabdaca45a
2019-06-30 04:11:28 -07:00
Roy Li
b36a041d6f Move UnsafeTensorFromTH and UnsafeStorageFromTH off Type (#21923)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21923
ghimport-source-id: f015c8521ef9071eaa982cbf73c13aa925035956

Test Plan: Imported from OSS

Differential Revision: D15883390

Pulled By: li-roy

fbshipit-source-id: 6a7a7ffbe6000199d41cdca5efb97371f46dd8fe
2019-06-21 01:05:29 -07:00
Edward Yang
c15254d4ab Expunge some more deprecated uses of AT_CHECK.
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/21194

Differential Revision: D15576898

fbshipit-source-id: f030195f5bffe0027d4081aece57e2852aaf9ecb
2019-06-05 10:25:25 -07:00
Iurii Zdebskyi
03617574d3 Сhange type of a tensor with bools (#19097)
Summary:
**This is **bc-breaking** change**
Change dtype of a tensor which was created from bool data.
Old behavior: torch.tensor([True, False]) -> uint8 tensor
Now: torch.tensor([True, False]) -> bool tensor

Tested via tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19097

Reviewed By: ezyang

Differential Revision: D15632553

Pulled By: izdeby

fbshipit-source-id: b019150844c561a6845710a3c62b12f06b68bbe3
2019-06-05 10:19:27 -07:00
Mads R. B. Kristensen
5d8879cf6d Auto-convert GPU arrays that support the __cuda_array_interface__ protocol (#20584)
Summary:
This PR implements auto-conversion of GPU arrays that support the `__cuda_array_interface__` protocol (fixes #15601).

If an object exposes the `__cuda_array_interface__` attribute, `touch.as_tensor()` and `touch.tensor()` will use the exposed device memory.

#### Zero-copy
When using `touch.as_tensor(...,device=D)` where `D` is the same device as the one used in `__cuda_array_interface__`.

#### Implicit copy
When using `touch.as_tensor(...,device=D)` where `D` is the CPU or another non-CUDA device.

#### Explicit copy
When using `torch.tensor()`.

#### Exception
When using `touch.as_tensor(...,device=D)` where `D` is a CUDA device not used in `__cuda_array_interface__`.

#### Lifetime
`torch.as_tensor(obj)` tensor grabs a reference to `obj` so that the lifetime of `obj` exceeds the tensor
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20584

Differential Revision: D15435610

Pulled By: ezyang

fbshipit-source-id: c423776ba2f2c073b902e0a0ce272d54e9005286
2019-05-21 14:06:46 -07:00
Edward Yang
97e1f07ffc Replace AT_CHECK with TORCH_CHECK [shard 10/10]
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/20436

Reviewed By: jerryzh168

Differential Revision: D15318926

fbshipit-source-id: 71a43070cc50cc174f703ebc595f1d87c6fc1e91
2019-05-15 07:35:37 -07:00
Roy Li
689dd800ed Generate only one Type class per backend (#19295)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19295
ghimport-source-id: 9345110f91f044a449804ddd5116cc9179444a00

Differential Revision: D14948581

Pulled By: li-roy

fbshipit-source-id: a317b03d58d621e8df162918038f7543bfb13ba2
2019-04-21 21:16:14 -07:00
Roy Li
ab78449e8c Add ScalarType argument to Type::options() (#19270)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19270
ghimport-source-id: a5ade6131f3260066c5750ea1fa9ed5c998bb791

Differential Revision: D14938707

Pulled By: li-roy

fbshipit-source-id: 018fb3f01706531a06515d6d861e5683a455a705
2019-04-21 21:16:07 -07:00
Vitaly Fedyunin
1c5073fb4b Adding pin_memory kwarg to zeros, ones, empty, ... tensor constructors (#18952)
Summary:
Make it possible to construct a pinned memory tensor without creating a storage first and without calling pin_memory() function. It is also faster, as copy operation is unnecessary.

Supported functions:
```python
torch.rand_like(t, pin_memory=True)
torch.randn_like(t, pin_memory=True)
torch.empty_like(t, pin_memory=True)
torch.full_like(t, 4, pin_memory=True)
torch.zeros_like(t, pin_memory=True)
torch.ones_like(t, pin_memory=True)
torch.tensor([10,11], pin_memory=True)
torch.randn(3, 5, pin_memory=True)
torch.rand(3, pin_memory=True)
torch.zeros(3, pin_memory=True)
torch.randperm(3, pin_memory=True)
torch.empty(6, pin_memory=True)
torch.ones(6, pin_memory=True)
torch.eye(6, pin_memory=True)
torch.arange(3, 5, pin_memory=True)
```

Part of the bigger: `Remove Storage` plan.

Now compatible with both torch scripts:
 `  _1 = torch.zeros([10], dtype=6, layout=0, device=torch.device("cpu"), pin_memory=False)`
and
`  _1 = torch.zeros([10], dtype=6, layout=0, device=torch.device("cpu"))`

Same checked for all similar functions `rand_like`, `empty_like` and others

It is fixed version of #18455
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18952

Differential Revision: D14801792

Pulled By: VitalyFedyunin

fbshipit-source-id: 8dbc61078ff7a637d0ecdb95d4e98f704d5450ba
2019-04-16 11:06:15 -07:00
Vitaly Fedyunin
b7c830b916 Revert "Adding pin_memory kwarg to zeros, ones, empty,... (#18854)
Summary:
This reverts commit c484cf43a0.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18854

Differential Revision: D14778393

Pulled By: VitalyFedyunin

fbshipit-source-id: 4b5a1f5b1c091bbc4a8e75614734cc011d26b452
2019-04-05 06:25:33 -07:00
Roy Li
d70c6f23f4 Pass ScalarType separately from Type in python constructors
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17786

Reviewed By: ezyang

Differential Revision: D14379075

fbshipit-source-id: 3abf066563b789a30cafe5b0c868a41326f5b833
2019-04-04 02:24:20 -07:00
Roy Li
c705d9eb1e Introduce DeprecatedTypeProperties class (#17991)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17991

changes:
-Breaks bc: Tensor::type() now returns DeprecatedTypeProperties& rather than Type&.
-Added DeprecatedTypeProperties, it serves as a temporary replacement for Type as the return value of Tensor::type(). This contributes to making Type just for dispatch purposes so that we can make it dtype agnostic.
-Tensor::dispatch_type() now returns Type& like Tensor::type() used to do.
-Changed callsites of Tensor::type() appropriately.

Reviewed By: ezyang

Differential Revision: D14443117

fbshipit-source-id: 239ccb7a09626279a71d1a37f8f82e7f57bf7d9e
2019-04-04 02:24:13 -07:00
Vitaly Fedyunin
c484cf43a0 Adding pin_memory kwarg to zeros, ones, empty, ... tensor constructors. (#18455)
Summary:
Make it possible to construct a pinned memory tensor without creating a storage first and without calling pin_memory() function. It is also faster, as copy operation is unnecessary.

Supported functions:
```python
torch.rand_like(t, pin_memory=True)
torch.randn_like(t, pin_memory=True)
torch.empty_like(t, pin_memory=True)
torch.full_like(t, 4, pin_memory=True)
torch.zeros_like(t, pin_memory=True)
torch.ones_like(t, pin_memory=True)
torch.tensor([10,11], pin_memory=True)
torch.randn(3, 5, pin_memory=True)
torch.rand(3, pin_memory=True)
torch.zeros(3, pin_memory=True)
torch.randperm(3, pin_memory=True)
torch.empty(6, pin_memory=True)
torch.ones(6, pin_memory=True)
torch.eye(6, pin_memory=True)
torch.arange(3, 5, pin_memory=True)
```

Part of the bigger: `Remove Storage` plan.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18455

Reviewed By: ezyang

Differential Revision: D14672084

Pulled By: VitalyFedyunin

fbshipit-source-id: 9d0997ec00f59500ee018f8b851934d334012124
2019-04-02 08:48:19 -07:00
Roy Li
80a7eac79e Remove Type::elementSizeInBytes
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17785

Reviewed By: ezyang

Differential Revision: D14379074

fbshipit-source-id: 60727f187d61eb571b144bd6eed4dd4908da0b51
2019-03-15 12:56:02 -07:00
Roy Li
7aae51cded Replace tensor.type().scalarType() calls with tensor.scalar_type()
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17515

Reviewed By: ezyang

Differential Revision: D14233250

fbshipit-source-id: 6c7af8d2291c0c2b148001b30cf03834f34366c0
2019-03-08 14:08:18 -08:00
Edward Yang
4404762d7d Rename IntList to IntArrayRef. (#16751)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16751

This was made more complicated by the fact that ivalue::IntList
is a thing.  So I had to fix all of the sites where we referring
to IValue post facto.

The following codemods were run, in this order:

```
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in IntList IntArrayRef
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in IntArrayRef::create IntList::create
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in ivalue::IntArrayRef ivalue::IntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in Tag::IntArrayRef Tag::IntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in isIntArrayRef isIntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in toIntArrayRef toIntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in 'Shared<IntArrayRef>' 'Shared<IntList>'
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in 'intrusive_ptr<IntArrayRef>' 'intrusive_ptr<IntList>'
```

Some manual fixups were done afterwards; they can be reviewed separately
at https://github.com/pytorch/pytorch/pull/16752

Reviewed By: dzhulgakov

Differential Revision: D13954363

fbshipit-source-id: b5c40aacba042402155a2f5a229fa6db7992ac64
2019-02-05 14:54:34 -08:00
rory
d6cbcb43c5 allow numpy-like boolean-list indexing in pytorch (#14932)
Summary:
Suggested fix to issue #6773, the fix allows numpy-like boolean-list indexing in pytorch
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14932

Differential Revision: D13398795

Pulled By: ezyang

fbshipit-source-id: 67f8daf9829db2550ff76d2bde673be6dd2708cd
2018-12-20 15:33:06 -08:00
Peter Goldsborough
7a61306031 Enable all clang-tidy performance checks (#15198)
Summary:
This PR adds the final set of clang-tidy checks we should add for our codebase: a last set of performance-related checks. Most fixes here are around changing `auto` to `const auto&` in a few places where unnecessary copies were made, and adding `reserve()` calls before loops doing repeated `push_back()`. Also a few cases of calling `std::string::find` with a single-character string literal instead of a single char, which uses a less efficient string search algorithm meant for searching larger substrings.

![image](https://user-images.githubusercontent.com/6429851/49978940-adc1a780-ff01-11e8-99da-a4e431361f07.png)

ezyang apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15198

Differential Revision: D13468797

Pulled By: goldsborough

fbshipit-source-id: 2bed1ea1c7c162b7f3e0e1026f17125e88c4d5b2
2018-12-14 13:32:47 -08:00
Peter Goldsborough
1e9c384afb Enable performance-unnecessary-value-param in .clang-tidy (#15026)
Summary:
This PR fixes around 250 places in the codebase where we were making unnecessary copies of objects (some large, some small).

ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15026

Differential Revision: D13458784

Pulled By: goldsborough

fbshipit-source-id: be5148b2ce09493588d70952e6f6d6ff5ec5199b
2018-12-13 16:15:35 -08:00
Edward Yang
517c7c9861 Canonicalize all includes in PyTorch. (#14849)
Summary:
Anywhere we used #include "foo.h", we now say #include <foo.h>
Paths are adjusted to be rooted out of aten/src, torch/lib, or
the root level directory.

I modified CMakeLists.txt by hand to remove TH and THC from
the include paths.

I used the following script to do the canonicalization:

```
  import subprocess
  import re
  import os.path

  files = subprocess.check_output(['git', 'ls-files']).decode('utf-8').rstrip().split('\n')
  for fn in files:
      if not any(fn.endswith(suff) for suff in ['.cu', '.cpp', '.in', '.h', '.hpp', '.cu', '.cuh', '.cc']):
          continue
      if not any(fn.startswith(pref) for pref in ["aten/", "torch/"]):
          continue
      with open(fn, 'r') as f:
          c = f.read()
      def fmt(p):
          return "#include <{}>".format(p)
      def repl(m):
          p = m.group(1)
          if p in ["dlfcn.h", "unistd.h", "nvrtc.h", "cuda.h", "cuda_runtime.h", "cstdint", "cudnn.h", "Python.h", "cusparse.h", "cuda_runtime_api.h", "cuda_fp16.h", "cublas_v2.h", "stdint.h", "curand_kernel.h"]:
              return fmt(p)
          if any(p.startswith(pref) for pref in ["torch/csrc", "c10/", "ATen/", "caffe2/", "TH/", "THC/", "Eigen/", "gtest/", "zdl/", "gloo/", "onnx/", "miopen/"]):
              return fmt(p)
          for root in ["aten/src", "torch/lib", ""]:
              for bad_root in [os.path.dirname(fn), "aten/src/TH", "aten/src/THC", "torch/csrc"]:
                  new_p = os.path.relpath(os.path.join(bad_root, p), root)
                  if not new_p.startswith("../") and (os.path.exists(os.path.join(root, new_p)) or os.path.exists(os.path.join(root, new_p + ".in"))):
                      return fmt(new_p)
          print("ERROR: ", fn, p)
          return m.group(0)
      new_c = re.sub(r'#include "([^"]+)"', repl, c)
      if new_c != c:
          print(fn)
          with open(fn, 'w') as f:
              f.write(new_c)
```

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14849

Reviewed By: dzhulgakov

Differential Revision: D13363445

Pulled By: ezyang

fbshipit-source-id: 52361f878a672785f9306c9e9ab2513128092b68
2018-12-08 19:38:30 -08:00
Thomas Viehmann
2d56df7892 Use .to to convert new tensors in new_tensor (#14097)
Summary:
This would solve the tracing problems of #13969.
Fixes: #14732

I would appreciate if this got good scrutiny before applied.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14097

Differential Revision: D13323181

Pulled By: ezyang

fbshipit-source-id: dcd104b497c0bfddb751923c6166a3824b7a3702
2018-12-04 14:03:56 -08:00
Edward Yang
6fe1867c23 Expunge direct device index handling from tensor_conversion_dispatch (#14421)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14421

Last time I looked this, I bailed because it seemed like there were
a lot of sites to fix.  Well, I need this to work properly for out-of-place
HIPify, so I took another whack at it.  Changes should be pretty self-explanatory.

Reviewed By: gchanan

Differential Revision: D13221302

fbshipit-source-id: ed21e2668a1a629898a47358baf368fe680263a0
2018-11-29 16:04:10 -08:00
Edward Yang
e35418b3be New implementations of DeviceGuard, StreamGuard and MultiStreamGuard (with CUDA specializations) (#13342)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13342

This PR introduces a few new concepts:

- DeviceGuardImplInterface, and implementations for CPU and CUDA, which
  provide a generic interface for interfacing with device and stream state,
  without requiring a direct dependency on the code in question.
- InlineDeviceGuard, a general template for generating both specialized
  and dynamically dispatched device guard implementations.  Dynamic
  dispatch is done by specializing it on a VirtualGuardImpl.
- Provide a device-independent DeviceGuard class, which can be used even
  from CPU code. It uses the aforementioned dynamic dispatch.
- CUDA-specialized CUDAGuard class, which doesn't have a dynamic dispatch
  but can only be used from CUDA.
- StreamGuard, which is the same as above, but for streams rather than
  devices.
- Optional variants of all the aforementioned guards, which are a no-op if
  no device/stream is specified
- CUDAMultiStreamGuard, specifically for the case when we want to set
  a device on every guard.

There are some subtle semantic changes, which have been thoroughly documented
in the class definition.

BC-breaking changes:

- Move constructor/assignment have been removed from all device guard
  implementations.
- In some cases where you previously wrote 'set_device' (or 'set_stream'), you now must write
  'reset_device', because if you switch devices/device types, the stream/device on the
  previous device is unset.  This is different from previous behavior.
- CUDAGuard no longer handles streams, or multiple streams.  Use CUDAStreamGuard
  or CUDAMultiStreamGuard as appropriate for your use case.

Reviewed By: dzhulgakov

Differential Revision: D12849620

fbshipit-source-id: f61956256f0b12be754b3234fcc73c2abc1be04e
2018-11-11 12:11:10 -08:00
Edward Yang
0aaff5eaf9 Replace CUDA-specific set_index(_from) method from DeviceGuard with set_device. (#13275)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13275

This resulted in a bunch of knock-on changes, which I will now
describe:

- s/original_index/original_device/
- s/last_index/last_device/
- A bunch of places that used set_index, now use CUDAGuard (which does have
  set_index) because they were CUDA-specific code.

Major caveat: DeviceGuard doesn't *actually* work non-CUDA/CPU devices, To make
that happen, I plan on totally replacing the implementation of DeviceGuard; what
I mostly care about here is wrangling the API into an acceptable state.

Reviewed By: gchanan

Differential Revision: D12832080

fbshipit-source-id: 7de068c7cec35663dc8a533026a626331336e61d
2018-10-31 07:55:13 -07:00
Tongzhou Wang
46162ccdb9 Autograd indices/values and sparse_coo ctor (#13001)
Summary:
Reopen of #11253 after fixing bug in index_select
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13001

Differential Revision: D10514987

Pulled By: SsnL

fbshipit-source-id: 399a83a1d3246877a3523baf99aaf1ce8066f33f
2018-10-24 10:00:22 -07:00
Yangqing Jia
08aab4dfdd remove ATen/Error.h and ATen/core/Error.h (#12792)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12792

This is a follow up diff after D10238910.

Only non-codemod change is the removal of ATen/Error.h and ATen/core/Error.h. Other files are basically changing the inclusion path + clang format for inclusion order.

Reviewed By: bddppq

Differential Revision: D10437824

fbshipit-source-id: 7f885f80ab5827468d1351cfb2765d0e3f555a69
2018-10-17 17:25:42 -07:00
Yangqing Jia
713e706618 Move exception to C10 (#12354)
Summary:
There are still a few work to be done:

- Move logging and unify AT_WARN with LOG(ERROR).
- A few header files are still being plumbed through, need cleaning.
- caffe2::EnforceNotMet aliasing is not done yet.
- need to unify the macros. See c10/util/Exception.h

This is mainly a codemod and not causing functional changes. If you find your job failing and trace back to this diff, usually it can be fixed by the following approaches:

(1) add //caffe2/c10:c10 to your dependency (or transitive dependency).
(2) change objects such as at::Error, at::Optional to the c10 namespace.
(3) change functions to the c10 namespace. Especially, caffe2::MakeString is not overridden by the unified c10::str function. Nothing else changes.

Please kindly consider not reverting this diff - it involves multiple rounds of rebasing and the fix is usually simple. Contact jiayq@ or AI Platform Dev for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/12354

Reviewed By: orionr

Differential Revision: D10238910

Pulled By: Yangqing

fbshipit-source-id: 7794d5bf2797ab0ca6ebaccaa2f7ebbd50ff8f32
2018-10-15 13:33:18 -07:00
Gregory Chanan
695465915a Remove some Type.tensor usages and remove native_tensor without size. (#12403)
Summary:
Same as before, but with "initialTensorOptions()" instead of "TensorOptions(false)".
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12403

Differential Revision: D10225427

Pulled By: gchanan

fbshipit-source-id: 60bd025a5cc15bdbbab6eafc91ea55f5f2c3117e
2018-10-05 20:55:14 -07:00
Gregory Chanan
e2d2b270db Revert D10212616: [pytorch][PR] Remove some Type.tensor usages and remove native_tensor without size.
Differential Revision:
D10212616

Original commit changeset: c9cd128d1111

fbshipit-source-id: 923781ba9cd6e60e7c92789832e5601a1fd848b5
2018-10-05 11:55:45 -07:00
Gregory Chanan
705d80b51e Remove some Type.tensor usages and remove native_tensor without size. (#12355)
Summary:
This is to move us along the path to removing Type from the public API.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12355

Reviewed By: ezyang

Differential Revision: D10212616

Pulled By: gchanan

fbshipit-source-id: c9cd128d1111ab219cb0b2f3bf5b632502ab97c0
2018-10-05 11:12:07 -07:00
Gregory Chanan
0947712e5d Move Factory functions from Type to TypeExtendedInterface. (#12025)
Summary:
This makes a few changes wrt Type, with the ultimate goal of removing Type from the public Methods/Functions.  In particular:
1) Removes factory functions from Type, into TypeExtendedInterface.
2) sparse_coo_tensor is now a first class at:: namespace function, with TensorOptions overloads.
3) We move from Type-based sparse_coo_tensor dispatch to function-based.

Note we still require a number of changes to get rid of tType in the public interface, in particular TensorOptions needs to support CUDA vs non-CUDA dispatch.  That is coming in a future patch.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12025

Reviewed By: ezyang

Differential Revision: D10017205

Pulled By: gchanan

fbshipit-source-id: 00807a37b09ed33f0656aaa165bb925abb026320
2018-09-25 09:40:17 -07:00
Gregory Chanan
1178851280 Get rid of most usages of Type.tensor. (#12002)
Summary:
1) Most usages are replaced by at::empty.
2) native_tensor has its namespace function removed
3) Type.tensor(sizes, strides) becomes at::empty_strided(sizes, strides).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12002

Differential Revision: D10007201

Pulled By: gchanan

fbshipit-source-id: 5e5647c050ed2ecb87a33e0b5ce4928fa3186c34
2018-09-24 10:16:18 -07:00
Wei Yang
817e83fc01 fix PR #11061 (#11815)
Summary:
- fix PR https://github.com/pytorch/pytorch/pull/11061 by moving `detach_()` and `set_requires_grad()` to `torch.tensor_ctor()` and `tensor.new_tensor`, and also removed warnings and `args_requires_grad` from `internal_new_from_data `
- with this patch, the returned tensor from `tensor_ctor()` and `new_tensor` will be detached from source tensor, and set requires_grad based on the input args
- `torch.as_tensor` retains its behavior as documented

gchanan apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11815

Differential Revision: D9932713

Pulled By: weiyangfb

fbshipit-source-id: 4290cbc57bd449954faadc597c24169a7b2d8259
2018-09-21 11:04:19 -07:00
Wei Yang
407a9fee0c make copy constructed tensor a leaf variable when using torch.tensor(sourceTensor) (#11061)
Summary:
- fix https://github.com/pytorch/pytorch/issues/10876
- the cause of the bug is because copy constructor cannot distinguish between default value of requires_grad and requires_grad=False, thus it makes a copy from source tensor along with its grad_fn if requires_grad=True at source
- with this fix, the behavior becomes
```
>>> source = torch.randn(2, 2, requires_grad=True)
>>> copy = torch.tensor(source, requires_grad=True)
>>> print(copy)
tensor([[-1.2001,  1.9869],
        [-1.0134,  1.3096]], grad_fn=<CopyBackwards>)

>>> source = torch.randn(2, 2, requires_grad=True)
>>> copy = torch.tensor(source, requires_grad=False)
>>> print(copy)
tensor([[-0.7402,  0.0467],
        [ 0.4344, -0.0420]])

>>> source = torch.randn(2, 2, requires_grad=True)
>>> copy = torch.tensor(source)
>>> print(copy)
tensor([[-0.7402,  0.0467],
        [ 0.4344, -0.0420]])
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11061

Differential Revision: D9569714

Pulled By: weiyangfb

fbshipit-source-id: ea368688bdc0f1ce5997870e164e42835b64b4a1
2018-09-17 23:29:09 -07:00
Gregory Chanan
a8b1755de6 Check device argument makes sense for legacy tensor constructors. (#11669)
Summary:
Fixes: https://github.com/pytorch/pytorch/issues/11427.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11669

Differential Revision: D9817881

Pulled By: gchanan

fbshipit-source-id: 77dc5b0e6bc9884d2616210b96c07e4734058bb6
2018-09-17 08:24:25 -07:00
Adam Paszke
3e665cc29b Improve support for tracing sizes, add more tracer warnings (#11288)
Summary:
Many constructors like `torch.zeros` or `torch.randn` didn't support
size tracing correctly which is fixed by this pass. Same issue has been
fixed in legacy tensor constructors.

Additionally, new tensor constructors, which do not participate in
tracing (most notably `torch.tensor`, `torch.as_tensor` and
`torch.from_numpy`) raise a warning when they are used.

Finally, entering a traceable operation disables the tracing in its body.
This is needed because

zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11288

Reviewed By: ezyang

Differential Revision: D9751183

Pulled By: apaszke

fbshipit-source-id: 51444a39d76a3e164adc396c432fd5ee3c8d5f7f
2018-09-10 15:22:48 -07:00
vishwakftw
733402bef4 Fix issues with certain heterogeneous types in lists during tensor creation (#11377)
Summary:
Closes #9963
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11377

Differential Revision: D9701824

Pulled By: soumith

fbshipit-source-id: 89c5448fd90ece1b365dc42f775b6b0c73ce790c
2018-09-07 12:56:35 -07:00
Edward Yang
56bdd87b40 Get rid of some uses of type() (#11215)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11215

I found these by deleting the implicit conversion of Type to
TensorOptions and then fixing sites.  This isn't a complete
refactor, because I ran out of steam after fixing this many
and decided to keep the implicit conversion.  Still, why
waste a perfectly good refactor?

Reviewed By: gchanan, cpuhrsch

Differential Revision: D9634750

fbshipit-source-id: 4d8fb778e13e6e24b888b1314a02709b2cb00b62
2018-09-04 20:26:22 -07:00
Edward Yang
0ff1bb0d8a Remove Type constructor from TensorOptions, add Type::options (#11189)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11189

Replaces it with an operator TensorOptions() method on
Type, reestablishing the implicit conversion.  I originally
wanted to get rid of the implicit conversion entirely, but
there were a *lot* of use-sites, so I added it back to avoid
a huge codemod.  In this patch, I only had to fix sites that
used the optional device_index API.

Reviewed By: cpuhrsch

Differential Revision: D9628281

fbshipit-source-id: 5fe2a68eefb77a3c9bb446f03a94ad723ef90210
2018-09-04 08:10:04 -07:00
Edward Yang
750ede7215 Rename getType to getVariableTypeFromBaseType / getVariableType (#11095)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11095

We used getType to mean a lot of things.

- getVariableTypeFromBaseType: given a base Type (non-Variable type)
  compute the Variable Type which corresponds to it.

- getVariableType: like at::getType, but return the Variable type
  rather than the plain type.

This rename makes it clearer at the use-site what things are what,
and will make a subsequent rename of at::getType easier.

Reviewed By: gchanan, cpuhrsch

Differential Revision: D9583630

fbshipit-source-id: 2667ec98e7607bc466920c7415a8c651fd56dfca
2018-08-30 20:11:25 -07:00
Peter Goldsborough
7ddc6f84c4 NULL -> nullptr (#11047)
Summary:
How did we get so many uses of `NULL` again?

ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11047

Differential Revision: D9566799

Pulled By: goldsborough

fbshipit-source-id: 83469f352ac69aa65bdaf1a1a21f922d892e0db3
2018-08-30 16:25:42 -07:00